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Abstract—Distributed Denial-of-Service (DDoS) attacks rise in
frequency, diversity, and intensity. Often, centralized defense
approaches lack hard- and software capabilities. A cooperative,
multi-domain DDoS mitigation system provides defense services
on top of an existing, distributed infrastructure. However, par-
ticipants in these systems lack incentives for cooperation and
reputation. Thus, reward systems can fill this gap by providing
necessary incentives for cooperation among service providers and
consumers. This paper presents the design, implementation, and
evaluation of a reputation scheme for the Blockchain Signaling
System (BloSS). A smart contract-enabled process automates
reputation management to diminish malicious behavior by in-
centive design. Among other metrics, Beta reputation provides
intelligence to identify and reward honest participants.

Index Terms—Blockchain, Cooperative Defense, Reputation
and Security Management, Trust

I. INTRODUCTION

Distributed Denial-of-Service (DDoS) attacks are a signifi-
cant threat to the Internet’s availability that remain unmitigated
despite many commercial and research efforts. A large number
of unsecured devices that range from connected cameras to
smart fridges are being connected to the Internet-of-Things,
and their growing processing capacity allows attackers to take
control of a vast amount of resources to launch malicious
attacks. Many of these devices are insecure by design and
in many cases impossible to be secured due to their hard- and
software constraints.

To prevent or reduce damages caused by these DDoS at-
tacks, different detection and mitigation methods are available,
being organized in a single-domain defense or in-house. These
defense methods are mainly implemented based on dedicated
ASIC-based (Application Specific Integrated Circuit) appli-
ances to analyze flow records exported from edge routers,
and further filtering or load balancing traffic. Similarly, cloud
services such as the ones offered by CloudFlare [6] or Akamai
[1] can take away the burden of detection and mitigation,
serving as a proxy being able to load balance, reroute, or drop
the traffic in case of DDoS attacks.

However, in-house defense systems have shown to lack
hard- and software capabilities to detect and mitigate the
attacks themselves [12]. These trend attacks can easily exceed
the defense capacity of a single system with respect to volume
and frequency. Thus, as DDoS attacks become progressively
sophisticated and coordinated, the defense from such attacks
likewise needs distribution and coordination. By utilizing other
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organization’s resources, the burden of the protection can be
shared, and defense capabilities can be extended through the
different protection systems participating in the distributed
defense. The Internet Engineering Task Force (IETF) drafted a
Distributed-Denial-of-Service Open Threat Signaling (DOTS)
architecture for this purpose [12].

While providing many benefits, a cooperative defense also
poses many challenges. For example, why shall organizations
help each other? In a competitive environment, trust needs to
be established, thus, reputation needs to be managed. Solely
relying on voluntary contribution (i.e., accepting defense re-
quests) creates a favorable environment for free riding peers
(consuming resources without contributing). DDoS attacks
might be originated in remote networks without a close
relationship between the governing Internet Service Providers
(ISP). Thus, a reputation system is to encourage truth-telling
and discourage free-riding between providers without a trust-
relationship. This situation and the social dilemma that busi-
ness partners find themselves in is illustrated in Figure 1. First,
the attack target publishes malicious IP addresses. Second,
multiple mitigators adjust the configuration of their network
devices to filter and drop malicious packets. This second step
is referred to as the actual “mitigation service”. In a third step,
the attack target evaluates the effectiveness of the mitigation
service. By advertising reputation in a public manner one
can provide incentives, foster desirable behavior, and shape
the environment for mitigators and attack targets to naturally
follow the social norms and rules of the system. Thus, the
actions of the participants cannot remain hidden.
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Fig. 1: Problem of false-reporting and free-riding.

This work here on the reputation management scheme
tackles the problem of false-reporting and free-riding in a
cooperative defense by proposing a reputation and a basis
to reward schemes. It extends the work in [22, 25] with



a reputation scheme, however, focusing on the reputation
mechanisms solely and abstracting DDoS mitigation service
delivery, payments or financial incentives. We assume policies
for cooperation are expressed in a smart contract and the
system in [22, 25] considers these network and security
policies in a more detailed manner. This reputation system
builds on established concepts and could be readily integrated
in the area of cooperative defense.

