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Abstract—Service Level Agreements (SLA) are documents that
specify what Service Providers (SP) are delivering to customers.
They contain information about the service, such as target
performance level or monthly availability, and penalties for the
violations of the SLA. The information about the penalties is
essential because if the SP does not deliver what is defined, the
customer must be compensated accordingly. However, the current
compensation process is cumbersome and complex because of
the amount of involved manual effort. To address this issue,
it is proposed in this paper an approach based on blockchain
and Smart Contracts (SC) to automate the compensation process
while enabling dynamic payments during the SLA lifetime. The
proposed approach was evaluated in an use case that simulates
the management of a Quality of Service SLA between an SP
and a customer. Based on the performed evaluation, parts of
the SLA management process were successfully automated using
a decentralized solution, and the payment of the compensation
occurred without the intervention of a third party.

Index Terms—SLA Management; Quality of Service; Billing;
Blockchain; Smart Contract.

I. INTRODUCTION

Service Level Agreements (SLA) are contracts between
Service Providers (SP) and customers specifying what cus-
tomers can expect from the service but not how that service
is delivered [1]. From a network management perspective, an
SLA is essential to define service obligations and boundaries,
enabling one to check whether a defined service is delivered
as contracted. For instance, an SLA can document Quality
of Service (QoS) requirements, e.g., VoIP latency ≤ 50 ms.
However, it does not describe the technology or solution
used to deliver such a VoIP service. In addition to QoS
requirements, SLAs also include obligations of both parties,
e.g., service fee, and compensation value. It is crucial to have
these aspects documented in SLAs because, in case of an SLA
violation (e.g., when the performance levels are not met), the
customer can submit a claim to the SP to be compensated for
such a violation [2].

The compensation process, however, is not straightforward
because both parties can act dishonestly. For example, if a
customer submits a claim that an SLA was violated, it is
necessary to provide evidence (data) that supports this claim.
In turn, the SP needs to provide evidence that the service
was compliant with the SLA. In this sense, both parties can
tamper with the data to corroborate their claims. Moreover, the

customer may decide not to pay the defined amount for the
service, while the SP can decide not to pay the defined com-
pensation. As a possible solution for this situation, the SP and
the customers typically rely on a Trusted Third Party (TTP),
such as a bank or a financial services company, to ensure the
correct payment, which is costly and introduces bureaucracy
into the process. Thus, there is a need for a solution that, in
addition to dispensing with costly and slow TTPs, ensures that
the data, once monitored, cannot be tampered with and that
the payment from both sides will be correctly performed.

Blockchains and Smart Contracts (SC) can help address
these issues by providing an immutable data storage and a
trustful payment system. In this sense, SCs executing in a
blockchain can be used to express, in a tamper-proof manner,
SLAs containing quantitative terms, such as QoS metrics.
Moreover, SCs provide means to automatically exchange funds
between network peers in a secure and trusted fashion, thus be-
ing a promising technology to enable the payment of services
fees and compensation values without the need of a TTP.

In this paper, it is presented the design and implementation
of a blockchain-based SC that simplifies and automates the
compensation process in case of an SLA violation. With
the employment of an SC, both SP and customer have the
assurance that the contract will be enforced and that the terms
of the SLA will not change. Moreover, the presented approach
replaces the TTP and enables a dynamic interaction between
SPs and customers. The contributions of this work are:

• Translation of QoS-related SLAs in blockchain-based
SCs;

• Guaranteeing a transparent and immutable SLA; and
• Automated SLA compensation and service fee payment.
Further, the presented SC addresses four out of the six

phases of the SLA management lifecycle (which is detailed in
Section II), including the service fee payment and the trusted
SLA monitoring.

The remainder of this paper is structured as follows. In
Section II, an overview of concepts involved in this work is
provided; and the related works to the approach are described.
In Section III, the general approach design, and associated
implementation are presented. In Section IV, an evaluation of
the SC is performed. This evaluation is discussed in Section V.
Finally, in Section VI conclusion and future work directions
are presented.978-3-903176-15-7 c© 2019 IFIP
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II. BACKGROUND AND RELATED WORK

In this section, a background on (A) the SLA manage-
ment lifecycle, (B) the current compensation process, and (C)
blockchains and smart contracts is provided. Moreover, (D)
current works relating to the approach are described.

A. SLA Management Lifecycle

The lifecycle of SLA management can be divided into six
phases [3]. This cycle restarts every time a new service is
contracted or renewed by the customer.

1 - Discover Service Provider – The customer identifies
which SP can deliver the necessary resources that meet their
needs. Thus, the customer must have a precise definition and
scope of the desired service and conduct an investigation to
list current service necessities.

