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Abstract—Providing acceptable Quality of Experience (QoE)
in Wireless Local Area Network (WLAN) is very difficult: home
networks are managed by non-technical people, and the propri-
etary management solutions of enterprise networks usually do not
incorporate QoE mechanisms. Due to these difficulties, automatic
QoE management mechanisms are welcome. This paper presents
control loops capable of changing the power and transmission
channels in the WLAN, based on Software Defined Wireless
Networks and reinforcement learning, in order to improve user
satisfaction for Web applications. A prototype evaluates our
proposal in three case studies with a web browsing application, in
which several access points are controlled by a central controller
or by independent controllers. Our results show that the control
loop can improve the Mean Opinion Score (MOS) by at least 4 %
in the worst case, and 167 % in the best case, thus benefiting the
user. Further, the control loop also reduced in page load time by
25 % in the worst case, and 233 % in the best case.

Index Terms—Wireless Networks, Software Defined Networks,
Reinforcement Learning, Multi-Armed Bandit, Quality of Expe-
rience

I. INTRODUCTION

Recent estimates suggest that more than 10 billion Wi-Fi

devices have been sold and more than 4.5 billion of those

are in use today [1]. WLAN is the most common method

of Internet access for home stations [2], but its transmission

medium is subject to performance problems, and the home

user is a non-technical person. Many home WLAN Access

Point (AP) are provided by Internet Service Provider (ISP)

to home clients, and ISPs have the expertise to analyze the

data generated by these devices, however, most of the time

they avoid monitoring home traffic because of privacy and cost

issues [3]. Companies use commercial wireless controllers that

provide WLAN central configuration and management, but

they are closed platforms, which rely on the vendor’s initiative

to provide new features. Faced with so many challenges, there

is a need to propose new and automatic control mechanisms to

wireless devices that improve the user’s quality of experience.

Auto-configuration and auto-optimization capabilities can

be added to the wireless network using Software Defined Net-

working (SDN) approaches [4, 5] with minimal or no human

administration [4]. To achieve that, two prerequisites must

be fulfilled: a control loop algorithm that gathers information

from the environment and acts on the devices, and some metric

that is representative of the satisfaction perceived by the user

when using the network application, called QoE.
In the literature, the solutions use metrics obtained at the

stations, the servers, or the network nodes to estimate the QoE

perceived by the user. Hora et al. [6] studied the QoE of a web

browsing application on WLANs. They created a regressor

that relates WLAN metrics perceived at the AP to the QoE

perceived by the wireless user, so that ISPs do not infrige

the user’s privacy. Proposals that use QoE, focus on local

decisions [7–12], or use some communication mechanism

between the agents in the network [13–15]. To the best of our

knowledge, no proposal does active control of the wireless

network considering interfering APs, using metrics capable

of estimating user’s satisfaction. This is important because it

is the trending scenario addressed by operators or network

administrators nowadays.
This paper proposes two closed control loops for WLAN

using SDN and a machine learning technique called Multi-

armed Bandit (MAB), which optimizes the Web QoE proposed

in [6]. We evaluated the control loop using Ethanol [16], an

SDN architecture for IEEE 802.11 networks. To the best of

our knowledge, our work is the first that uses SDN to control

802.11-based wireless networks using MAB with a QoE

metric as feedback, and also performs real life experiments.

The control loops are evaluated in a prototype under three

scenarios: (i) a single controller manages an AP with stations

connected to it; (ii) the APs are managed by independent

controllers; and (iii) one controller coordinates all the APs.

Results show that our control loops improve the QoE metric,

reducing the average regret at least by 45 % in the worst case,

and 84 % in the best case. It reduced the page load time by

25 % in the worst case, and 233 % in the best case, when

compared to the baseline.
The remainder of this paper is organized as follows. Section

II shows the background. Section III describes the proposed

architecture. Section IV discusses the evaluation results. Re-

lated work is discussed in Section V. Finally, Section VI draws

the conclusions and presents the future work.

II. BACKGROUND

This section discusses some concepts related to our pro-

posal. It presents how to measure user satisfaction, the SDN

paradigm, the reinforcement learning method used in our

work, called MAB, and explains how the regret is calculated.978-3-903176-15-7 c© 2019 IFIP
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A. Ethanol

Ethanol is a SDN platform that allows the direct program-

ming of network services by providing high level calls that

control the underlying infrastructure of IEEE 802.11. It allows

us to meet requirements like flexibility in the management and

configuration, adaptability and independence of the supplier in

wireless networks [16]. Ethanol defines a southbound interface

that controls IEEE 802.11 APs as well as wireless stations

that fully implement the IEEE 802.11/2016 standard (former

802.11k, 802.11m, and 802.11v amendments). Ethanol is

available under General Public License (GPL) version 2.

