
Detect Me If You... Oh Wait.
An Internet-Wide View of Self-Revealing Honeypots

Shun Morishita1, Takuya Hoizumi1, Wataru Ueno1, Rui Tanabe1,
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Abstract—Open-source honeypots are a vital component in the
protection of networks and the observation of trends in the threat
landscape. Their open nature also enables adversaries to identify
the characteristics of these honeypots in order to detect and avoid
them. In this study, we investigate the prevalence of 14 open-
source honeypots running more or less default configurations,
making them easily detectable by attackers. We deploy 20 simple
signatures and test them for false positives against servers for
domains in the Alexa top 10,000, official FTP mirrors, mail
servers in real operation, and real IoT devices running telnet.
We find no matches, suggesting good accuracy. We then measure
the Internet-wide prevalence of default open-source honeypots
by matching the signatures with Censys scan data and our own
scans. We discovered 19,208 honeypots across 637 Autonomous
Systems that are trivially easy to identify. Concentrations are
found in research networks, but also in enterprise, cloud and
hosting networks. While some of these honeypots probably have
no operational relevance, e.g., they are student projects, this
explanation does not fit the wider population. One cluster of
honeypots was confirmed to belong to a well-known security
center and was in use for ongoing attack monitoring. Con-
centrations in an another cluster appear to be the result of
government incentives. We contacted 11 honeypot operators and
received response from 4 operators, suggesting the problem of
lack of network hygiene. Finally, we find that some honeypots are
actively abused by attackers for hosting malicious binaries. We
notified the owners of the detected honeypots via their network
operators and provided recommendations for customization to
avoid simple signature-based detection. We also shared our
results with the honeypot developers.

I. INTRODUCTION

Honeypots have long been a valuable tool for network mon-
itoring, helping to analyze and detect attacks against resources
in the network. Beyond protecting a network, academia
and the security industry have deployed larger collections
of honeypots–i.e., honeynets–to observe attack trends across
networks and the Internet as a whole. They expose what
vulnerabilities are targeted, capture malicious binaries and
enable observation of intruders.

When it comes to low-interaction honeypots, many op-
erators rely on open-source software to emulate vulnerable
network services. However, this use of emulation also implies
a weaknesses, as the attacker might leverage discrepancies
between the emulation and the actual service to detect and
avoid these types of honeypots.

Various tools and services for detecting honeypots have been
released [43], [45], [50], [52]. These automated tools allow
attackers to distinguish honeypots from real systems without
having to dive into intricacies of how to leverage telltale
signs for large-scale detection. The tools range from resource-
intensive to lightweight and highly scalable. An example of
the latter is the use of simple signatures that can be deployed
via tools like Zmap [26], as most recently was done by Vetterl
and Clayton [60]. Such lightweight approaches offer attackers
a low-cost solution to detecting and avoiding honeypots. The
question is, of course, how many honeypots are discoverable
by simple signatures. In other words, how many honeypot
developers make no effort to avoid discovery?

The objective of our study is to investigate the prevalence
of honeypots that fail to take even the most basic precautions
against detection by attackers. We present a simple signature-
based detection method that looks for the characteristic
responses–e.g., banners and web contents–of the default instal-
lations of open-source honeypots. (Though simple, we actually
find a larger population of honeypots than the recent and more
sophisticated approach of [60].) To put it differently, our
main goal is to find out if, where, and why operators forsake
even the most minimal effort to hide their honeypots. Rather
than improving on existing honeypot detection techniques,
we use 20 signatures for the characteristic responses of 14
open-source honeypot solutions. We first test these signatures
for false positives and then run them against available scan
data from Censys and against additional scan results that we
collected ourselves. In sum, the contributions of this paper are:

• Using 20 signatures, we were able to discover 19,208
honeypots across 637 Autonomous Systems for which
not even a minimal attempt was made to hide them.
Concentrations are found in research networks, but also
in enterprise, cloud and hosting networks. In terms of ge-
ography, we observe high prevalence of these honeypots
in Taiwanese networks.

• We explore potential explanations for the prevalence of
default honeypots by contacting their operators. Some of
these are probably operationally irrelevant, but we also
find honeypots deployed as part of professional security
operations and project of a national research institute.

• We find that some of the honeypots pose security threats
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themselves, as they are abused by attackers for hosting
malicious binaries.

• We informed developers and operators of the easy dis-
coverability of their honeypots and provided simple rec-
ommendations to prevent this.

The prevalence of easily discoverable honeypots is worry-
ing. It seems prudent to assume that at least some attackers
will leverage these evasion techniques or share their results in
the form of blacklist. This means that all measurement projects
and attack monitoring efforts based on these honeypots will
be biased towards certain types of attacks and attackers –
i.e., the less sophisticated ones. These biased observations
potentially suck resources away from detecting and observing
more skilled attackers. Last, but not least, we have also
observed that poorly maintained honeypots can themselves
become tools for the attackers. With our study, we aim to
contribute to improving the security practices around honeypot
deployment and safeguarding the validity of the measurement
of attack trends.

The remainder of this paper is structured as follows. In
Section II, we introduce a related work. In Section III,
we outline a method to detect open-source honeypots. In
Section IV, we describe our experiments. In Section V we
discuss the experiment results. In Section VI, we describe
ethical considerations and responsible disclosure. Finally, we
conclude in Section VII.

II. RELATED WORK

We use the term honeypot to refer a decoy system that are
extensively leveraged to obtain threat information [3], [30],
[31], [32], [47], capture malicious binaries [48], [62] and
to detect previously-unseen attacks [46], [49]. Nawrocki et
al. give a comprehensive overview of known honeypots [33].
Honeypot design: There is a wealth of work on honeypot
design, roughly divided among on two types of designs: low-
interaction and high-interaction honeypots. The latter provides
a truly vulnerable system, thus allowing the attacker to interact
with the application or service. The former type provides
is less realistic, but it prevents hijacking and provides more
control over what the attacker can do, as it emulate only a part
of network services.