2 - Define SLA – This phase often involves a negotiation
between SP and customer, in which they negotiate the terms
and target performance level for the services that are going to
be included in the SLA. It is paramount that both parties agree
on the definition of the provided service and related concepts
to ensure that the SLA is unambiguously and consistent during
the SLA lifespan. If one party does not agree, then the process
has to start again, until a consensus is reached.

3 - Establish Agreement – Comprises the definition and
development of the template in which the terms defined during
Phase #2 are going to be placed. Once both parties sign the
contract, they are committed to obligations and penalties.

4 - Monitor SLA Violation – The monitoring of the service
is vital to detect if the SP is meeting the defined performance
level. If the service is not met, then the customer must
be compensated accordingly. Therefore, both parties should
actively monitor the service or rely on a TTP monitoring
solution. In either case, the monitoring solution must provide
reliable measurements, which is a challenge in itself.

5 - Terminate SLA – Depending on the terms defined in
Phase #2, the termination of an SLA happens when the SLA
validity has expired or when an SLA violation is detected.
However, each SLA violation incident is accounted to calcu-
late the payment of the compensation value to the customer.

6 - Enforce Penalties for SLA Violation – If the SP fails to
meet any agreed term, then the customer must be compensated.
In this phase, the compensation is calculated based on the
penalties defined in the SLA, which can be defined in the
form of service credits or fiat-currency.

B. Current Compensation Process

The compensation process occurs in the last phase of
the SLA management lifecycle (Phase #6), where penalties
are enforced if any violation was encountered during SLA
monitoring. Taking the Amazon Availability (i.e., Monthly
Uptime) SLA [4] as an example, the submission of a new
violation claim to receive service credits must follow the
predefined steps and be under defined guidelines.

First, the customer must submit a violation claim by opening
a case in the AWS Support Center. The Amazon response
team must receive this newly opened claim until the end

of second billing cycle after the customer has observed the
violation. Assuming that the customer has submitted a claim,
and the responsible team has received it in time, the AWS team
verifies the claim to check whether it contains all the necessary
information, such as (i) the term “SLA Credit Request” in
the subject line, (ii) the dates and times of each claimed
violation, (iii) the affected contracted instances or volumes,
and (iv) the request logs (with sensitive information redacted)
that document and corroborate the claimed violation. If the
AWS team acknowledges the claim, then the compensation is
paid according to Table I. However, if just a single piece of
information is missing, then the team will not acknowledge the
claim. Thus, the compensation will not be paid. It is noticeable
that this process is manual, complex, and prone to errors.

Monthly Uptime Percentage Service Credit Percentage
Less than 99.99% but ≥ 99.0% 10%
Less than 99.0% 30%

TABLE I: Compensation Percentages and Thresholds

C. Blockchain and Smart Contracts
The blockchain concept is relatively recent, being intro-

duced in 2009 with the creation of Bitcoin [5]. A blockchain
is a distributed database composed of chained blocks, where
each link in the chain is the hash of the previous block header,
pointing towards the first block created (aka genesis block).
To alter one block, it is necessary to change the hashes of all
following blocks and collude the majority of the peers in the
network to accept the changes. Once information is appended
and distributed in the blockchain network, the effort to change
or remove it is exceptionally high. Thus, immutability is
achieved by using a combination of hash algorithms and
decentralization approaches, providing tamper-proof storage.

The data is replicated among all network peers, which
ensures the availability if there is at least a single copy in
the network. One problem related to this decentralization is
to reach a consensus on the data by peers; this problem is
solved by most implementations using a Proof-of-Work (PoW)
algorithm. In such an algorithm, peers, called miners, validate
blocks by generating hashes using a specific protocol; the first
miner that finds a hash matching a pattern is allowed to append
the block and receives a reward (e.g., cryptocurrency).

Taking advantage of the data immutability and decentraliza-
tion provided by the blockchain, the concept of blockchain-
based Smart Contracts (SC) emerged. An SC is an executable
code that runs in a distributed manner in the blockchain [6].
The range of applications that can be implemented in such
SCs depends on the underlying execution environment that
the blockchain provide. An SC can be viewed as a procedure
in a relational database management systems, as pointed by
[7]. Once an SC is deployed in a blockchain, it will receive
a unique address, and all the interaction will be performed by
sending transactions to this address. Also, upon receiving a
transaction, the SC will automatically execute in every node
in the network, following the implemented code, which once
deployed, cannot be altered.
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D. Related Work

Due to the novelty of the blockchain technology, there is
still a considerable amount of work for it to reach full maturity.
This assumption is also valid when talking about blockchain-
based SCs. However, even with the infancy of such concepts,
some efforts were made regarding their employment in the
SLA management area.