The source code can be found at https://github.com/h3dema/

ethanol_hostapd for the AP, and https://github.com/h3dema/

ethanol_controller for the controller.
Ethanol employs extensions of IEEE 802.11 to obtain

station performance data, as well as to execute monitoring

commands, so that the SDN controller obtains information

about the observed link quality for each device. The use of

Ethanol allows the controller to centrally request network

usage metrics to the APs it manages, as well as to the client

nodes. In this way a control algorithm can, using these metrics,

adapt network parameters (such as the channel frequency, the

transmission power, among others) to improve the perceived

performance by the wireless network users.

B. Estimating Web QoE in Wi-Fi

QoE approaches were introduced to measure the pleasure or

the discomfort perceived by the user in the use of a service,

including system, human, and context factors. Obtaining the

QoE is complex, since the individual experience is subjective

in nature, being subject to the expectations and perceptions of

the user. It is also difficult to quantify and measure, since it is

impossible to force the user to make an evaluation of a service,

and furthermore this evaluation is objective. Research has been

conducted at the academy on the measurement of QoE for web

browsing. Estimators are applied directly to browsing [6, 17]

or file transfers [18].
Hora et al. [6] build a predictor that can be used by an

ISPs in order to relate WLAN metrics to QoE of a user

browsing the web. For that reason, they use two WLAN

metrics available in APs that can coarsely correlate to the

MOS: average PHY rate and the percentage of medium busy

time. The first one represents the link quality, and the second,

the medium availability. The MOS value is generated using a

support vector regressor.
Hora et al.[6] instrument a commodity AP, and passively

monitor WLAN metrics. They tried to infer the relationship

between WLAN metrics and QoE, through controlled web

browsing experiments, in a WLAN testbed. Their results were

validated using data collected in an office environment, with

data collected every 30 minutes, from 6AM to 11PM, for

two weeks. To account for page complexity, Hora et al. ranks

sites into three categories - light, average, and heavy. Their

predictors (one Support Vector Regression (SVR) for each type

of site) adhere to the MOS provided by a panel of users up

to 93% in their validation set. They also made measurements

on APs deployed in 4,880 residential customers of a large

Asian-Pacific ISP, reporting over 23,000 devices to a backend

server, collecting a total of 180 million samples. Because of

its thorough evaluation, we decided to use their predictor as a

feedback to our control system.

C. Multi-armed Bandit – MAB

Multi-armed bandit, introduced in the seminal paper of Lai

and Robbins [19], is a special class of the more general

paradigm of Reinforcement Learning (RL) for sequential op-

timization problems [20]. This class of learning algorithms

allows an agent to interact with an unknown environment

over a series of steps, observing the current state of the

environment, taking actions, and receiving as feedback a

scalar reward (in our case, the MOS). MAB assumes that the

feedback is limited, thus learning uses a trial and error strategy

[20, 21]. Also, due to the limited feedback, MAB presents a

trade-off between exploration and exploitation.
Historically, the name “bandit” comes from a gambler who

plays a slot machine in a casino. The casino does not want to

lose money, hence the analogy of the machine being a bandit

who gets the gambler’s money. The problem considers that the

player can bet on K machines, so she1, with each move (time

step), pulls the slot machine’s lever (arm). Each time an arm

is pulled, a random reward, regardless of any previous reward,

is returned. The K arms (actions) are considered independent

of each other. The player’s objective is to accumulate the

maximum reward possible in the long run.
Formally, the MAB problem is described as: Let K be the

number of arms the player can pull. At each time step t, also

called stage, the player (agent) pulls an arm, returning a scalar

reward associated with this arm. Let the state of arm i at step

t be s
(i)
t , then, if the agent selects arm j = m(t) at time t,

the states are updated as follows:

s
(i)
t+1 =

{

s
(i)
t i 6= j

Ti(s
(i)
t , w) i = j

(1)

where Ti(s
(i)
t , w) is a function that describes the (possibly

stochastic) transition probability of the i-th arm, and accepts

the state of the i-th arm, and a random disturbance w. Rewards

are taken from an unknown distribution. We can say that

the reward received by the player at time t is a function

of the current state and a random element: ri(s
(i)
t , ω). The

process repeats over a ⊤ steps horizon. The player’s goal is

to maximize the sum of the (discounted) rewards. Further, in

MAB the objective of the agent is to maximize the cumulative

discounted reward.
A policy is a decision rule for selecting arms as a function

of the state of the arms. Gittins [22] showed that there exists

an optimal index policy. Thus, there is a function that maps

the state of each arm to a scalar (real number) called the

“index”, such that the optimal policy is to choose the arm

with the highest index at any given time. This index value

1In this paper, the pronoun she is used for an unknown referent to balance
out the perceived sexism of the generic he.
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reflects the expected reward estimate for each arm, as well

as the estimate’s confidence, thus, when using this index, the

algorithm exploits the arm with the highest estimated reward,

but also explores arms whose confidence in the estimate is

low, since these arms can offer better rewards in the long run.