Many low-interaction honeypots are based on open-source.
Table I provides an overview. The Honeynet Project is a
popular organization that is dedicated to investigating the
latest network attacks [57]. It has developed many open-source
honeypots and voluntaries all over the world are deploying
these honeypots. Similarly, there are many other services that
share open-source honeypots. It is not surprising for operators
to deploy these honeypots without changing their settings.
For this reason, we focus on the discoverability open-source
honeypots. Our findings provide input for design decisions
regarding to their discoverability.
Honeypot detection: There is a rich literature on honeypots
detection and evasion [5], [29]. Various studies have showed
how to distinguish between regular servers and honeypots
by detecting the virtual environment and debugger [27], by

using the latency of the network links [61], by sending out
unmodified malicious traffics [42], by collecting evidence
of the machine [6] or by fingerprinting network data [10].
Over time, automated tools for detecting honeypots have been
released. Honeypot Hunter [50] is a tool to validate proxy from
honeypot. Nmap [40] is one of the most well-known scanner
that has signatures to detect known honeypots. The famous
vulnerability scan tool Metasploit [44] also has a module
to detect Kippo [18]. There are also services that perform
honeypot detection. Honeyscore [52] is a service that rates
the likelihood of an IP address being connected to a honeypot
by drawing on Shodan [53].

A related body of work is the extension of large-scale
scanning tools and techniques such as ZMap [26], to detect
honeypots. Various studies have showed how to detect honey-
pots by systematically generating fingerprints for 9 different
honeypots and scanning the Internet [60], by finding publicly
accessible Industrial Control Systems on the public IPv4
address [36]. Similar to these studies, we base our approach on
Internet-wide scanning tools. We use Censys data [8], which
logs the results of ongoing ZMap scans, and combine it with
our own scans. Our study contributes to this literature; not by
improving the detection capability as such, but by providing
a simple lightweight approach that still manages to uncover
a large population of honeypots – larger, in fact, than via the
more novel approach of [60]. That being said, our main goal
is not to advance detection, but rather to find out if, where,
and why operators forsake even the most minimal effort to
hide their honeypots.
Detection resistance: In light of improved detection tech-
niques, researchers have developed more stealthy honeypots, in
order to observe further attacks. Various studies have showed
how to develop stealthy honeypots by revising a small part
of the toolkit code of Honeyd [39] and appropriately patching
the operating system to counter fingerprint attacks [61], by
developing a system that redirect attacking service connections
to the honeypot and redirect non-attacking service connections
or probing connections to the production servers [51], by
proposing a method to distinguish honeypots from real bots
and provide a higher chance to join botnets [35], or by reacting
to botnets with an intelligent deceptive response to improve
the depth of deception [7].

Vise verse, researches have revealed how human actors are
affected from the underlying environment by implementing
honeypots with different properties [58], or by proposing a
mathematical model of what would make a computer system
to pretend as if a fake honeypot and scare away smarter
attackers [38]. This demonstrates an ongoing arm race between
honeypot operators and attackers. Indeed for sure, honeypot
operators should take care of detection resistance.

To the best of our knowledge, very little research has been
done for surveying the prevalence of honeypots across the
Internet. Given the diversity of honeypots and their varying
degrees of discoverability, this is a hard task. We aim to survey
a specific subset of this population: open-source honeypots that
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TABLE I: Open-source Honeypots and Listening Port (TCP).

Honeypot Version (Installed date) Listening Port (TCP)
Kippo [18] (08/13/2017) 22*, 2222
Cowrie [13] 1.2.0 22*, 23*, 2222, 2223

telnetlogger [22] 0.2 23
MTPot [19] (10/18/2017) 23

Telnet IoT honeypot [21] (09/14/2017) 23*, 2222
Glastopf [15] 3.1.3-dev 80
Shockpot [20] (10/18/2017) 80*, 8080
Wordpot [24] (09/14/2017) 80

HoneyThing [17] 1.0.0 80, 7547
Conpot [12] 0.5.1-default-template 80, 102, 502

Nepenthes [4] 0.2.2 21, 25, 42, 80, 110, 135, 139, 143,
220, 443, 445, 465, 993, 995, 1023,
1025, 2103, 2105, 2107, 2745, 3127,

3140, 3372, 5000, 5554, 6129,
10000, 17300, 27347

Dionaea [14] 0.1.0 21, 42, 80, 135, 443, 445, 1433,
1723, 3306, 5060, 5061

Amun [11] 0.2.3-devel 21, 23, 25, 42, 80, 105, 110, 135,
139, 143, 443, 445, 554, 587, 617,

1023, 1025, 1080, 1111, 1581, 1900,
2101, 2103, 2954, 2967, 2968, 3127,
3128, 3268, 3372, 3389, 3628, 5000,
5168, 5554, 6070, 6101, 6129, 7144,

7547, 8080, 9999, 10203, 27347,
38292, 41523

HoneyPy [16] 0.6.3-linux-profile 7*, 8*, 21*, 22*, 23*, 25*, 53*, 80*,
88*, 110*, 111*, 139*, 143*, 389*,
443*, 636*, 873*, 2049, 3306, 5432,
6000, 10007, 10008, 10021, 10022,

10023, 10025, 10053, 10080, 10088,
10110, 10111, 10139, 10143, 10389,

10443, 10636, 10873

We note that port numbers with asterisk (*) indicate target port that
honeypot operators additionally set up for further observation.

are running with the default configuration, as well as identify
where concentrations of such honeypots occur. This raises new
questions about the incentives of honeypot operators.