The authors of [8] present a formal specification to describe
Web APIs and their SLAs. This specification is based on
Resource Description Framework (RDF), which is a standard
model to exchange data on the Web. Also, it is presented in
the paper, an Ethereum SC to manage the contract of such
Web APIs by the customer. However, this SC is only focused
on Web APIs, and the compensation process is not described.
Moreover, in [9] and [10], two proposals to use Ethereum SC
in the SLA context are presented. The former proposes to man-
age Small-Cell-as-a-Service (SCaaS) agreements between the
small-cell owners and network operators using an Ethereum
SC. The contract registers these owners and periodically in-
forms them about payments (performed by network operators)
that can be withdrawn. Still, it focuses on SCaaS and does not
delve in the monitoring or compensation aspect. The latter,
in turn, proposes to manage cloud billing services and SLA
monitoring with Smart Contracts and presents the concept of
SLA-coins, which are counted at the end of the month to
check whether the SLA was violated or not. However, no
implementation details of the SC are presented. Therefore, the
feasibility of the approach cannot be evaluated.

III. APPROACH

This section describes the proposed approach, being divided
into two subsections. The first subsection describes the whole
design of the SC, providing information, assumptions, and
arguments to support the approach. The second subsection
details the technical implementation of the SC, reporting em-
ployed technologies, programming languages, and challenges.
One example of an application of the SC described in this
paper can be found in [11], which details its use in NFV
environments.

Customer

TTP

SLA

SP Monitoring
Solution

Service
Provider

Customer Monitoring
Solution

(a) Current Trust Relationship

Monitoring
Solution

CustomerService
Provider

Smart
Contract 

Trust Relationship

No Trust Relationship

(b) Approach Trust Relationship

Fig. 1: Trust in Different Compensation Scenarios

It is essential to define the role and trust relationship of
involved actors before delving into the design. These actors

were derived from the SLA management lifecycle; they are
the SP, the customer, and the monitoring solution. Figure 1a
represents the trust relationship between the actors involved in
the current compensation process. Currently, both parties (SP
and customer) have to trust the SLA, in the TTP, and in their
respective local monitoring solutions. Moreover, the customer
might not trust in the monitoring solution provided by the SP
because the SP can tamper with it, and the SP might no trust
in the customers monitoring solution for the same tampering
reason.

Figure 1b depicts the trust relationship of the proposed
approach. In one side, there is the SP that can be any
company that provides a resource that follows an “X-as-
a-service” model. The SP is responsible for creating and
deploying the SC in the blockchain. On the other side, the
customer is the party that buys or requires this resource X.
The relationship between these is not trusted, as described
in Section I. However, there is one relationship (besides the
one with the SC) that it is assumed that both parties, SP, and
customer, have total trust, which is their relationship with the
monitoring solution. The assumption that these parties trust
that the monitoring solution reports correct values and actual
violations must be made because the SC cannot act outside the
blockchain. Thus, the monitoring solution acts as an “oracle”
that provides trusted information to the SC.

A. Smart Contract Design Decisions

The design decisions of the SC are divided into four
main parts: (1) Content, i.e., what to store in the SC, (2)
Authorization, i.e., who is allowed to interact with the SC, (3)
Confidentiality, i.e., data visibility, and (4) Accounting/Busi-
ness Model, i.e., how the fee and compensation payment will
work. These parts are described in the following items.

1) Content – The description of the basics SLA compo-
nents provided by [12] guided the selection of which
components are going to be implemented in the SC.
The components implemented in the SC are: validity
period, scope, parties, Service-Level Objectives (SLO),
and penalties. For the sake of simplicity, it is assumed
that one SLA contains only one SLO. However, it is
possible to modify the SC to include any number of
SLOs in the SLA. For each new SLA specified, a new
SC is deployed in the blockchain. This decision allows
control over each SC and simplifies the examination
of the SC by the customer. Regarding the storage of
measurements provided by the monitoring solution, the
SC only stores the last violated value and the number of
violations during a period of time. The decision of not
storing all the measurements was taken because storing
data in the blockchain is costly. Thus, storing only the
last violated value and the violation count can help to
reduce costs related to the monitoring.