Regret

A common performance measure for bandit algorithms

is the total expected regret. Regret measures the absolute

difference between the sum of the rewards obtained by the

strategy adopted by the agent, that is, of the rewards obtained

by the sequence of arms actually selected, and the optimal

strategy. In this way, it measures how much the agent lost by

not choosing the best arm every time. It is defined for any

fixed round of ⊤ steps as the difference between the reward

that would be obtained when using an optimal policy π∗, and

the sum of the estimated average reward values r̂
j
t actually

obtained in each step by selecting arm j in step t:

RT = V π∗

−

T
∑

t=1

r̂
(j)
t = r∗T −

T
∑

j∈[1,K]

r̂(j)E [Nj ] (2)

where E [Nj ] is the expected number of times arm j will

be selected. Therefore regret measures how much reward, on

average, the system is losing by not achieving the maximum

reward.

III. SYSTEM ARCHITECTURE

We propose a closed-loop control system for wireless net-

works, using reinforcement learning and SDN to improve

Web application QoE. For that end, the devised control loop

changes either the transmission power or the wireless channel

being used by the APs.
Although simple, choosing the best channel and the highest

transmission power does not optimize the QoE for the follow-

ing reasons. One of the options to improve the performance

of web applications that may seem simple is to optimize the

flow of the stations. This approach seems to work at first

glance, yet it is simplistic, and does not solve the problem from

the user’s point of view, because there is a limit amount of

system throughput, that is, it limited by wireless transmission

capacity using the IEEE 802.11 protocol, and the users’ needs

are regulated by their perception of the rendering time for

each type of site. Even so if all users were wishing to access

the same type of site, their perception is influenced by the

page load time, which varies for example with the wireless

connection bit rate, noise in the link between the AP and the

station, or other factor. In this way, maximizing throughput

can affect from what is perceived by each user, because one

station can interfere with another, specially in a multi-agent

environment.
Figure 1 shows the proposed architecture, where the Web

QoE control loop sits on top of the Application Programming

Interface (API) provided by Ethanol [16], thus running as a

network management service. We will discuss the algorithm

used in the next section. It is worth noting that the control loop

does not require changes to the user’s applications or devices.

The control loop depends on the classification of the site type

of the web browsing flow, since there are three predictors, one

for each type of site. Such a classifier uses flow data obtained

during the OpenFlow “Packet In” event to read the parameters

needed to classify the type of site being accessed.

Ethanol controller

OpenFlow

protocol
Ethanol protocol

OVSDB 

protocol

Network Services MABSite 

Classifier

Wired connections Wireless connections

Switch Radio1

OpenFlow Ethanol agent

Ethanol wireless 

router

Secure
connections

Radio n...

OVSDB

Clients

Action aReward r

Flow info

Site type

Figure 1: Reinforcement Learning control loop on top of

Ethanol

We rely on a data plane composed by APs managed by

Ethanol. Our learning algorithm can use any IEEE 802.11 “ac-

tuators” that Ethanol exports, such as the channel frequency,

the transmission power, MAC protocol parameters (RTS/CTM

usage, DTIM, etc.), QoS parameters, among others.
MOS: The regressor provided by Hora et al. [6] returns the

predicted MOS.Since the MOS values are discrete, and the

values read from the APs are continuous, the MOS used in

the experiments is calculated as a linear regression of neighbor

points of the read value as show in Figure 2. The predictor

is used as a black box by the model, thus if a better or more

suitable predictor appears, it can be used instead.