III. SIGNATURE-BASED HONEYPOT DETECTION

In this section, we outline our method to detect 14 open-
source honeypots, listed in Table I. In order to perform
Internet-wide scans for these honeypots, we focused on their
characteristic responses that can be obtained by a single
request packet so that the detection can be implemented with
scalable scanners like ZMap [26].

We use 3 existing signatures implemented in Nmap for
detecting 2 open-source honeypots, that is Nepenthes (FTP)
and Dionaea (FTP, HTTP). For the remaining honeypots, we
ran and scanned each of them in our local environment to find
characteristic responses. We were able to create 8 signatures
for 5 honeypots. For 7 honeypots, we could not find any
characteristic response. We investigated their source code and
were able to develop a further 9 signatures for these honeypots.
In sum, we created 17 signatures for 12 open-source honeypots
and by combining them with the 3 Nmap signatures for 2 open-
source honeypots, we used 20 signatures in total for detecting
14 open-source honeypots. Table II summarize the signatures.
We categorize our signatures into: banner, HTTP response, and
error response. We show details of each signature in Table III.
Banner: Banner is the string that is returned first when con-
necting to a service. Services such as FTP, SSH, and Telnet can
return a banner. Telnet service often sends negotiation option
data before sending the actual banner string. For simplicity,
we treat this option data as part of the banner. We find
that the default banners of many open-source honeypots are
unique enough to be used as signatures for their detection.
We compared all FTP and Telnet banners of the honeypots
with 694 FTP banners and 1,056 Telnet banners registered in
Nmap-service-probe and found no match, indicating that these
honeypot banners are indeed different from those common
services that Nmap can identify. We note that it is technically

TABLE II: Signature Category of Open-source Honeypots.

Honeypot Signature Category
Nepenthes (21/TCP, FTP) *Banner
Dionaea (21/TCP, FTP) *Banner
Amun (21/TCP, FTP) Banner
Kippo (22/TCP, SSH) Error response
Cowrie (22/TCP, SSH) Error response

Cowrie (23/TCP, Telnet) Banner
telnetlogger (23/TCP, Telnet) Banner

MTPot (23/TCP, Telnet) Banner
Telnet IoT honeypot (23/TCP, Telnet) Banner

HoneyPy (23/TCP, Telnet) Banner
Amun (25/TCP, SMTP) Banner

Glastopf (80/TCP, HTTP) HTTP response
Shockpot (80/TCP, HTTP) HTTP response
Wordpot (80/TCP, HTTP) HTTP response

HoneyThing (80/TCP, HTTP) HTTP response
Conpot (80/TCP, HTTP) HTTP response
Dionaea (80/TCP, HTTP) *HTTP response
Amun (80/TCP, HTTP) HTTP response

HoneyPy (80/TCP, HTTP) HTTP response
Amun (143/TCP, IMAP) Banner

We note that signatures with asterisk (*) are existing signatures registered in
Nmap-service-probe.

easy to change the banners of the honeypots to avoid detection
since they are indeed open source. Many of them even have a
configuration file so that operators can customize the banner
without changing the source code of the honeypot.
HTTP response: For those honeypots running HTTP services,
the default HTTP response can be an easy signature for their
detection. Indeed, we found that all 8 open-source honeypots
that run HTTP service responded with some unique patterns
if used in their default configuration (e.g., a hard-coded times-
tamp in HTTP header, unique HTML content, fixed response
for any requests). Like banners, the HTTP response of these
honeypots can be rather easily customized to avoid detection.
Error response: We found that intentionally erroneous re-
quests were poorly handled by some of the honeypots and their
responses are unique enough to be used as a signature. For
example, an SSH negotiation with a non-existing SSH version
would trigger a unique error message of some honeypots.

We note that our signature can be used for honeypot
detection with sending just a single fixed request packet and
capturing the corresponding response packet from the target
host. This allows us to implement the detector with ZMap and
thus Internet-wide scans are possible. Since SSH honeypots
Kippo [18] and Cowrie [13] have similar error responses, we
can distinguish these honeypots from each other with more
interactions. We show details of the detection flow in figure 1.

IV. EXPERIMENTS

In this section, we first evaluate the accuracy of the signa-
tures to ensure a sufficiently low rate of false positives. We
then match our signatures with scan data from Censys [8] and
our own scans using ZMap [9], [26].

A. Evaluating Accuracy

As we derived our signatures from the default installations
of the open-source honeypots and their source codes, it is
confirmed that the signatures do match the characteristic
responses of these honeypots. The key question regarding
accuracy is, therefore, the rate of false positives, rather than
false negatives. We evaluate the false positive rate by matching
the signatures to four datasets of benign services that we
assume to contain no honeypots.
Alexa Ranking: First, we used Alexa top 10,000 ranking [1]
for our evaluation. It is highly unlikely that the high-ranked
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TABLE III: Signatures of Open-source Honeypots.

Honeypot Signature Category Input Data Response
Nepenthes (21/TCP, FTP) (Nmap) Banner NULL 220 ---freeFTPd 1\.0---warFTPd 1\.65---\r\n
Dionaea (21/TCP, FTP) (Nmap) Banner NULL 220 Welcome to the ftp service\r\n

Amun (21/TCP, FTP) Banner NULL 220 Welcome to my FTP Server\r\n
Cowrie (23/TCP, Telnet) Banner NULL \xff\xfd\x1flogin:

telnetlogger (23/TCP, Telnet) Banner NULL \xff\xfb\x03\xff\xfb\x01\xff\xfd\x1f\xff\xfd\x18\r\nlogin:
MTPot (23/TCP, Telnet) Banner NULL \xff\xfb\x01\xff\xfb\x03\xff\xfc’\xff\xfe\x01\xff\xfd\x03\xff\xfe\"\xff\xfd’\xff

\xfd\x18\xff\xfe\x1fUsername:
Telnet IoT honeypot (23/TCP, Telnet) Banner \r\n\r\n \xff\xfd\x01Login: Password: \r\nWelcome to EmbyLinux 3\.13\.0-24-generic\r\n #