2) Authorization – The access control of who is allowed to
interact with the SC was examined. To maintain this ac-
cess control, the developed SC stores information about
the blockchain addresses of the SP, the customer, and the
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monitoring solution. The SP address is included once the
SC is deployed in the blockchain and the SP sets the
customer address. These addresses cannot be changed
during the SC operation. The monitoring solution ad-
dress is composed of two addresses, one provided by the
SP and the other provided by the customer. If these two
addresses match, then the monitoring solution is verified;
otherwise, then the monitoring cannot interact with the
SC. Only this verified monitor address is allowed to
send violation notifications to the SC. Therefore, the
inclusion of such addresses and the implementation of
verifications guarantee that only authorized parties can
interact and modify information stored in the SC.

3) Confidentiality – According to [13], “...everything that
is inside a (blockchain-based smart) contract is visible
to all external observers. Making something (e.g., a
variable) private only prevents other contracts from
accessing and modifying the information...”. This state-
ment has to be taken into consideration if the SP does
not want to disclose information, such as the price of a
particular service. This issue can be solved by encrypting
this information using encryption methods, such as RSA
[14]. In such a method, the data is encrypted using
public/private key-pairs, in this case, the price will be
encrypted using the public key from the customer, and
only the customer holding the private key will be able to
decrypt it. Thus, research on employing homomorphic
encryption methods might help to prevent unwanted
disclosure of information stored in the SC. Moreover,
blockchains provide pseudonymity as addresses are not
related to any real-world information, being just a fixed-
size hash; therefore, it is difficult to link an address to
a real person or company.

4) Accounting/Billing Model – To allow the dynamic
compensation to the customer and automatic subscrip-
tion payment without the need of a TTP, the SC must
hold funds to realize these transfers. Therefore, it is
expected that the customer sends the subscription fee
before the start of the service, and this fee is locked
in the SC until the end of the SLA. Once the SLA is
finished, the remaining funds are transferred to the SP.
This is an unusual business model in cloud services;
however, it can be found in “pre-paid” models and
real estate renting models, where the customer pays in
advance to rent a property for the subsequent period.
The dynamic calculation of the compensation value
works, inside the SC, as follows. Assuming that the
monitoring solution will perform measurements every
Pmonitoring minutes (the default value is 5 minutes), the
sum of the time that the measurement was different than
the agreed performance level (i.e., SLA violated) during
the interval of compensation (Pcompensation) divided by
the total expected measurements (Totalmeasurements)
characterizes the period of violation (Pviolated), see
Equation 1 and 2. This means that the SP was not
delivering the defined performance level during Pviolated

(in %) of the compensation interval. The values of
Pmonitoring, and Pcompensation can be customized for
each new SC and are used to calculate the compensation
value. The compensation value (Cval) is calculated using
Equation 3. If the Pviolated did not reach a threshold of α
(e.g., 10%), then the customer is not compensated. How-
ever, if the Pviolated is above this α, then the customer
receives a fraction of the SLA price corresponding to
the compensation period as compensation. In Equation 3
the percentage is fixed at 0.1 to illustrate a percentage;
nevertheless, this value is set during the SLA definition.
The calculation of the compensation is performed every
compensation period to allow the dynamic compensation
to the customer.

Totalmeasurements =
Pcompensation

Pmonitoring
(1)

Pviolated =

∑
violations

Totalmeasurements
(2)

Cval =


0, if Pviolated ≤ α

SLAprice ×
Pcompensation

SLAvalidity
× 0.1, if Pviolated > α

(3)

where

{α, Pviolated ∈ R | 0.0 ≥ α, Pviolated ≤ 1.0}

B. Implementation Details

The SC is implemented in Solidity, which is a Turing-
complete SC language provided by the Ethereum blockchain.
This language is influenced by C++, Python, and JavaScript
and runs on the Ethereum Virtual Machine (EVM), a VM
explicitly designed for the Ethereum blockchain [13]. The
choice for such an SC language and blockchain is due to the
fact that the calculation of a dynamic compensation requires
complex calculations, which cannot be performed using non-
Turing complete SC languages, such as the Bitcoin Script
language [15]. It worth mentioning that Solidity is a modern
programming language, released in 2013; thus, it is still in
constant development and presents some security vulnerabili-
ties. One vulnerability is regarding the overflow and underflow
in arithmetic operations in SCs [16]. To one’s advantage, a
library that performs all the necessary verifications to avoid
overflows and underflows was developed, called SafeMath
[17]. Therefore, SafeMath was employed to perform all the
operations, such as multiplications, divisions, sums, and sub-
tractions, using the type uint, i.e., unsigned integer.