(x3, y3, z3) = Phyi, Busyj+1, MOS(Phyi, Busyj+1)

(x,y,z) = (Phy, Busy, MOS)

(x1, y1, z1) = Phyi, Busyj, MOS(Phyi, Busyj)

(x4, y4, z4) = 

Phyi+1, Busyj+1, MOS(Phyi+1, Busyj+1)

(x2, y2, z2) = 

Phyi+1, Busyj, MOS(Phyi+1, Busyj)

Figure 2: How MOS is calculated in our evaluation

Reward: The reward measures how much the new system

configuration increases or decreases the QoE. For a time

t, a wireless station j perceives a MOS equal to MOSj,t,

calculated using the predictor. The reward used in line 12
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of Algorithm 1 is the average MOS of all the stations
(

rt =
1
m

m
∑

j=1

MOSj,t

)

, where m is the number of the sta-

tions. Thus our control loop seeks to maximize the average

MOS. Another option, which we intend to evaluate in future

work, is the use of Jain’s definition of fairness [23] to

guarantee a more balanced MOS, i.e., penalize situations in

which the results for each client differ a lot, therefore making

the overall result more homogeneous.
Actions in Multi-armed Bandit: The proposed control loops

actuate on the system by changing the wireless channel, and

the transmission power. In MAB, the actions are mapped to

the arms, so we have an arm for each combination of (AP,

channel number, transmission power). The transmission power

is discretized into 1 dBm increments. Thus the total number

of arms K, using our devices, is n AP × 11 channels × 15

power levels, i.e. it scales linearly on the number of controlled

access points. 5 GHz band was not used in the paper, however

the model supports any channel or frequency available.
Algorithm: Our proposal uses the ǫ-greedy approach, which

is widely used because it is very simple. There are many

approaches to MAB, but our proposal uses a class of MAB

algorithms called Upper Confidence Bound (UCB), proposed

by Auer et al. [24], in particular the algorithm uses UCB1 [24].

UCB is an elegant implementation of the idea of optimism in

the face of uncertainty, as proposed by Lai and Robbins [19].
In Algorithm 1, the pseudo-code selects a deterministic

policy at each step t. In line 3, the estimated average value

r̂(j) of each arm is initialized to one, the lowest MOS possible.

Another option would be to start with the maximum MOS

value, but that implies in forcing the algorithm to explore all

arms in the first steps. In a transfer learning experiment, this

value can be initialized using previous knowledge, i.e. values

learned in previous runs. We intend to evaluate this in future

work. n
(j)
t is the number of times the arm j is pulled, and in

the initialization, it is set to one for all arms. In time step t,

the algorithm selects the arm j that maximizes the index I(j).

The environment returns a scalar reward associated with the

unknown reward distribution of the selected arm j.
In UCB1, after an arm j is selected and the reward rt

is received, the UCB1 indexes, the average reward and the

number of selections of arm j are updated using the equations

in Lines 11, 12, and 13. I
(i)
t , n

(i)
t and r̂i(t) retain the previous

values, for i 6= j. r̂(j) is the average reward obtained from arm

j, n(j) is the number of times arm j has been pulled so far,

and t is the overall number of plays done so far.
As the horizon is not known, this algorithm uses the

“doubling trick” described in Section 2.3 of [25]. The idea is to

partition time into periods of exponentially increasing lengths.

When the period T ends, n(j) is reset and then is started again

in the next period, and the length of T is doubled.

IV. CONTROL LOOP EVALUATION

This section presents three experiments used to test the

control loop using four metrics: convergence time, page load

time, average MOS, and regret.

Algorithm 1 UCB algorithm

1: function UCB(K) ⊲ K: number of arms

2: ⊲ n(i): number of times the arm i was pulled

3: Initialize I
(j)
t = r̂

(j)
t = n

(j)
t = 1, ∀j ∈ [1,K], t = 0

4: while True do

5: T ← 1
6: for t ∈ [1, T ] do:

7: ⊲ Select the arm j that maximize the index

8: j = max
j

I
(j)
t−1

9: Take action j ⊲ Play the arm j

10: Observe arm j’s MOSj,t e calculate rt

11: update n
(j)
t = n

(j)
t−1 + 1

12: update r̂
(j)
t =

n
(j)
t−1×r̂

(j)
t−1+rt

n
(j)
t

13: update I
(j)
t = r̂

(j)
t +

√

2 log(t)

n
(j)
t

14: T ← 2× T

15: n(j) ← 1, ∀j ∈ [1,K]

A. Scenarios

Our experiments aim to evaluate how the control loop would

work under the operating conditions found in production

wireless networks. The hypothesis that we evaluate is whether

the devised control loop improves the user’s QoE. This is

tested under three different scenarios. The first one is when the

control loop only controls the user’s AP, like in a residence,

and in this way it has to adapt to the interference generated

by the neighboring networks. Next, we evaluate the perfor-

mance when several neighboring intelligent networks, with

independent controllers (such as in a commercial building with

several companies), coexist in the environment. And finally,

we evaluate the performance of several neighboring intelligent

networks being controlled by a single (logical) controller. This

is similar to a large company or campus.