HoneyPy (23/TCP, Telnet) Banner NULL Debian GNU/Linux 7\r\nLogin:
Amun (25/TCP, SMTP) Banner NULL 220 mail\.example\.com SMTP Mailserver\r\n

Glastopf (80/TCP, HTTP) HTTP response GET / HTTP/1.0\r\n\r\n <h2>Blog Comments</h2>\n <label for=\"comment\">Please post your comments
for the blog</label>\n <br />\n <textarea name=\"comment\" id=\"comment\"
rows=\"4\" columns=\"300\"></textarea>\n <br />\n <input type=\"submit\"
name=\"submit\" id=\"submit_comment\" value=\"Submit\" />\n

Shockpot (80/TCP, HTTP) HTTP response GET /nsE/2m9/hK9/fOy
HTTP/1.0\r\n\r\n

<html><body><h1>It Works!</h1>\n<p>This is the default web page for this
server\.</p>\n<p>The web server software is running but no content has been
added, yet\.</p>\n</body></html>\n

Wordpot (80/TCP, HTTP) HTTP response GET /wp-login.php?action
=lostpassword
HTTP/1.1\r\n\r\n

<input type=\"hidden\" name=\"testcookie\" value=\"1\"
/>\n\t</p>\n</form>\n\n<p id=\"nav\">\n<a href=\"/wp-login\.php\?action=
lostpassword\" title=\"Password Lost and Found\">Lost your password\?</a>

HoneyThing (80/TCP, HTTP) HTTP response GET /Forms/login_security
_1.html HTTP/1.0\r\n\r\n

<SCRIPT language=\"JavaScript\">\nif\(document\.Login_Form\.tipsFlag\.value
== 1\)\nvar infoStr=’Username or Password is incorrect, please
try again\.’;\ndocument\.getElementById\(\"tr1\"\)\.innerHTML =
infoStr;\nelse if\(document\.Login_Form\.tipsFlag\.value == 2\)\ntimelast =
document\.Login_Form\.timevalue\.value;\nwindow\.setInterval\(\"IncreaseSec\(\)
\", 1000\);\n\n</SCRIPT>\n

Conpot (80/TCP, HTTP) HTTP response GET /index.html
HTTP/1.0\r\n\r\n

Last-Modified: Tue, 19 May 1993 09:00:00 GMT

Dionaea (80/TCP, HTTP) (Nmap) HTTP response GET / HTTP/1.0\r\n\r\n <!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 3\.2 Final//EN\"><html>\n<title>
Directory listing for /</title>\n<body>\n<h2>Directory listing for /</h2>\n

Amun (80/TCP, HTTP) HTTP response GET / HTTP/1.0\r\n\r\n <!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2\.0//EN\"><html><head><title>It
works!</title></head><html><body><h1>It works!</h1><br>tim\.bohn@gmx\.net
<br>johan83@freenet\.de</body></html>\n\n

HoneyPy (80/TCP, HTTP) HTTP response GET / HTTP/1.0\r\n\r\n Server: Apache/2\.4\.10 \(Debian\)\nConnection: close\nContent-Type:
text/html\n\nOK!\n

Amun (143/TCP, IMAP) Banner \r\n\r\n a001 OK LOGIN completed

We note that although some response patterns in the signatures seem legitimate, they indeed differ from the actual legitimate responses. For example, default
banner for telnetd in Debian 7.0 is “Debian GNU/Linux 7\r\ndebian login:”, which is different from those used by HoneyPy “Debian
GNU/Linux 7\r\nLogin:”.
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Fig. 1: Flow of SSH honeypot distinction.

domains are actually connected to a honeypot. We conducted
a DNS lookup for the 10,000 domains, which results in 8,744
unique IP addresses. We then scanned these addresses and
matched the results against our 20 signatures. We found open
ports around services for which we have signatures. Since
Alexa ranking is web site ranking, most of them were running
on HTTP: 8,581. We also found 749 open ports for FTP, 1,128
for SSH, 53 for Telnet, 841 for SMTP, and 557 for IMAP.
None of these results contained matches – in other words, we
found no false positives.
Official FTP Mirrors: The second data source consisted
of the official mirrors of Ubuntu [59], Apache [55], and
CentOS [56] for evaluation of FTP honeypot signatures. We

assume that these official mirrors contain no honeypots. We
compiled a list of 531 unique domains running an FTP server:
299 domains for Ubuntu, 119 domains for Apache, and 258
domains for CentOS. The DNS lookup on these domains
resulted in 457 IP addresses. Again, the results of our scans of
these addresses contained no matches. Moreover, as described
earlier, we confirmed that none of the honeypot FTP banners
matched with 694 FTP banners registered in Nmap, showing
honeypot banners are different from common FTP services
that can be identified by Nmap.
University Email Domains: Third, we used university email
domains for evaluation of the SMTP and IMAP honeypot
signatures. We used the university domains of the GitHub
repository [23] to make a list of domains and requested a DNS
lookup to get their corresponding MX records. We collected
6,463 unique IP addresses where SMTP service was open and
1,683 unique IP addresses where IMAP service was open.
We conducted a scan and confirmed that there were no false
positives for any of these IP addresses.
IoT Device Telnet Services: Unlike other network services,
Telnet service is often not meant to be provided for global
use. Instead, it is running on many IoT devices like IP camera
and routers [2]. We could only obtain six real IoT devices
running Telnet services including four routers and two network
storages. Our signatures did not create any false positives
against the six devices. Moreover, we recall that our Telnet
signatures did not match with any of the existing 1,056 banners
registered in Nmap, showing their uniqueness.

B. Investigating Prevalence of Honeypots

After establishing that our approach has a sufficiently low
false positive rate, we matched the signatures against Internet-
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TABLE IV: Honeypot Detection Result using Censys and Our Own Scan data.