A reputation scheme allows contributors and consumers
of the network to rate entities that request protection in a
cooperative defense. These systems have already been proven
useful for e-commerce Web-sites, incentivizing peers to con-
tribute with relevant information and establishing fairness
among peers. Moreover, similar social dilemmas exist in other
areas, e.g. crowdsourcing [33]. Even in large Peer-to-Peer
(P2P) networks, peers maintain lasting business relations and
transact repeatedly [29]. This increases the potential benefit
of such type of systems in P2P related domains. In Mobile
Ad hoc NETworks (MANET), researchers identified the same
need, to provide incentives and credit-based mechanisms for
cooperation among peers [8, 15]. However, the DOTS draft
does not discuss these issues, which are of administrative
nature or part of business agreements between the cooperating
domains. Thus, incentive or reward mechanisms are required.

The design of reputation and reward systems is still a
challenge because they are vulnerable to gaming attempts
by malicious users [9, 28]. These attacks against reputation
systems are also referred to as “rating fraud” and can occur
in different forms [4]. Attackers can use these strategies to
inflate their own reputation (i.e. ballot-stuffing) or cause the
defamation of others (i.e. bad-mouthing) [4]. In collusion and
Sybil attacks, multiple identities are misused to manipulate
reputation [9].

When using multi-dimensional and subjective user-ratings, a
bad rating can dilute the reputation of other peers, independent
of their actual behavior [9]. Therefore, self-balancing and
credible reputation metrics based on well-defined inputs other
than subjective ratings are needed [32]. Similarly, a self-
policing reputation system can discipline the participants’
behavior without the need for a central authority [14]. Another
problem identified in [9] is, that reputation systems are prone
to re-entry attacks if the cost to obtain a new identity is too
low.

A carefully chosen initial reputation score and reputation
function can present newcomers trustworthy in their first
transactions, but still discourage from whitewashing the iden-
tity [27]. The cost to create a new identity must be higher
than benefits that come with the initial reputation score. The
blockchain-based attack signaling architecture proposed in
[25] already leverages IP verification to proof IP ownership.
Using the limited IPV4 address space has shown to be an
excellent way to raise the cost barrier of re-entry and to
decrease the risk of Sybil and whitewashing attacks [4, 9].

Blockchain technology not only offers new possibilities
in attack signaling, but also emerges as a trust-worthy and
distributed solution for reputation management [25, 30]. Since

reputation is earned in interactions between peers, it can be
attached to transactions. Decentralized ledger technologies
such as the New Economy Movement (NEM) [19] calculate
importance scores for peers. According to NEM, “importance
cannot be arbitrarily manipulated or gamed, and importance
scores are useful for purposes other than just blockchain
consensus, being interpreted as a form of reputation” [19].

This paper is organized as follows. Section II overviews
general concepts applied in current reputation systems. Section
IIT describes how the reputation scheme is embedded into
the mitigation protocol. The architectural design and imple-
mentation are described in Section IV. Section V explains
methodology and configuration, including the execution of
major experiments. The discussion of experimental results,
limitations, and robustness against different forms of rating
fraud follows in Section VI. Finally, Section VII concludes
the work.

II. REPUTATION SYSTEM CONCEPTS

Reputation systems have been widely deployed in different
business areas and application contexts. There exists a mul-
titude of use cases for reputation and incentive mechanisms
that ranges from crowdsourcing and sensing [7, 33], MANETS
(Mobile and Ad-hoc Networks) [8, 15], Border Gateway
Protocol (BGP) routing [11], E-commerce [3], file-sharing
[29], mobile data plan sharing [18], prediction markets [21],
various P2P and blockchain networks and cooperative DDoS
defense [22, 25]. General properties of reputation systems are
identified in Section II-A and, in the following, probabilistic
reputation engines are introduced in Section II-B.

A. System Properties

Reputation systems have a few common properties [11]:

o Foundation of trust: Repeated interactions and a clear
interaction history build a reliable foundation of trust.

« Self-policing nature: The system should be self-policing,
with the social norms defined by the users and not by a
central authority [14].

« Carrots and sticks: With incentives and penalties, users
are more likely to behave according to the social norm.