1) Stand-alone (SA) experiment: This experiment uses one

controller, which manages one AP and two clients. The control

is centralized, so this is a RL scenario with a single agent. In

this way, the algorithm in the controller is executed on a state

space that contains both stations, and therefore it seeks a global

reward that maximizes the MOS of both stations. All feedback

is obtained by reading information from the environment.

2) Multi-agent (MA) experiment: This scenario simulates

a place with multiple APs, such as a shopping center, a

condominium, etc., and each AP is managed by a different

administrator who does not exchange information with other

administrators. We will show that it is still possible to obtain

benefits from the use of our control loop for the stations

connected to the stations of the various networks. This is

a classical case of multi-agent RL where the agents do not

communicate, but have to cope with the cross-interference.
This experiment uses two independent controllers. Each

controller manages one AP. The APs are near each other

(less than one meter apart), so are the stations. The APs are

started on the same channel and with the same power. This
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experiment highlights the effects of adding intelligence to the

system, which can reduce the cross interference using learning

algorithms.
3) Centrally-controlled Multi-Agent (CA) experiment: This

scenario simulates a place with multiple APs managed by a

single administrator, such as in a company, a campus, etc.

We will show that the control loop generates benefit for

stations connected to the wireless network, even when there

are neighboring APs, since the controller makes coordinated

decisions to improve the global reward.
In this experiment, a single controller manages two APs.

This experiment is similar to the Stand-alone (SA) experiment

because the controllers can only obtain information by read-

ing the environment, but now the controller coordinates two

devices and the controller has to handle the cross interference

that is generated by the station transmission to their respective

APs.

B. Methodology

The scenarios contain APs that run a modified HostAPd,

which runs the Ethanol agent. The AP runs NAT so its

clients can access the Internet. The wireless stations are Linux

computers equipped with a wireless card compatible with

IEEE 802.11b/g/n. No software is needed on the stations,

relying only on IEEE 802.11 standard support. As the AP

may change the channel several times, we use stations that

recognize Channel Switch Announcement message (CWAP)

messages, since CWAP is used by an AP in a Basic Service Set

(BSS) to advertise the new channel, before changing channels.

This way the station recognizes in advance the channel change,

and can accelerate the migration to the new channel, reducing

the disconnection time.
The traffic is not simulated, i.e, the stations download live

pages over the Internet. Each client runs an command line web

browser that continuously downloads the default web page

from the three sites that listed in the Hora et al.’s paper. The

browser requests a new default page when the current request

is completed. The page load time considers the download of

the whole page, i.e, the html file, scripts, RSS, and images.
The controllers are connected to a gigabit Ethernet network,

just like the stations and the APs, as shown in Figure 3. The

controllers and the stations use the Ethernet as an “experiment

control plane”, and as such no application traffic is sent over

the wired interface. The APs use the Ethernet to receive control

data from the controller but also to forward the station traffic

(download) to the Internet. The devices are aligned, and the

distances among them are shown in Figure 3.
Combination of sites: Because Hora et al. rank sites into

three categories (light – Google, average – Facebook, and

heavy – Amazon) and since we have two clients, we run

the experiment for the six possible traffic combinations. For

each combination, the experiment is repeated 30 times with a

timeout of 30 minutes.
Online classification of the flow by site type: In order for

our proposal to work in an online environment, it must be

able to classify the web traffic passing through the AP in

one of the three site types defined in Hora et al., so the

AP1 AP2STA1STA2CTRL1CTRL2

45 cm325 cm90 cm

Internet
Control packets

Data packets

Wireless communication

Figure 3: Network layout of the experimen

correct MOS regressor is selected. For the experiments, as

the stations accessed the three sites defined by the authors,

it was enough to use the OpenFlow “Packet In” event to

identify the destination IP, as shown in Figure 1, and, with this

information, inform the learning algorithm the site type using

a simple mapping table. We are working in a semi-supervised

learning classifier that employs only data accessible from the

“PacketIn” events to do online classification of the sites.
Devices description: The controllers are dual core Intel(R)

i5 PCs with 16GB of RAM. The stations are PCs with dual

core Pentium(tm) 2.4GHz CPU, 2GB of RAM and a RT3062

802.11n wireless card. Because Ethanol runs on Linux, our

APs are ASUS notebooks with Intel(R) i7 CPU @ 1.80GHz,

8GB of RAM and Atheros AR9485 adapters. All computers

run Ubuntu Linux version 14.04 LTS.
Baseline: As a baseline to compare the results obtained

using the controller, for each experiment configuration, we

execute 20 runs without the controller actuation for 30 min-

utes. Executions are also made for the six combinations of

site types. APs are started on a randomly selected channel,

and with maximum transmission power. The experiments are

performed in an environment with more than 60 other APs.