Honeypot signature # Honeypots # Honeypots # Honeypots Survival Ratio # Honeypots
(Censys) (Censys+Scan) (Censys+Scan) (Bitter Harvest)

Nepenthes (21/TCP, FTP) (Nmap) 124 - 119 96.0% -
Dionaea (21/TCP, FTP) (Nmap) 1,751 - 1,324 75.6% -
Amun (21/TCP, FTP) 1,720 - 745 43.3% -
Cowrie (23/TCP, Telnet) 1,796 - 570 31.7% 938
telnetlogger (23/TCP, Telnet) 2,984 - 32 1.1% -
MTPot (23/TCP, Telnet) 226 - 98 43.4% 216
HoneyPy (23/TCP, Telnet) 2 - 1 50.0% -
Amun (25/TCP, SMTP) 1,608 - 430 26.7% -
Glastopf (80/TCP, HTTP) 2,487 - 1,154 46.4% 3,371
Conpot (80/TCP, HTTP) 89 - 51 57.3% 87
Dionaea (80/TCP, HTTP) (Nmap) 2,220 - 569 25.6% 202
Amun (80/TCP, HTTP) 944 - 544 57.6% -
HoneyPy (80/TCP, HTTP) 19 - 10 52.6% -
Amun (143/TCP, IMAP) 1,728 - 686 39.7% -
Kippo (22/TCP, SSH) - 505 - - 758
Cowrie (22/TCP, SSH) - 998 - - 2,021
Telnet IoT honeypot (23/TCP, Telnet) - 0 - - 11
Shockpot (80/TCP, HTTP) - 1 - - -
Wordpot (80/TCP, HTTP) - 6 - - -
HoneyThing (80/TCP, HTTP) - 0 - - -
telnet-password-honeypot (23/TCP, Telnet) - - - - 1
Total 17,698 1,510 6,333 35.8% 7,605

wide scan data to measure the prevalence of default installa-
tions of open-source honeypots. While we could have scanned
the whole Internet by ourselves using ZMap, we decided to
take advantage of Censys data. The data contains periodic
Internet-wide scan results using ZMap and ZGrab [25] and
that we can reduce additional scans for the investigation.

The Censys data we used for the investigation was from Apr
9, 2018 to Apr 15, 2018. The Censys data contained 16.2M
hosts with 21/tcp (FTP) open, 8.4M hosts with 23/tcp (Telnet)
open, 13.6M hosts with 25/tcp (SMTP) open, 64.6M hosts with
80/tcp (HTTP), and 9.1M hosts with 143/tcp (IMAP) open,
respectively. Among our 20 signatures, 14 of them could be di-
rectly matched with Censys data without additional scans (i.e.
Censys data contained all necessary requests and responses to
test these signatures). For the remaining 6 signatures, which
could not be directly matched with Censys data, we first
created more generic signatures to extract the candidate hosts
from Censys data and then scanned the candidate hosts by
ourselves using ZMap with the 6 signatures. Because the time
when we performed our own scan (May 19, 2018) was about
one month after Censys scan, we might underestimate the
popularity of the honeypots due to their IP address churn. In
order to measure the change over time, we also scanned the
detected honeypots by the 14 signatures one month after the
last Censys scan.

Table IV summarizes the detection results. The first column
is our honeypot signature. The second column is the number
of honeypots detected from Censys data. The third column is
the number of honeypots detected by our own scans on the
candidates extracted from Censys data. The fourth column is
the number of honeypots detected by our own scan performed
one month after the Censys scan. The fifth column is the
surviving ratio of honeypots within the one month. The
sixth column is the detection result of related work [60]. In
summary, we detected 17,698 honeypots from Censys data by
the 14 signatures. The most popular ones were telnetlogger
with 2,984 hosts, Glastoph with 2,487 hosts, and Dionaea
with 2,220 hosts. From the combination of Censys and our
own scans with the 6 remaining signatures, we detected 1,510
honeypots with 2 popular solutions Cowrie with 998 hosts and
Kippo with 505 hosts. In total, we detected 19,208 honeypots
from 14 open-source honeypots. Compared to the related
work [60] that detected 7,605 honeypots from 9 open-source
honeypots, our result shows that our lightweight approach has

TABLE V: Frequently observed FTP banner on the Internet.

Rank IP Ratio Banner
1 5,436,627 33.5% -
2 800,771 4.93% 220 Microsoft FTP Service\r\n
3 518,558 3.19% 220 FTP Server ready.\r\n
4 343,316 2.11% 220 (vsFTPd 2.2.2)\r\n
5 216,232 1.33% 220 Ftp firmware update utility
6 205,967 1.27% 220 (vsFTPd 3.0.2)\r\n
7 141,608 0.872% 220 FTP service ready.\r\n
8 119,395 0.736% 220 Serv-U FTP Server v6.4 for WinSock ready...

\r\n
9 118,699 0.731% 220-Microsoft FTP Service\r\n

10 85,602 0.527% 220 (vsFTPd 3.0.3)\r\n
...

...
...

...
228 1,751 0.0108% Dionaea banner
232 1,720 0.0106% Amun banner

3,358 124 0.0008% Nepenthes banner
Total 16,232,733 100%

TABLE VI: Frequently observed Telnet banner on the Internet.