Regarding the storage of SLA information, a struct
is implemented containing the content described in Section
III-A. The defined struct is represented in Listing 1; it
contains information about the SLA validity period, target
performance level, price, compensation value, and relevant
information.
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1 struct validityPeriod {
2 uint createdAt; // timestamp
3 uint startTime; // timestamp
4 uint endTime; // timestamp
5 uint validity; // seconds }
6 struct slaStruct {
7 string service;
8 uint performanceLevel;
9 string unit;

10 uint currentPerfomanceLevel;
11 uint price;
12 bool paid;
13 uint compensationPercentage;
14 uint compensationPeriod;
15 uint compensationValue;
16 uint currentCompensationInterval;
17 uint compensationThreshold
18 uint monitoringPeriod;
19 uint violationCount;
20 uint totalExpectedMeasuraments;
21 uint compensationValue;
22 validityPeriod period; }
23 slaStruct private currentSla;

Listing 1: Solidty Struct Containing SLA Information

The Ethereum public addresses of the SP, customer, and
monitoring solution are stored as the type address in
Solidity (cf. Listing 2). This type of variable is peculiar
because it was designed to hold Ethereum addresses (a 20
bytes value) and contains two special functions, one to check
the account balance (balance()), and other to transfer funds
to the address (transfer()). As the SC handles funds (i.e.,
ethers), this type was selected to store the addresses.

1 //addresses
2 address private serviceProviderAddress;
3 address private customerAddress;
4 address private monitorSP;
5 address private monitorCustomer;

Listing 2: Addresses Variables

Listing 3 depicts an example of how the SC allows only au-
thorized addresses (cf. Listing 2) to interact with the SC. For
instance, once the SC is deployed, it automatically executes the
construct() function (line 1), which sets the SP address as
the address that deployed the contract. Only the SP is allowed
to set the customer address. Therefore, the setCustomer()
function (line 7) contains the require() function (line 8),
which verifies whether the sender of the message matches with
the stored SP address using the isSP() function (line 4). This
verification with require functions is performed in every
SC function that requires access control. There are functions
that only the SP can call, and others that only the customer
can call, such as the deposit function (cf. Listing 6). The
require(condition) function can revert the transaction
if the condition is false.

1 constructor() {
2 serviceProviderAddress = msg.sender;
3 }
4 function isSP(address sender) private view returns (bool)

{
5 return sender == serviceProviderAddress;
6 }
7 function setCustomer(address _customer) public returns (

bool) {
8 require(isSP(msg.sender));
9 customerAddress = _customer;

10 return true; }

Listing 3: SC Constructor and Authorization Functions

Every time the monitoring solution detects a violation, i.e.,
when the measured value is above the target performance
level defined in the SLA, it triggers the setViolation()
method to inform the event. The function to set this violation
is depicted in Listing 4, which is only accessible by the
monitoring solution address and requires that this address must
be verified (i.e., SP and customer monitoring solution address
must match). This function calculates the period violated by
dividing the number of detected violations in the interval
divided by the total expected measurements in the interval (line
16). If this period of violation is above the defined threshold,
e.g., 10% (line 17), and if the compensation interval has ended,
then the compensation is paid using the compensation function
depicted in Listing 6.

Operations and functions that rely on time use the block
timestamp as a reference for the current time. The block
timestamp is the time in seconds since the UNIX Epoch (i.e.,
January, 1st 1970) that the current block has been mined and
appended in the blockchain.

1 function setViolation(uint _level) public returns (bool) {
2 require(monitorVerified());
3 require(isMonitor(msg.sender));
4

5 if (isTerminated)
6 {
7 return false;
8 }
9 if (currentSla.currentPerfomanceLevel != _level) {

10 currentSla.currentPerfomanceLevel = _level;
11 }
12

13 currentSla.violationCount = currentSla.violationCount
+ 1;

14 if (block.timestamp <= (currentSla.period.startTime +
(currentSla.compensationPeriod * currentSla.
currentCompensationInterval))) {

15 //Carry on with normal operation
16 }
17 else {
18 uint periodViolated = ((currentSla.violationCount

* 100)/ (currentSla.totalExpectedMeasuraments
));

19 currentSla.violationCount = 0;
20 if (periodViolated > currentSla.

compensationThreshold) {
21 compensateCustomer();
22 }
23 currentSla.currentCompensationInterval++;
24 }
25 isSlaFinished();
26 return true;
27 }