C. Results

This section presents the results for the three experiments

used to test the control loop. We used four metrics: conver-

gence time, page load time, MOS, and regret (recall section

II-C for the definition of regret).
1) Convergence Time: Table I shows the number of itera-

tions of the algorithm so that both wireless stations reach the

maximum MOS value, i.e. both reach MOS = 5. We show

in the table rows the results for the site type combinations,

followed by the average number of iterations with the 95%

confidence interval and the median. Each iteration occurs in

approximately one second, thus the number of iterations also

represents an approximation of the time spent to reach the

maximum on both stations. There is one sampling per iteration,

then there are 1,800 sampling per run We did not present in

Table I the convergence time for the baseline, because the

baseline does not employ a control scheme (max transmit

power and fixed channel), so there is no convergence time.

When a light page is requested, the convergence time tends to

be longer than the other cases, especially in the Multi-agent
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Table I: Comparing the convergence time

Client 1 Client 2
SA Experiment MA Experiment CA Experiment

Number of Iterations Median Number of Iterations Median Number of Iterations Median

light light 32.8 ± 56.46 2.0 1356.4 ± 233.31 1515.0 383.5 ± 168.94 223.0

light average 166.6 ± 126.84 2.0 1309.7 ± 243.56 1255.0 60.9 ± 37.33 2.0

light heavy 195.7 ± 177.47 2.0 1123.9 ± 213.27 1205.0 226.2 ± 57.65 193.0

average average 6.9 ± 8.08 1.0 860.2 ± 171.32 803.5 8.9 ± 6.38 3.0

average heavy 243.5 ± 279.73 3.0 804.4 ± 150.03 840.5 211.6 ± 42.50 202.0

heavy heavy 100.7 ± 44.15 69.0 635.5 ± 108.77 679.5 199.7 ± 37.65 184.0

Table II: Comparing the regret with the baselines

Client 1 Client 2
SA experiment MA experiment CA experiment

MAB Baseline MAB Baseline MAB Baseline

light light 0.743 ± 0.004 1.611 ± 0.005 0.675 ± 0.006 1.579 ± 0.007 0.869 ± 0.005 1.579 ± 0.007

light average 0.712 ± 0.003 1.904 ± 0.006 0.610 ± 0.006 1.843 ± 0.009 0.788 ± 0.004 1.843 ± 0.009

light heavy 0.440 ± 0.003 2.706 ± 0.011 1.034 ± 0.008 3.019 ± 0.006 1.055 ± 0.006 3.019 ± 0.006

average average 1.013 ± 0.005 2.386 ± 0.009 0.771 ± 0.010 2.477 ± 0.008 0.969 ± 0.006 2.477 ± 0.008

average heavy 0.637 ± 0.005 3.108 ± 0.013 1.388 ± 0.012 3.583 ± 0.006 1.260 ± 0.007 3.583 ± 0.006

heavy heavy 1.411 ± 0.014 3.164 ± 0.014 1.770 ± 0.013 3.780 ± 0.003 1.737 ± 0.008 3.780 ± 0.003

(MA) experiment, where the two controllers do not exchange

information with each other. In this case, the competition

between the two devices generates cross-interference, which

makes the algorithm work harder to find a suitable configura-

tion. Note that in all experiments, the learning algorithm starts

without prior knowledge, so any available action is equivalent.

A simple heuristic may never converge, since the medium

quality may change in any moment. RL, on the other hand,

balances exploration (puts the system into a good response)

and exploitation (looks for better values), and that is very hard

to translate to a simple heuristic.

The confidence intervals for the MA experiment were also

higher, in general, indicating a more pronounced variability

in the convergence time. This is because the controllers are

not coordinated, thus they do not exchange information with

each other, getting feedback only through the readings of the

environment. The placement of our equipment accentuated the

interference between the devices, since the AP are located

side-by-side, as well as the two stations. So in the MA exper-

iment, the selection of an action, seeking to improve the QoE,

can worsen the quality of the other station. We intend, in future

work, to allow controllers to exchange minimum information

(for example a local QoE indicator), then the experiment can

be modeled as a cooperative multi-agent environment, as each

controller can add to its local equation the reward variation,

accounting for the effect on the other agents (controllers).