Rank IP Ratio Banner
1 4,651,675 28.7% -
2 176,908 2.09% {"banner":"\r\n\r\nUser Access Verification\r\n

\r\nUsername: ","will":[{"name":"Echo","value"
:1},{"name":"Suppress Go Ahead","value":3}],"do"
:[{"name":"Terminal Type","value":24},{"name":
"Negotiate About Window Size","value":31}]}

3 120,561 1.43% {"banner":"\r\n%connection closed by remote host
!\u0000"}

4 102,623 1.21% {"banner":"\r\r\n(none) login: ","will":[{"name"
:"Echo","value":1},{"name":"Suppress Go Ahead",
"value":3}],"do":[{"name":"Echo","value":1},{
"name":"Negotiate About Window Size","value"
:31}]}

5 100,768 1.19% {"banner":"\r\n\r\nUser Access Verification\r\n
\r\nPassword: ","will":[{"name":"Echo","value"
:1},{"name":"Suppress Go Ahead","value":3}],"do"
:[{"name":"Terminal Type","value":24},{"name":
"Negotiate About Window Size","value":31}]}

6 86,023 1.02% {"banner":"\r\nWelcome Visiting Huawei Home
Gateway\r\nCopyright by Huawei Technologies Co.
, Ltd.\r\n\r\nLogin:","will":[{"name":"Echo",
"value":1},{"name":"Suppress Go Ahead","value"
:3},{"name":"Terminal Type","value":24}]}

7 64,764 0.767% {"banner":"\r\r\n(none) login: ","will":[{"name"
:"Echo","value":1},{"name":"Suppress Go Ahead",
"value":3}],"do":[{"name":"Echo","value":1},{
"name":"Negotiate About Window Size","value":31}
,{"name":"Remote Flow Control","value":33}]}

8 53,498 0.633% {"banner":"\n\r\n\r\rAccount:","will":[{"name":
"Echo","value":1}],"do":[{"name":"Terminal Type"
,"value":24}]}

9 41,949 0.497% {"banner":"\r\nlogin: ","will":[{"name":"Echo",
"value":1},{"name":"Suppress Go Ahead","value"
:3}]}

10 39,792 0.245% {"banner":"\r\nAccount:","will":[{"name":"Echo",
"value":1}],"do":[{"name":"Terminal Type","value"
:24}]}

...
...

...
...

189 2,984 0.0353% telnetlogger banner
261 1,793 0.0212% Cowrie banner

1,080 214 0.00253% MTPot banner
52,984 2 0.0000237% HoneyPy banner

Total 16,232,733 100%

the same or even better ability to detect honeypots.
Our re-scanning after the Censys scan revealed that at least

6,333 (35.8%) of 17,698 honeypots were still in operation
after one month. Considering the lost honeypots by IP address
churn, this gives us an impression of how many of these
honeypots remained alive for more than a month. For most
honeypots, a significant fraction was still running at the later
time. There is one notable exception: almost all of the nearly
3,000 telnetlogger honeypots have disappeared. All of these
honeypots were operated in the IP address range of a French
research institution.

We also compared the FTP and Telnet banners of the
honeypots against the total population of banners in the Censys
data. Tables V and VI summarize how infrequent the banners
of honeypots occur in the population. This implies that they
can be used as detection signatures. Instead, an easy solution
to prevent detection would be to use the popular banners.

V. DISCUSSION

Discovering honeypots in the wild is a daunting task as by
design they are meant to be deceptive. While our approach
proved that it is possible to easily map off-the-self honeypots
that are running default configuration, it is not feasible to
map at scale all the honeypots that actually exist that are
well configured. For example, Among the 14 open-source
honeypots which we investigated, Conpot developers mention
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TABLE VII: AS, Country and Network Type of Honeypot Population.

19,208 Honeypots (unique 13,417 IPs)
IP AS Country AS Type IP per /16 AS Country AS Type

2,697 France Academic 390.0 Mexico Academic
783 Mexico Academic 253.1 Taiwan ISP
771 United States Hosting 249.0 Greece Academic
696 Taiwan ISP 203.4 Taiwan ISP
653 Japan Academic 129.6 Japan Academic
606 Taiwan ISP 79.0 Taiwan ISP
510 Italy Academic 77.2 France Academic
464 Taiwan ISP 61.7 Taiwan ISP
450 United States Hosting 56.9 Taiwan Academic
436 Taiwan Academic 45.9 Sweden ISP and Hosting
314 France Hosting 41.1 France Academic
277 Taiwan ISP 21.2 United States Hosting
271 Taiwan ISP 20.0 Taiwan Academic
249 Greece Academic 19.8 Sweden Hosting
247 France Academic 18.8 Taiwan Academic
187 Taiwan ISP 18.4 Taiwan ISP
171 United States Hosting 15.9 Taiwan ISP
154 Romania Other 13.5 Taiwan ISP
149 United States Hosting 13.2 United States Hosting
134 Taiwan ISP 12.6 Taiwan ISP

customization and explain how operators can tailor their
honeypot (e.g. HTTP headers, response latency). We believe
this is the main reason why we couldn’t find many Conpot
honeypots with default setting. We leave for future research
detecting customized honeypots, and focus on understanding
the prevalence of honeypots with default setting.

We now investigate the population of honeypots discovered
via the scan data. We first turn to the locations of the main
concentrations of honeypots can be found, both in terms of
geography and Autonomous Systems (AS). We then conduct
an investigation of their lifespan. Finally, we discuss feedback
we received after reaching out to several of the network
operators with significant concentrations of honeypots in their
networks. We end with another angle of this problem: the
active abuse of these honeypots by criminals.

A. Location

We used GeoIP2 ISP Database [34] to acquire AS as well
as ipinfo.io [28] to acquire geographical information for the
population of honeypots. Table VII summarize the number
of IP addresses of the top 20 ASes, the country of the AS,
and the type of the AS. We manually categorized AS types
into four. Also, we examined the relative density of honeypots
by calculating the ratio of the number of honeypots to the
number of IP addresses owned by each AS.Since the number
of IP addresses owned by each AS is different, we calculated
and compared the number of honeypots per /16 (65,536 IP
addresses). We summarize the number of honeypots per /16 of
the top 20 ASes in Table VII, excluding ASes smaller than /16.
Regarding AS types, we categorized universities and research
institutions as “Academic”, companies that provide Internet
access as “ISP”, companies that provide servers (e.g., shared
or dedicated servers, VPSes, cloud services, etc.) as “Hosting”,
and other companies (e.g., a financial company, and a travel
agency, etc.) as “Other”. From the results, we found that
some of the top ASes are universities and research institutions.
In terms of geography, Taiwanese ASes are overrepresented.
They occupy 8 spots among the top 20 ASes.