« Robustness: The system should be robust against gaming
attempts in reputation systems [9]. It needs not be fool-
proof, but reasonably secure against collusion and Sybil
attacks, bad-mouthing (bad ratings), ballot stuffing and
identity whitewashing through re-entry. Current literature
examines rating fraud, as a type of information fraud
(see Figure 2). The goal of an attacker domain is to
either increase the reputation of itself (ballot stuffing)
or to decrease the reputation of others (bad-mouthing).
The attacker can achieve its goals using a variety of
attack models. A constant attacker behaves consistently
evil, whereas a disturbing agent camouflages its actions
skilfully.

e Accurate and verifiable scoring engine: The scoring
engine should provide accurate and verifiable metrics.
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Fig. 2: Fraudulent rating classified by goal and attack [4, 23]

e Anonymity and privacy: The personal user feed-
back should be collected anonymously or bound to a
pseudonym, to ensure honest feedback and guarantee
some degree of privacy [7]. In a decentralized, anony-
mous marketplace (DAM) [24] the reputation system re-
quires additional properties to ensure a fair and complete
listing of items, payments, and reviews. Most impor-
tantly, such a marketplace ensures the unlinkability of
reviews and payments (with associated customer informa-
tion), without compromising the legitimacy of the review
[24]. The fully anonymous reputation system developed
for the DAM “Beaver” [24] makes use of advanced
cryptographic techniques, such as ring-signatures and
zero-knowledge proofs, to uphold stringent security and
anonymity requirements. These techniques allow raters to
stay anonymous by veiling the source of the reputation
claim, but without compromising the validity of the
rating.

B. Probabilistic Reputation Engines

Surveys and classification about different types of reputation
engines are presented by Jgsang ef al. in [13] and Schlosser
et al. in [23]. This work focuses on a probabilistic engine,
because this type of engine is suitable for the design of binary
reputation systems [2]. In probabilistic engines, reputation is
expressed as a probability [2, 27]. The expected value of
the beta distribution forecasts the probability of a positive,
future event x, based on the past binary events x and Z.
The binary events represent positive and negative historical
reputation ratings. The expected value of this distribution can
be interpreted as a reputation score [2].

One particular example of a Beta reputation system applied
to blockchain is found in the Topl protocol [5]. Topl is a
proposed blockchain protocol to create profit-sharing agree-
ments with producers in emerging and frontier markets. The
reputation engine “Divine” of the Topl protocol builds upon a
Beta reputation engine to facilitate due diligence and reduce
counterparty risk [16].

In this work, likewise to [2], Beta reputation for a customer
c is calculated as the expected value E(p) = Sf5, with
a = positive(c) + 1 and 8 = negative(c) + 1 being the
accumulated positive and negative reputation values at one
point in time. This value reflects the probability of future
positive interaction with customer c, based on its past positive

and negative ratings. This Beta function outputs reputation
scores in the range of [0, 1], where 0.5 is the initial, neutral
score of every new customer.

III. MITIGATION PROTOCOL

Figure 3 depicts the protocol for mitigation or defense
services by a mitigator M (i.e. the requested domain), in
response to a DDoS attack at the target domain 7' (i.e. the
requester or attack target). It defines how the customers should
behave in a cooperative defense. The rational and satisfied
customers are referred to as the “desired customer strategies”.
When M submits proof of blocking, there is no automated
way for other peers to build a consensus on the quality of
the delivered service. The receipt in a “payment-for-receipt”
exchange process cannot be automatically issued by a smart
contract, because in the worst case, any upload is accepted as
successful delivery and 1" would pay for a worthless receipt.
Attack size and amount of payment are relevant factors that
could result in serious financial losses for 7. In order to avoid
this problem, this reputation protocol here depends on T’ to
rate the outcome of the mitigation service until a validation
deadline. Thus, the “nature of the proof™ is abstracted, because
finding a robust representation and verification thereof presents
a current limitation in cooperative defense (see Section VII).

The protocol implements a final rating deadline in addition
to the service and validation deadline. A dissatisfied M can
still dispute a rejected service as long as the rating deadline
has not expired. Afterward, M is assumed to no longer be
interested in the payout or having accepted 7”s rating. The
rules of the smart contract define a positive rating by M as
the only allowed response to a positive rating (ack) from 7.
In the same way, receiving negative or no feedback from 7'
cannot (altruistically) be rewarded with a positive rating by
M. Nevertheless, a dispute process should be in place for
customers to challenge any payout or rating.

As independent observers, we cannot make a statement
about the truthfulness or quality of the (proof of) service. Even
though blockchain technology can preserve an audit trail for
all transactions, it cannot compensate for lack of ground-truth
[4]. This holds for the uploaded proof of service as well as for
user-defined, subjective ratings. There is no automated way to
determine the truthfulness of proof or rating fully. Hence, the
correct input of customers remains of paramount importance
for the quality of the system as a whole.