2) Regret: Our agent’s performance can be compared with

an optimal strategy that consistently reproduces the arm (se-

lects the action) that is best in the first n steps, for any horizon

of n steps, as shown in Equation 2. Although we do not know

the optimal strategy, we know that the maximum reward is

five, so we can compare the strategies using MAB, and the

baseline, assuming that there is an optimal strategy that always

gets the maximum reward. Table II shows the mean regret with

a 95% confidence interval for the three experiments, showing

the results using the control loop and the baseline. This result

indicates that the control loop improves the QoE perceived by

the user by at least 45 % in the worst case, and by 84 % in the

best case. In all cases, the regret using MAB is lower than the

baseline, and, in many cases, its confidence interval is tighter.

3) MOS distribution: Figures 4, 5, and 6 show the cumu-

lative probability distribution for the predicted average MOS

during the execution of the experiments, considering the site

type combinations for each of the three test environments

described in the Section IV-A. The MOS shown in this section

is obtained using the predictor developed by Hora et al.,

using measurements that are performed in the APs [6]. The

curves show in the X-axis the value of the MOS, which varies

between 1 and 5. The Y-axis shows the cumulative probability.

This way if one traces a line parallel to the X axis at a given Y

value, she can identify that the process with the best MOS is

the one that intersects this line to the rightmost position. Due

to the available space, we did not show all the combinations,

but only the worst and the best curves. Each graph contains

the average MOS achieved by the stations accessing the web

sites, i.e., each point in the curve represents the value resulting

from each station’s obtained MOS value, at each iteration,

divided by the total number of stations. The continuous curve

is the baseline, while the other curve (dotted) is the result with

control loop using MAB. We can observe that in most of the

graphs, the control loop curve presents better results than the

baseline, i.e., the control loop’s probability of obtaining better

results, and thus increase user satisfaction, is greater than the

baseline. In the light-light curves, the curves are closer. This is

because the light site demands few network resources, so the

baseline can already achieve good results. Note, however, that

the regret for these cases is roughly the double for the baseline

than for the control loop. However, in cases where one of the

sites is a heavy site, the performance of the control loop is

significantly better, and in the case of the SA experiment, the

values are up to six times better than the baseline.

4) Page Load Time: The page load time consists of the

time that takes to download the whole page, i.e., the html file,

all script files, RSS files, and images files, and is measured at

the stations for each download. Table III shows the average

page load time, in seconds, of both stations, without using
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Figure 4: SA experiment - Cumulative distribution of MOS using MAB
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Figure 5: MA experiment - Cumulative distribution of MOS using MAB
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Figure 6: CA experiment - Cumulative distribution of MOS using MAB

the control algorithm and when using it. Each row represents

one of the six site type combinations, and the columns are

grouped by the experiment. The gain, i.e. how much better

is the performance with the controller that without it, is also

shown. All values are the average of the experiment, and with

a confidence interval of 95%. The perceived variation at each

request is because the accessed web servers return a slightly

different set of images and scripts to each request, e.g. different

publicity for each request, and due to small variations in the

test environment.

The use of learning algorithms results in shorter page load-

ing times. For example, in the light–average case for the SA

experiment, the improvement is mainly achieved by reducing

the page load time of the average type page. However, we

did not observe a pattern among the experiments. That is, no

combination has consistently shown an improvement pattern

over another combination.

V. RELATED WORK

Wireless channel conditions can be modeled using a finite-

state Markov model [26], thus RL approaches can be applied

to many wireless problems. Some previous research used RL

for routing, channel and power control in ad-hoc and wireless

sensor networks, like in [27, 28]. These were successful

approaches, but they are not user-centric approaches, only

optimizing Quality of Service (QoS) parameters.

2019 IFIP/IEEE International Symposium on Integrated Network Management (IM2019) 285



Table III: Comparing page load time (in seconds)

Client

1

Client

2

SA Experiment MA Experiment CA Experiment

Without With Gain

(%)

Without With Gain

(%)

Without With Gain

(%)Controller (s) Controller (s) Controller (s)

light light 5.8 ± 0.6 2.8 ± 0.1 108 % 5.7 ± 0.0 3.3 ± 0.9 73 % 5.7 ± 0.0 4.5 ± 0.7 25 %

light average 13.0 ± 0.1 3.8 ± 0.4 240 % 13.6 ± 0.2 9.6 ± 1.6 41 % 13.6 ± 0.2 6.7 ± 5.4 101 %

light heavy 9.6 ± 0.1 4.4 ± 0.4 118 % 9.7 ± 0.1 5.4 ± 0.2 79 % 9.7 ± 0.1 4.0 ± 7.0 140 %

average average 20.6 ± 0.2 7.2 ± 0.5 186 % 20.9 ± 0.1 9.0 ± 2.6 131 % 20.9 ± 0.1 18.3 ± 4.8 14 %

average heavy 16.5 ± 0.1 8.5 ± 0.8 94 % 17.1 ± 0.1 8.5 ± 5.3 101 % 17.1 ± 0.1 8.7 ± 5.5 95 %

heavy heavy 12.6 ± 0.2 7.3 ± 2.2 73 % 13.1 ± 0.1 8.0 ± 5.0 63 % 13.1 ± 0.1 7.2 ± 10.4 81 %