How can we explain this pattern? The concentrations in-
side research networks suggests that perhaps many of these
honeypots are used for training purposes or student research
projects. This fits with our observation that these honeypots
appear to be running somewhat amateuristically, with their
lack customization or even explicitly self-revealing settings.

If these honeypots are mostly, say, student projects, then the
impact of their discoverability is limited. They can still be
abused by attacks, as we will see below, but at least they
won’t impact any professional operations to monitor networks
or measure attack trends.

While this explanation undoubtedly accounts for a portion
of the population we have found, it does not seem adequate to
explain the overall pattern. First, a non-trivial amount of re-
sources is being spent on these honeypots. As Table VII shows,
certain networks allocate many hundreds of IP addresses to
these honeypots. This scale seems to suggest a scientific mea-
surement effort or industrial-grade attack monitoring, rather
than a trial installation for a student project. Second, we also
find concentrations in the commercial environment of hosting
and ISP networks. Again, this allocation of resources suggests
that these honeypots have operational function and value.
Third, seeing these honeypots as non-operational installations
cannot explain their high prevalence across different networks
in Taiwan. To get a better sense of the factors that might
explain these concentrations, we reached out to a number of
network operators using public contacts.

B. Lifespan

To understand the lifespan of the honeypots, we analyze
close to one year historical data of Censys data (Aug 8, 2017
to Jul 17, 2018). Figure 2 shows the number of detected
honeypots in different ASes in one year. The number of
detected honeypots is mostly stedy except that there are several
events of bulk initiation and termination of honeypots in
particular ASes. For example, in Nov 2017, 4,383 honeypots
started operating in AS1, which is an academic network in
Ireland, but in next month, all of them were shut down.
Another huge termination of 6,917 honeypots was detected
in Dec 2017 in AS2, which is an ISP in US.

Figure 3 shows the survival ratio of honeypots we detected
on Aug 8, 2017. Counting from this first observation, the hon-
eypots had an average lifespan of 200.42 days (SD=127.54).
To see if lifespan varied across different networks types,
we selected 53 ASes that had more than 10 detected IP
addresses and manually categorized them into Academic, ISP,
and Hosting. As a result, we have 5,553, 11,390, and 1,455
honypots detected on Aug 8, 2017 in Academic, ISP, Hosting
networks, respectively. Remarkably, 80% of honeypots in
academic networks were still operating after one year. These
honeypots are obviously prime candidates for being detected
and blacklisted by attackers. The honeypots in ISP and hosting
networks show shorter lifespans, perhaps reflecting the higher
economic value of the assigned resources. Still, about 20% of
them run for at least one year in such a self-revealing manner.
Note that the huge drop in ISP networks in Dec 2017 is due to
the bulk termination of the honeypots in a U.S ISP. The drop in
hosting networks in Apr 2018 comes from a bulk termination
at a hosting service provider in U.S.
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Fig. 2: # of Detected Honeypots in One Year.

Fig. 3: Survival time of Honeypots Detected on August 8, 2017.

C. Operator Feedback

After we discovered many clusters of default honeypot
installations, we were interested in understanding the reasons
for running easily-discoverable honeypots. We contacted 11
operators of networks where these clusters were observed and
received some insightful responses. We detailed the threat
of honeypot detection (false negatives and other biases in
monitoring and analysis) and offered suggestion on how to
reduce discoverability. We asked the recipients, first, for con-
firmation of whether the IP addresses indeed hosted honeypots
and, second, why these honeypots were running the default
configurations, since that would make the easily detectable.
However, we didn’t receive any response from 7 operators.
The lack of response already signals lack of network hygiene.
So it is not surprising that these operators don’t mind that their
honeypots can be easily discovered. Other than the above, we
received insightful responses from 4 operators.

One business ISP confirmed that there were indeed hon-
eypots running on the IP addresses that we provided. As a
courtesy, the ISP had temporarily routed some of its unused
addresses space to a threat monitoring center of a world-
famous security organization. The ISP put us in touch with
the Chief Technical Officer of that center. When asked why
they were running honeypots with default configurations, the
CTO responded: ’Well, the quick answer is that detection by
attackers is not a big issue.’

The operator of a national research network confirmed we
did indeed correctly identified several clusters of honeypots in
their network. One cluster was being operated by a researcher
who was monitoring attacks on building automation. Another
cluster was being operated by a security non-profit for threat
monitoring ’to actively make the Internet more secure’. Other
clusters were in address space delegated to universities.

The operator of a national research institute confirmed that
we correctly identified honeypots in their network. Although
they were not aware of honeypot detection issues, they ex-
plained that they are operating other type of honeypots (such
as high-interaction ones) to observe more sophisticated attacks.

A researcher in a university in Taiwan, where we found a
number of honeypots, explained that there has been a series
of government supported cyber security projects to encourage
the honeypots setups in different organizations and that it may
be the reason for the disproportionately large concentration in
this specific region.

D. Abuse

Prior work by Springall et al. reported that anonymous
FTP servers were being abused by attackers to upload and
distribute malware [54]. We also discovered 21 FTP honeypots
that seems to be abused by an attacker. These honeypots
had malicious binaries uploaded to them and other hosts
were able to download them. We used VirusTotal to classify
these binaries. We collected 54 malicious binaries (unique 17
malicious binaries): 12 CoinMiner, 2 Downloader, 2 Backdoor,
and 1 Ransomware. This setup fits with a scenario where the
hosts are used as download servers for when an attacker has
established a foothold inside a network and then wants to
download malware to the compromised host. We also note
that these 21 abused honeypots were uploaded with similarly
named files, so there is a possibility that the same attacker
abused them. In short, it is clear that the poorly configured
population of honeypots we uncovered can pose a direct
security threat to the rest of the Internet.