Nonetheless, as soon as 7' decided on the quality of the
delivered mitigation service, this information is published by
rating and validating the mitigation service. In this sense, T’
cannot be malicious, only satisfied or dissatisfied. If T is
honest, it either rates positively and acknowledges (satisfied)
or rates negatively and rejects the service (dissatisfied). Then,
a rational M always rates according to the expectation of
T. This rational M responds to a rejected service by rating
T negatively. However, if the rational M received positive
feedback from T, it will also respond positively. When there
was no feedback (i.e. T selfish), a rational M is only allowed
to rate negatively.
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Fig. 3: Customer strategies in the mitigation protocol

IV. DESIGN AND IMPLEMENTATION

The software architecture of the prototype in this work
is inspired by [31], with slight modifications '. Whereas
[31] uses PostgreSQL for reputation caching, this work here
creates a mitigation task index in a MongoDB database.
Based on that data, the reputation API provides reputation
metrics to interested consumers over well-defined endpoints.
An identity smart contract holds the identities of all partici-
pating autonomous systems or domains. A partial anonymity
(i.e. pseudo-anonymity or pseudonymity) is preserved by dis-
guising the real identity of the domain and maintaining a
pseudonym in form of an ID (i.e. Ethereum account addresses).
However, for a particular reputation claim, the claim owner
and rated customer and the interaction are traceable within
the blockchain.

Customer data, including reputation scores, mitigation of-
fers, and tasks are connected to the customers’ ID but stored
off-chain whenever possible. The reputation contract stores
IPFS hashes, that link to reputation data (reputons) about
past interactions. Reputation scores and historical data about
a peer’s behavior in different contracts (e.g. peer age, number
of tasks solved, number of interactions) can be retrieved from
this reputation contract or the public blockchain transaction
history. This data creates the foundation of trust and is visible
to all peers in the system. The attack information broadcast
is also assumed to be public. Potential mitigators receive
notifications about malicious IPs via blockchain. Based on
publicly available reputation data, both contract parties decide
whether to enter into a contractual relationship. The reputation
API aggregates reputation data and provides it to the interested

IThe prototype is available at https://github.com/inOrdr/prototype
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peers. This API should allow verifying the integrity of the
provided information. In this architecture, the API represents
the accurate and verifiable scoring engine. Since consumers
can query the blockchain transaction history independently, the
information provided by this API can be proven wrong any
time.

The following sections describe how tasks are indexed, how
reputation is stored off- and on-chain and how the reputation
metrics are presented to consumers of the reputation APIL.

A. Mitigation Task Index

The reputation API was built with the Ruby on Rails (RoR)
web application framework. A scheduler appends new contract
information to the local index at an interval of 15 seconds.
Since we assume that data on the ledger is immutable (e.g.
mitigation contract participants never change), new data can
be appended to the local database in this periodic manner. The
database is updated using a simple counter (known_cnt),
to mark the position of the last update (see Listing 1).
Thus, information appended previously will not be stored or
processed twice. The same caching procedure could be applied
to cache reputons.

def get_latest_tasks
task_cnt = contract.call.task_cnt
known_cnt = REDIS.get ("known_cnt’) ||
# append only new tasks
(known_cnt + 1...task_cnt).each do |task_index|
# fetch task from the ledger
task = contract.call.tasks (task_index)
REDIS.set ("known_cnt’, task_index)
# create task entry in the
MitigationTask.create (
mitgn: MITIGATION_CONTRACT_ADDRESS,
_id: task_index,
target: task[0],
mitigator: task[1]

-1

a new database

end
end

Listing 1: Periodically append tasks to local task index

B. Storage of Reputation Data

Reputation storage is implemented partially off- and on-
chain. The actual reputation data is not stored in the database
of the API but retrieved directly from the IPFS gateway. The
IETF standard media type for reputation exchange [17] enables
the interpretation and exchange of reputation claims. Claims
are a way to register a reputation statement that a source
entity makes about a target entity [10]. The reputon media type
represents these claims in JavaScript Object Notation (JSON).
These JSON objects are stored on IPFS. Listing 2 shows a
reputation statement about a mitigator.