Listing 4: Set New Violation Function

As the SC is not able to automatically execute a function by
itself, the SP, the customer, or the monitoring solution must
periodically call the SC to verify if the SLA is still valid or not.
This verification is performed using the isSlaFinished()
function depicted in Listing 5. If the current block timestamp is
above the calculated end time (start time plus validity), the SC
verifies if there is compensation to be paid, if not, it terminates
the SLA (line 13), transferring the remaining SC balance to
the SP. The private keyword after the function arguments
specify that the function can only be called from within the
contract. Thus, providing another level of trust to involved
parties, as no outside interaction is possible.
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1 function isSlaFinished() returns (bool) {
2 require(isSP(msg.sender) || isCustomer(msg.sender) ||

isMonitor(msg.sender));
3 if (block.timestamp >= currentSla.period.endTime) {
4 uint periodViolated = ((currentSla.violationCount

* 100)/ (currentSla.totalExpectedMeasuraments
));

5 currentSla.violationCount = 0;
6 if (periodViolated > currentSla.

compensationThreshold) {
7 compensateCustomer();
8 }
9 terminateSLA();

10 return true;
11 }
12 return false;
13 }
14 function terminateSLA() private {
15 isTerminated = true;
16 serviceProviderAddress.transfer(address(this).

balance);
17 }

Listing 5: Check SLA Validity Function

The compensation function (cf. Listing 6) is called to trans-
fer the compensation value for the customer address stored
by the SP. Having the customer address stored as a variable
of the type address allows the SC to call the transfer
function, which is inherited from this variable type, to send
the defined compensation value. Another function that relates
to the customer is the deposit function. This function is
public, meaning that anyone can call it. However, the sender
must be the customer address provided by the SP and the
value transferred to the SC must match with the value defined
in the SLA negotiation. A peculiarity of this function is that if
everything occurs normally, then the function yields an event
of the type CustomerDeposit with the customer address
and price as arguments using the function emit. This event
can be monitored by the SP to verify when the contracted
resources should be available to the client; an example of such
a process can be found in [11]. Thus, the release of resources
by the SP can be managed in an automated manner as well.

1 function compensateCustomer() private returns (bool) {
2 customerAddress.transfer(
3 currentSla.compensationValue
4 );
5 return true;
6 }
7 function deposit() public payable returns (bool) {
8 require(isCustomer(msg.sender) &&
9 (msg.value == currentSla.price) &&

10 !currentSla.paid);
11 currentSla.paid = true;
12 currentSla.period.startTime = block.timestamp;
13 emit CustomerDeposit(msg.sender, msg.value);
14 return true;
15 }

Listing 6: Compensate and Deposit Functions

IV. EVALUATION

In this section, it is first presented the evaluation scenario
in Section IV-A. Then, the deployment and interaction of the
SC are described in Section IV-B. Finally, the performed use
case evaluation is detailed in Section IV-C.

A. Scenario

To provide a straightforward evaluation, the selected evalu-
ation scenario describes the application of the approach using
the response time metric, which is a QoS-related (e.g., latency,
throughput, and packet loss) SLA. The metrics in QoS-
related SLAs are quantitative, being able to be automatically
verified in the SC. Nevertheless, the designed approach can
be modified to fit different types of SLAs, such as service
availability.

The evaluation scenario was composed of a web server and
a client performing periodic requests. A Raspberry Pi model B
with a quad-core ARM Cortex-A7 CPU @ 900 MHz, 1 GB of
RAM, and a 150 Mbps Wi-Fi dongle hosted an Apache web
server, and a Lenovo ThinkPad T430 with a quad-core Intel(R)
Core(TM) i7-3520M CPU @ 2.90 GHz, 16 GB of RAM,
and a 1 Gbps Ethernet connection performed the requests as
the client. The client requested at every 1 s a PHP page that
performed random calculations to introduce load in the server.
Moreover, after each finished request, the client retrieved the
response time of the request and stored this value in a Comma-
Separated-Value (CSV) file.

During a 30 minutes interval, 1800 requests were performed
and measured (30 min× 60 s = 1800); the response times of
these requests are depicted in Figure 2. It can be seen in the
graph that the majority of the requests were answered in 0.2 s
to 0.3 s, and that there are requests with response times over
0.6 s. The average response time for the period was 0.2445 s.
Based on these values, the violation threshold was fixed to
0.3 s, which is depicted using a red dashed line in the graph.
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Fig. 2: Response Time between the Client and the Web Server

B. SC Deployment and Interaction

The deployment and evaluation of the SC were performed
using Ganache, a permissioned implementation of Ethereum
that emulates accounts and funds previously allocated [18].
Moreover, it enables the configuration of blockchain parame-
ters, such as block generation time (which was set to 1 s in
the experiment) and the number of accounts. In addition to
Ganache, another framework was used to deploy, and perform
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tests with the SC, called Truffle Suite [19]. Truffle provides
a complete framework where it is possible to create auto-
mated tests and automatically deploy SCs in the permissioned
Ethereum emulated blockchain.