VI. ETHICS AND RESPONSIBLE DISCLOSURE

Strictly speaking, our study could be considered a form of
offensive research, in the sense that we reveal the presence of
honeypots, which adversaries may use to evade monitoring.
Note, however, that this approach is already available to
anyone who is willing to look at the default installations
and design simple signatures from their characteristics. We
therefore consider the information in this paper to be public
knowledge. However, for ethical reasons we remove all AS
names and IP addresses when referring individual honeypots.

As part of the responsible disclosure process, we have
contacted 6 honeypot developers who has a contact address
listed on the Github page (Conpot, Glastopf, Cowrie, MTPot,
Shockpot, and telnetlogger). We sent them an executive sum-
mary of our results and a full description of our methodology.
We received responses from two developers associated with
Conpot and Glastopf, one of whom works on both: Lukas
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Rist. In light of our disclosure, he added a paragraph on cus-
tomization to the Glastopf repository. For Conpot, he pointed
out that there is an extensive section in the documentation on
customizing the exposed content [37]. He also stated that while
discoverability is inherent to low-interaction honeypots, it is
correct to point out that a honeypot in its default configuration
is low hanging fruit for an adversary. Hence, they usual
recommend to customize honeypots when deploying them.
Also, the developer suggested that an operator could handle
this limitation by identifying when an adversary attempts to
make the distinction between real and emulated.

We also contacted all network operators who had honeypots
that seems to be abused by attackers. We used three different
ways to contact each operator: an email address listed on
their web sites, a contact form on their web site, or the
email addresses listed in WHOIS. We sent messages detailing
potential threats that can be posed by their honeypots and
offered suggestions on how to reduce discoverability.

Related works have already provided how to build well con-
figured honeypots [5]. We further explain recommendations for
honeypot operators who run open-source honeypots.

1) Regarding open-source honeypots running FTP, Telnet,
SMTP, and IMAP services: their default banners are
different from those of common services. To avoid
honeypot detection, it is effective to change their banner
to a popular banner that is actually used in practice. The
top 10 banners of FTP and Telnet are listed in Tables V
and VI. Of course, it is possible to investigate other
services from Censys data as well. Most honeypots can
change their banner from the configuration file.

2) In case of HTTP service: their default Web contents
are unique and that can be used for honeypot detection
(e.g., a hard-coded timestamp in HTTP header, unique
HTML content, fixed response for any requests). Most
honeypots store HTML files in a prescribed directory
and yet it is possible to change their Web contents.

3) For SSH service: their intentional erroneous requests are
poorly handled. It is necessary to patch the source code
to deal with this issue and that it may be more difficult
than others cases.

VII. CONCLUSION

Our study has found that there are over 19,000 open-source
honeypots online that can be detected with the simplest of sig-
natures, as these systems have received no customization from
their operators and are running in a basically self-revealing
state. We found concentrations in research networks, but also
in commercial hosting and access networks. In geographical
terms, we found a high concentration in Taiwan.

The prevalence of these honeypots raise a number of
questions. Why would anyone run a honeypot that is so easy
to detect? One answer is that these honeypots serve no real
operational purpose for ongoing security efforts. This expla-
nation does not fit with the wider pattern, however. Thousands
of honeypots are found in commercial networks, meaning
that real resources are being spent on them. Furthermore, we

confirmed that several clusters of honeypots were serving real
operational purposes for threat monitoring, either as part of
security operations or as part of academic research.

How problematic is this large-scale use of easily-
discoverable honeypots? Operators should, of course, make
their own tradeoffs in terms of how they set up their honeypots.
We do want to point out, however, that the practice we uncov-
ered presents serious problems to the field. First, for scientific
research on the threat landscape, using such honeypots are
likely to be biased towards the least sophisticated attacks
and attackers. Nobody knows to what extent attackers care
about evading honeypots. We know anecdotally that attackers
share lists of honeypots. For example, we found a list of SSH
honeypots on Pastebin [41]. In light of the uncertainty about
the extent of avoidance by attackers, good scientific practice
requires that researchers should assume that this is a source
of bias in their results.

Second, and related, honeypots in operational security mon-
itoring are also impacted by this bias – a bias, we might
add, that will draw scarce attention towards attacks of low
sophistication. Some professionals might argue, as one of our
respondents did, that honeypot detection by attackers is not
a big issue. It is unclear, however, what this assessment is
based on and how much confidence we can award to it. We
know of no systematic comparison of such honeypots. Perhaps
it is because they still see plenty of traffic coming in to the
honeypot. That does not tell them, however, what they are
missing, which is likely to have higher value for their security
operations that the traffic they do see. A third and final problem
is that these honeypots themselves pose a security threat, as
we found evidence of ongoing abuse by attackers.

In the end, the situation we have observed is the result
of an incentive issue. Are honeypot operators incentivized to
customize their installation, as the documentation tells them
to do? Given that in thousands of cases the answer turns out
to be negative, we see three paths forward to improve the
situation. First, the installation procedures could incentivize
more customization and perhaps even include some forms by
default. Second, in the absence of customization, at least the
default configuration could be using more generic characteris-
tics – e.g., Telnet or FTP banners – that are widely shared by
real hosts (see Section IV-B). Third, we should improve our
understanding of the negative impacts of easily-discoverable
honeypots – that is, to see when and where attackers try to
detect and evade and how this influences our observations.
This require rigorous protocols to measure the degree of bias
that is introduced both in scientific results and in operational
security monitoring and incident response.
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