{ "application": "mitigation",

"reputons": [{
"rater": "0Oxf43...",
"assertion": "proof-ok",
"rated": 20,
"rating": O,

"sample-size": 1 }] }

Listing 2: Reputation statement about a mitigator
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The properties of such a reputon can be interpreted as
follows:

e The rater records an assertion (reputation state-
ment) for a customer. In Listing 2, the reputation state-
ment was made about the mitigation service delivered by
a mitigator. The receiving side (i.e. the “rated” customer)
of the claim is implicitly recorded in the mitigation smart
contract, since every mitigation contract is created for
exactly two customers.

o The rated property of the reputon records the mitigation
task ID.

e A rating value of zero is a negative feedback. The
rating value of one is interpreted as a positive rep-
utation statement. Intuitively, when no reputon is sup-
plied for a mitigation task and customer, there exists
no rating property and the rating for this customer
is interpreted as “neutral”.

o The sample-size specifies “the number of data points
used to compute the rating” [17] and is fixed to 1
since the reputation statement originates from exactly
one customer. Even though not being a required attribute
by the media type specification [17], it improves the
information quality of the reputation statement.

The task index of the API contains the task IDs and contract
participants. To obtain reputation data, the API controller sets
off a read request to the blockchain. An example to fetch all
reputon IPFS keys for a customer (in the role of attack target)
is given in Listing 3.
def get_target_reputons (addr)

target_tasks = MitigationTask.where (target:

target_tasks.map do |t]

# get mitigator claims about target
{ ipfs_key: CONTRACT.call.get_reputon(t._id, 1),
task_id: t._id }

end
end

addr)

Listing 3: Fetch IPFS reputon keys

The reputation smart contract stores the IPES hash of every
reputation claim (see Listing 4). The reputons mapping
avoids duplicate claims and registers claim owners (i.e. the
“rater”). The Solidity state variable interactions maps
every mitigation task ID to an array of size two. Every task
can have at most two reputons assigned. First, the reputation
statement from the target about the mitigator and second,
the reputation statement from the mitigator about the attack
target. These reputons hold complete reputation information,
including metadata. The ratings state variable records the
binary reputation value to conclude mitigation tasks.

uint256 public reputonCount;

mapping (string => address) reputons;
mapping (uint => string[2]) interactions;
mapping (uint => uint[2]) ratings;

Listing 4: On-chain reputation storage

C. Implementation of Reputation Metrics

The reputation API presents reputation summaries to con-
sumers. An example of such a summary for an arbitrary

customer is given in Listing 5. The rating_summary map
reveals, that customer 0x113. .. earned more negative than
positive reputation for his mitigation service. The average
satisfaction with the mitigation services of this customer
amounts to sat(c) = % = 0/2 which is 0%. The
reputation summary also shows, that this customer received
no feedback and thus neutral ratings in three of total five
interactions. These are only the interactions for which this
customer was enrolled as a mitigator. A similar summary
can be obtained to learn about the reputation claims obtained
in tasks, where customer 0x113... was enrolled as the
attack target. The reputation computation is based on the
task IDs in the rating_source map of the summary.
This information can be used to verify the correctness of the
reputation summary.

{ "rating_source": {
"negative": [20, 26],
"neutral": [2, 8, 14],
"positive": []

}, "rating_summary": {
"negative": 2,
"neutral": 3,
"positive": 0 } }

Listing 5: Reputation summary for mitigator 0x113. ..

V. EVALUATION

The goal of the experiments was to determine a setting,
where constant (see Figure 2) desired customer behavior is
distinguishable from undesired or even malicious behavior by
looking at reputation values. The simulations were performed
in the Communication Systems Network Lab at the University
of Zurich. More precisely, the setup comprised two identically
equipped Dell XPS machines, with Intel Core i7 CPUs (4
Cores, 3.40 GHz) and 8 GiB of RAM each. The first machine
hosted an Ethereum boot node and a mining (validating) peer.
The second machine hosted a non-mining geth peer and the
Node.js simulator script. Also, an Ethereum network statistics
dashboard (eth-netstats) has been deployed for monitoring
purposes on this second machine. The simulator script was
written using the Web3 Ethereum JavaScript APIL.