Recently, the research focuses in satisfying the users’ need

(an QoE approach). Baraković and Skorin-Kapov [3] surveyed

the state-of-the-art of QoE Management, focusing on wire-

less networks and addressing three management aspects: (a)

modeling, (b) monitoring and measurement, and (c) adaptation

and optimization. They explored the use of MOS in cellular

networks, but did not provide a wireless network QoE metric.

The task of obtaining a user satisfaction assessment during

the network operation is complicated, expensive, and not

always well accepted by the user, thus control solutions usually

employ estimates.

Some methods estimate QoE with metrics obtained at sta-

tions. For example, Habachi et al. [29] created a MOS-aware

TCP congestion control using an online learning algorithm

that outperforms other congestion control schemes in terms of

QoE. They used packet loss rate and jitter, and their proposal

selects the TCP congestion window size. Aguiar et al. [30]

studied many QoE metrics in video transmissions, but they

did not propose a control mechanism. Shaikh et al. [17]

used linear, logarithmic, exponential and power regression to

correlate page download time, throughput perceived by the

user, and packet loss to QoE, but they did not apply the metric

to control the network. A QoE/QoS correlation is provided by

Kim et al. [31] for IPTV QoE evaluation, using bandwidth,

burst level, delay and jitter. However, they evaluated this

correlation only in cabled broadband connections, which are

much more stable than a wireless link, and also did not use it

to improve the QoE. Ghahfarokhi and Movahhedinia [8] and

Wu et al. [9] proposed QoE-aware handover approaches, but,

in both proposals, control runs at the mobile user station.

Other approaches consider metrics measured at the source of

the data stream, such as on the video server in Gadaleta et al.

[12]. They proposed D-DASH, which improves the QoE using

Deep Q-Learning, but it only controls the video server, not the

network as in our approach. Zhang et al. [32] propose a cache

management scheme for HTTP servers using adaptive bit rate

streaming in wireless networks to maximize the users’ QoE.

Their work uses a logarithmic function of the playback rate

to infer the QoE metric, which was validated by 22 users, but

they did not perform active learning or use an SDN approach.

The network nodes can be used as decision points. For

example, in Yin et al. [14], the wireless medium access

is decided locally by each node in the network, using a

learning algorithm. However, without global view, it is harder

to optimize the whole network. He et al. [18] used a metric

to decide if data must be cached or dropped at each node

of the network, and Chenji et al. [33] used QoE to allocate

bandwidth in wireless networks, but the decision was made

by solving linear optimization problems.
Other work uses SDN to improve the network performance,

e.g., Amani et al. [34] proposed an offloading mechanism for

5G networks using SDN and wireless networks, using QoS

metrics to support the decision. They used a network model

to tackle the problem, and did not use a learning approach.

VI. CONCLUSION AND FUTURE WORK

Automatic control mechanisms, which use the user satis-

faction as feedback, allow network administrators to improve

satisfaction while maintaining market competitiveness. Thus

one of the main challenges today is to develop intelligent

and resilient methods that can ensure the provision of good

quality network services and meet the users’ QoE expectations.

Therefore, a control loop using learning algorithms should in-

crease the adaptability of network services, while it maintains

or increases the perceived QoE.
This paper proposes a closed control loop for WLAN using

SDN, RL, and QoE, to improve the user’s satisfaction. A

prototype that optimizes web QoE was developed to test the

proposal. Results show that the learning algorithm can reduce

the average regret by at least 45% in the worst case, and 84%

in the best case. The MOS can be improved by at least 4%

in the worst case, and 167% in the best case, thus benefiting

the user. The page load time was also reduced by 25 % in

the worst case, and 233 % in the best case, compared to the

baseline.
As future work, we will expand the number of devices in the

experiments to better evaluate the scalability of our solution.

Learning from previous experience, and generalization should

also be tested, thus the algorithm starts using values learned in

previous runs. Finally, to better cope with the user experience,

we should consider the time to render the visible page to

predict QoE, and for that we need to refine Hora et al.’s

methodology.
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