In the Ethereum blockchain, the interaction with SCs is
performed using an Application Binary Interface (ABI). This
ABI is encoded in a JSON format and defines how the
functions and data structures are accessible by other program-
ming languages (e.g., JavaScript using the Web3JS API [20])
outside the blockchain. In addition to the ABI, applications
that interact with SCs must know the Ethereum address of the
SC. This address is required because it contains the SC code
and the data stored within the SC. The Truffle testing suite
manages those details for each new SC deployment and tests.
In Figure 3 is depicted an example of a transaction receipt for
the creation of a new SC in the blockchain. Line 1 contains
the hash of the transaction (unique to this transaction), line 2
contains index of the transaction in the block (0 equals the
first transaction in the block), line 3 and 4 presents the hash
and number of the block that the transaction can be found,
and the last line contains the address of the created SC.

1 { transactionHash: '0xd75672b3b078c3c6f0562439d40292e98142df62ec0ea5d18a489364f52a0e07', 
2  transactionIndex: 0, 
3  blockHash: '0xe45ed11e7cf59f7064367599e7a1bc5b173137d036edf68747bb13fb04bb65e5', 
4  blockNumber: 5,  
5  contractAddress: '0x1b9f5ec63ea1881983d200e265a9e52188a285b8' }

Fig. 3: SC Creation Transaction Receipt

C. Evaluation

SLA Parameter Value
Service Name “Web Server”
Target Performance Level 0.3
Target Performance Level Unit “second”
Price 30 ETH
Compensation 30%
Compensation Period 5 min
Compensation Threshold 10%
Monitoring Period 1 s
Validity 30 min
Total Measurements* 300 (per period)
Compensation Value* 1.5 ETH (per period)
* Values calculated automatically by the SC

TABLE II: Smart Contract Parameters

To evaluate the feasibility of the solution, a use case was
designed to simulate the management of an SLA using the
presented SC. This test works as follows. Firstly, the SC is
deployed, and a new SLA is created following the parameters
presented in Table II. Secondly, both, SP and customer,
inform the monitoring solution address to the SC. Thirdly,
the customer deposits the SLA Price in the SC, meaning the
start of the SLA. Then, the measurements of the web server
response time, described in Section IV-A, are considered as an
input of a monitoring agent that performs periodic calls to the
SC informing about SLA violations. If the monitored response
time is above 0.3 s (arbitrarily defined), then the monitoring
agent sends a setViolation(value) call to the SC,
increasing the number of violations in the period. Once the SC

receives this violation, it verifies if the current block timestamp
is within the compensation interval, if it is not, it calculates
the percentage of violations in the period. If this calculated
percentage has reached the Compensation Threshold defined
in Table II, then it transfers the Compensation Value to the
customer. This process is repeated until there are no more
values to report. Finally, the SLA is terminated, and the
remaining SC balance is transferred to the SP.
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Fig. 4: Stakeholder balances during SLA Validity

Figure 4 depicts the balances of the stakeholders (SP,
customer, and SC) during the designed test. The SP balance
is illustrated using a dotted black line, the customer balance
is represented with a solid blue line, and the balance of
the SC is illustrated with a dashed red line. Ganache was
configured to allocate 100 ETH to the customer and SP
accounts, and the deployment of the SC was performed with
the SP account. The first seconds (0 s to 60 s) the contract
balance is 0 ETH, but once the customer deposits the 30 ETH
corresponding to the SLA price, this balance changes, with
the customer balance decreasing to 70 ETH and the contract
balance increasing to 30 ETH. Once the deposit occurs, the
measured responses times are iterated to verify each one
against the Target Performance Level (0.3 s) defined in the
SLA. If the value is above the target level, then a violation is
reported to the SC. As defined in Table II, the Compensation
Period is 5 min (300 s); thus, every 5 min it is expected that
the SC calculates if the customer is entitled to compensation
or not. Based on the resultant balances, it can be seen that a
total of 6 compensations occurred, each one of them during the
defined compensation interval. This value of 6 compensations
represents the maximum amount of compensations that can
occur because the SLA validity was set to 30 min and each
compensation occurred every 5 min, resulting in 30 min

5 min = 6
periods. At the end of the SLA validity, the SC performed the
payment of the remaining funds (approximately 21 ETH) to
the SP and the last compensation (Compensation #6) to the
customer.
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V. DISCUSSION

The SC proposed in this paper covers the phases #3, #5, and
#6, of the SLA management lifecyle. These phases contain
elements that can be translated, automated, and stored in
an SC, such as the SLA establishment and compensation
calculations. They are depicted using a dark gray background
in Figure 5. Phase #4 is partially covered because it is assumed
that the monitoring solution only reports to the SC violations
and not every service measurement. Thus, the SC is only aware
of detected violations. This phase is depicted using a light
gray background. The proposed SC does not address the two
other phases (#1 and #2) because they contain manual human
interaction, such as the SLA negotiation and service discovery.
These phases are depicted using a white background.