A. Evaluation Metrics

Reputation points used to rate target and mitigator are
preferably not the same because a task owner with a good
rating does not necessarily need to be a good mitigator and
vice-versa. Therefore, the reputation earned as mitigator is
stored separately from the reputation earned as attack target or
task owner. A simple metric gives the analyzing peers a clear
understanding of a peers reputation. Added to this, a complex
metric might lead to negative feedback loops [10]. The scores
earned by ratings from other peers (subjective ratings) and the
total amount of transactions (objective metrics) are equally im-
portant to have a good understanding of a peers trustworthiness
[32]. Therefore, this system presents objective (e.g. number of
transactions/interactions) and subjective metrics (e.g. ratings)
to consumers (see Section IV-C). This approach allows peers
to calculate a simple trust metric, which helps them to decide
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on trustworthy business partners. Beta reputation is assumed
to be a suitable metric for this evaluation, since this is a binary
reputation system (see Section II-B). According to Jgsang
and Ismail (2002), this metric builds “a sound mathematical
basis” [2]. A “balance factor of trust” to correct for the
trustworthiness of the subjective ratings was not implemented.

B. Customer Strategies

Tables I and II present the numerical evaluation of all
customer strategies, which match their analytical specification
in Figure 3. These two tables show the state of the simulated
world after all customers complete a mitigation contract with
each other once. The simulation function takes as an input one
mitigator strategy and one target strategy. After the simulation
halts, the output analyzed in this evaluation here is the end
state of the mitigation tasks in the simulated world (Table I)
and the reputation of the customers (Table II). In this way,
all 16 possible combinations of customers (4 targets x 4
mitigators) have been evaluated, to ensure the correct behavior
of these customer strategies.

Table I lists all possible combinations of mitigator-target
strategies and the mitigation contract ID. Completed tasks
are either aborted before payment or paid out successfully.
Because selfish and lazy customers never rate, tasks 5 and
6 cannot be completed by either party. Compared to the
lazy customer, the selfish one does upload a proof but never
rates, being the reason why the end states for task 5 and 6
are different. Task 15 is the typical escalation case, where a
dissatisfied target and a rational mitigator would argue about
the truthfulness of the proof of service. In this case, no
payment is made, and end state is “rejected”.

TABLE I: Task configurations and end states

Input: Customer Strategy
Target | Mitigator
Uncooperative

Lazy

Selfish
Rational
Uncooperative
Lazy

Selfish
Rational
Uncooperative
Lazy

Selfish 10
Rational Completed 11
Uncooperative 12
Lazy 13
Selfish 14
Rational Rejected 15

Output: End State | Task ID

Uncooperative Completed

Started (funds sent)

Selfish Proof uploaded

O A N N W —O

=)

Satisfied

Dissatisfied

Table II shows the number of positive, neutral and negative
ratings for all customer strategies. The satisfied target receives
one positive rating from the rational mitigator. The selfish
and rational mitigator receive one negative feedback from
the dissatisfied target. Since they upload proofs, they also
receive one positive rating from the satisfied target. The selfish
and dissatisfied target receive one negative feedback from the

rational mitigator. The lazy mitigator is rated negatively twice
by the satisfied and dissatisfied targets because no proof was
uploaded. The data in this table stems from one specific test
run but can be replicated by re-running the simulator script.
Each simulator test creates customers with their particular
strategy in the same deterministic order. The reputation results
after another test run in a new environment only differ in
customer addresses.

TABLE II: Reputation values and total number of interactions

Input: Output: Ratings Output:
Customer Strategy | Positive | Neutral | Negative | Interactions
Satisfied T' 1 3 0| 4
Selfish M 1 2 1|4
Rational M 1 2 114
Uncooperative T' 0 4 0|4
Uncooperative M 0 4 ol 4
Selfish T' 0 3 1|4
Dissatisfied T 0 3 114

Lazy M 0 2 2| 4

Total: [ 3 [ 23 [ 6 [ 32

C. Evolution of Customer Reputation

When continuous DDoS attacks and the creation of mit-
igation tasks are simulated, mitigation contracts are created
on a regular basis and two randomly chosen agents play the
repeated game against (or with) each other. Since, in real-
world scenarios, customers are unwilling to interact with un-
reputable colleagues, there exists an acceptance criteria, such
that the two assigned agents start the game considering past
reputation scores. The acceptance function takes as input the
past reputation of the counterparty [23]. Based on this input,
the acceptance function evaluates whether or not to advance
the mitigation task. The simulated customers continue with the
mitigation actions if the Beta reputation of the counterparty
exceeds a value of 30%. For this evaluation we choose 30%
to give each customer a chance to change its behavior before
exclusion. Beta reputation for a customer ¢ was calculated as
defined in Section II-B.

Varying time-windows were chosen for the deadlines, such
that they might lead to situations, where customers miss
to meet a deadline. For example, the code that simulates
a mitigator uploading a proof with the minimum service
deadline of three blocks might not be executed fast enough,
because the block time of the blockchain increases faster due
to other transactions being processed. The service, validation
and final rating/escalation deadlines are sampled randomly for
each task. Service deadlines are chosen in a range of [3,13]
blocks and validation deadlines in range of [17,27] blocks.
Final rating deadlines are sampled in the range of [32,42]
blocks. Before the new mitigation contract is created, all peers
are funded with 10 Ethers each. The contract price was fixed
to one Ether for every mitigation task.

The simulations were performed using different composi-
tions of customer strategies (see Table III). The experiments
only differed in measurement duration (from one up to 10
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days) and the number of customers. Figure 4 presents the
average Beta reputation by time and customer strategy for the
third test run.

TABLE III: Distribution of customer strategies

Number of Customers
Strategy - -
First Run Second Run | Third Run
(1 day) (5 days) (10 days)
Rational M
Satisfied T' 10 20 30
Uncooperative T'
Selfish T'
Dissatisfied T'
Uncooperative M 10 20 0
Lazy M
Selfish M
Total Number of Customers: | 80 | 160 | 400 |

VI. DISCUSSION

To the best of the author’s knowledge there is no concrete
(or remotely comparable) implementations of BloSS that pro-
duce real, historical transaction data. Therefore, the evaluation
of the reputation scheme using simulated data is still limited in
meaningfulness. However, all simulated interactions between
the different types of customers allow for a discussion about
how reputation could evolve in the system proposed and how
a customer with a particular strategy would perform.

Overall, Beta reputation scores for attack targets (7's) allow
identifying a satisfied 7', because in comparison with the un-
desired T strategies it develops the highest average reputation
value (cf. Figure 4). From Figure 4 it also becomes evident,
that dissatisfied and selfish T's are downgraded continuously
and will eventually no longer receive help from mitigators
(Ms), due to their lousy rating. It is not desirable in all
circumstances that satisfied 1T's crowd out dissatisfied 7's, since
this will incentivize T's to accept also poorly (or even severely)
delivered mitigation services. Because of the current design,
no third party checks that a rating indeed matches the quality
of the delivered service, this problem remains yet unsolved.

After the first few mitigation contracts, M reputation values
in Figure 4 also allow to clearly distinguish a constant rational
M from the lazy M. However, unlike for the 7's, it is difficult
to distinguish the rational M from the selfish and uncoop-
erative M. The uncooperative M usually shows very low
positive and negative reputation, because it aborts mitigation
tasks early, never takes any action, thus receives little feedback
and its reputation stagnates at 50%, not performing particularly
good or bad. Hence, chances of picking an uncooperative
M for a transaction is diminished the most by considering
raw reputation values, especially the amount of positive and
negative ratings. Because both, the selfish and rational M,
upload proofs, the only difference between the two strategies
is that the selfish M never rates. Selfish M behavior is an
irrational strategy, since the selfish M (deliberately or not)
deprives itself of payment. Assuming that M rarely forgets
to rate services at the end (which is the definition of selfish
behavior), one can also assume that there exists more rational

than selfish M's. This leads to the conclusion that chances of
picking a rational M compared to a selfish M with the same
Beta reputation score are higher, due to the incentive.

Sybil- and Collusion Attacks. The reputation system pro-
totype excludes the possibility where a customer can boost its
reputation by creating mitigation contracts with itself. As long
as the system is not deployed on a public ledger, customers can
be prevented from maintaining multiple account pseudonyms
on the blockchain and transacting between them to inflate
reputation (Sybil attack). Hence, an authority controlling ac-
cess to the customer accounts is required. Since trustworthy
authorities give or revoke write permissions for a consortium
blockchain, these authorities regulate and manage customer
data. They can be held responsible for matching real-world
entities with customer accounts in order to prevent Sybil situ-
ations. The BloSS system already relies on certificates to assert
domain ownership [25]. A similar approach can be defined to
manage customer accounts and pseudonyms of the reputation
module. The impact of authority on whitewashing (i.e. re-
entry) attacks were not analyzed in this work. Unfortunately,
the need for regulating authorities weakens the self-regulatory
nature of the reputation system implemented, however the use
of certificates required runs along the same argument.