SLA Management
Lifecycle 

1 - Discover
Service Provider

2 - Define SLA 

3 - Establish  
Agreement 

4 - Monitor
SLA Violation

5 - Terminate
SLA 

6 - Enforce Penalties for  
SLA Violation

Partially Covered

Covered

Not Covered

Fig. 5: SLA Management Lifecycle [3]

It is known that most SLAs have a billing cycle of 30
days. Also, the compensation for an SLA violation is often
performed using service credits, which are applied in fu-
ture billing payments [21]. Moreover, it is the responsibility
of the customer to submit a claim for an SLA violation
and receive this credit. However, with recent advances and
popularization of cryptocurrencies, this process can become
more dynamic and fast compared to the process described
in Section II-B. Cryptocurrencies can be divided into smaller
units, for example, 1 ETH can be split into units called wei,
1 ETH equals 1 × 1018 wei. This division is not possible
using fiat currency, such as USD, in which the smallest unit
is 0.01 USD. Also, each Ethereum transaction is settled in
˜14 s [22]. Therefore, based on the performed evaluation, it
can be seen that the management of stakeholders’ (SP and
customer) funds was performed entirely by the SC in an
automated and dynamic manner. It included the payment of the
exact compensation value defined by the SLA to the customer
and the transfer of the remaining balance to the SP after the
validity of the SLA. Moreover, this process occurred without
the intervention of a TTP, which was successfully replaced
by a decentralized entity without central control (blockchain-

based SC), while providing data immutability, and trusted
service and compensation payment.

Concerning the (i) scalability, (ii) integration, and (iii)
human intervention aspects of the approach. The first aspect
is limited, in theory, to the Ethereum blockchain constraints,
such as SC size, and maximum gas used. This is because that
one SC is deployed for each SLA between a client and an SP.
This type of deployment allows that the management of each
SC to be performed outside the blockchain (i.e., off-chain),
enabling a scalable solution. If ones desire to integrate the
approach with existent systems, adapters to communicate with
the Ethereum blockchain must be developed. These adapters
must contain functions to interact with the SC, retrieving
data and submitting transactions to the SC. Lastly, the third
aspect, human intervention, is necessary in complex legal
disputes, public relations, and in business strategies. Also,
the proposed approach minimizes the manual interaction and
errors involved in the process of claiming compensations.
Thus, the negotiation of SLA terms and SLA definition still
require human interaction.

VI. CONCLUSION AND FUTURE WORK

This paper presented a novel approach to address parts
of the SLA management process, such as the establishment
of the SLA, monitoring, and the enforcement of penalties
for violations. More specifically, it focuses on enabling the
dynamic SLA compensation in the case of violations during
the service duration, i.e., the SLA validity. The presented
approach relies on blockchain-based SCs to hold agreed QoS
SLA terms by the SP and the customer in tamper-proof
storage. Also, the approach automatically manages the SLA
billing process, which comprises the payment for the service
by the customer and the compensation reimbursement by
the SP. The basis for the design decisions of the approach
took into consideration the current state-of-the-art in the SLA
management lifecycle.

Moreover, it was described the implementation of the ap-
proach using Solidity, which is an SC programming language
(Turing-complete) provided by the Ethereum blockchain. List-
ings of the implementation source-code were presented to
prove, in a first moment, that is possible to implement the
proposed approach. Further, the implemented SC was de-
ployed in a permissioned test Ethereum blockchain to manage
an example of a real-life QoS-related SLA (response time).
Therefore, based on the performed evaluation, parts of the
SLA management process were successfully automated using
a decentralized solution and removing the dependency of a
TTP to handle the billing process.

There is still a considerable amount of work to provide
a production-ready SLA management approach based on
blockchain and smart contracts. Future work includes, but
are not limited to, (i) privacy analysis, (ii) cost analysis, (iii)
scalability analysis, (iv) more in-depth research on trusted
monitoring solution, and (v) integration with existing BSS and
OSS. However, it is expected that this work shed light on the
current research on the topic.
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