Ballot Stuffing and Bad-mouthing. This system is not im-
mune against ballot stuffing. Besides the transactions recorded
on the blockchain, customers can agree on discounts and ben-
efits over alternative communication channels [4]. An example
of such an arrangement would be two customers rating each
other positively independent of the mitigation outcome (i.e.
fake service contracts). If they refund the price of mitigation,
the price for improved reputation equals the contract setup
costs. Contrary to ballot stuffing, the blockchain-based repu-
tation system design impedes bad-mouthing [4]. A customer
can only leave feedback for completed transactions. This
elevates the cost barrier of bad-mouthing a competitor, because
a transaction needs to be committed for every fraudulent
reputation statement [4].

Verifiability and Anonymity. The open architecture of the
prototype allows consumers to verify reputation metrics by
issuing queries to the reputation APIL. In the current design
of the system, verifiability of the reputation metric leads to
reduced anonymity. In turn, this only provides limited security
for the rater.

Limitations. The baseline scenario presented in Section III,
where exactly two customers work together under exactly one
mitigation contract and where they act following this protocol,
might be too simplistic for real-world scenarios. In some
instances, a contract between multiple parties with additional
steps during attack mitigation could be required. A 1 : n
defense situation with one attack target and n mitigators can
be solved with n “1 : 1 mitigation contracts”, for instance, if
large distributed CDNs support DDoS attack mitigation by
temporarily serving the content to users. Also, a different
mitigation smart contract can replace or extend the mitigation
module. Thus, the understanding and investigations of the
basic set-up will help to combine findings of more complex
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settings.

The blockchain used for prototyping the system relies on
Proof-of-Work (PoW) consensus to confirm transactions. This
has the disadvantage of varying block times, which among
other determinants also depends on the current difficulty of the
math problem. Since parties to a mitigation contract arrange
fixed deadlines in blocks, the entire time span in seconds
varies. Employing another consensus algorithm, for example,
Proof-of-Authority (PoA), can solve this problem. No mining
(i.e. solving complex math problems) is required in PoA
systems, since blocks are appended to the chain by authorized
peers only [20]. This comes with the benefit of predictable
block times and thus steady time intervals (i.e. predictable
deadlines) [20].

The evaluation with the target strategies as described in
Figure 3 assumes that there are no lazy T's that never start
a task they initiated. This would be irrational behavior, since
a rational 7' is motivated to see the issue resolved as soon as
possible. Nonetheless, there could be a T’ that forgets about
an approved task. Such behavior is undesired, since mitigator
M has no feedback until the task is either started or aborted.

The simulator assumes that a customer participates in all
contracts as either M or T, but not as both. In a real-world
scenario, today’s M can be tomorrow’s 1" and vice-versa. The
simulator was programmed in a simplified version in order to
attribute reputation scores better to one customer address.

VII. FINAL CONSIDERATIONS AND FUTURE WORK

This work presented a mitigation protocol for a cooperative
defense, fostering trust and establishing a baseline toward
rewards to be distributed. Thus, the protocol discourages free-
riding (attack targets) and false-reporting (mitigators) in the
long run by incentivizing the rational behavior between coop-
erative entities. System evaluation tested different customer
(i.e., cooperative entities) strategies over 10 days of simu-
lation, showing that non-rational customers had reputations
points diminished over time in contrast to rational/satisfied
customers. The system prevents Sybil and collusion attacks by
mapping customer accounts to real-world identities, prevent-
ing customers from creating several identities to manipulate
reputation scores. However, ballot stuffing and bad-mouthing
are not prevented, but discouraged due to the cost to deploy a
mitigation contract only to manipulate reputation scores.

As future work, it is intended to further investigate protocols
or tools that can be used to ensure a reliable and automated
proof-of-mitigation in a collaborative defense [26], serving as
a basis to rate a mitigation service. Also, it is intended to inves-
tigate approaches to automate the resolution of escalation cases
to decide whether a proof of mitigation satisfies the requested
mitigation service. Further, assumptions about different types
of customers and their respective strategies can deviate from
the situation in a proper, cooperative DDoS defense, which
only can be investigated based on real-life traces.
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