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Abstract—For optimal placement and orchestration of net-
work services, it is crucial that their structure and semantics
are specified clearly and comprehensively and are available
to an orchestrator. Existing specification approaches are either
ambiguous or miss important aspects regarding the behavior
of virtual network functions (VNFs) forming a service. We
propose to formally and unambiguously specify the behavior of
these functions and services using Queuing Petri Nets (QPNs).
QPNs are an established method that allows to express queuing,
synchronization, stochastically distributed processing delays, and
changing traffic volume and characteristics at each VNF. With
QPNs, multiple VNFs can be connected to complete network
services in any structure, even specifying bidirectional network
services containing loops.

We propose a tool-based workflow that supports the spec-
ification of network services and the automatic generation of
corresponding simulation code to enable an in-depth analysis of
their behavior and performance. In a case study, we show how
developers can benefit from analysis insights, e.g., to anticipate
the impact of different service configurations. We also discuss
how management and orchestration systems can benefit from our
clear and comprehensive specification approach and its extensive
analysis possibilities, leading to better placement of VNFs and
improved Quality of Service.

I. INTRODUCTION

With increasing complexity of network services currently
considered in network function virtualization (NFV), it be-
comes increasingly crucial to clearly specify their structure
and behavior based on their constituting virtual network func-
tions (VNFs). Such a clear specification is required to avoid
ambiguity and provide all relevant information for orchestra-
tion with Quality of Service (QoS) guarantees.

To illustrate this requirement, we use a video streaming
network service as example (Fig. 1). Such video streaming
network services are a common use case of virtual content
delivery networks (vCDNs) [1]. In this network service, users
request video streams from a vCDN cache. If the requested
videos are available at the cache (cache hit), they can be
streamed directly back to the users (solid, green arrow). In case
of a cache miss, the request is forwarded to the storage server
in order to load the requested videos to the cache (dashed,
red arrow). After retrieving the videos from the server, they
are optimized by the video optimizer (e.g., for mobile video).
In parallel, the server sends a request to an ad insertion VNF
that selects suitable advertisements to be inserted in the video.
The optimized video and the selected advertisements have to
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Fig. 1. Example video streaming network service with stochastic behavior
(cache hit/miss), synchronization (of video and advertisements), and loops.

be synchronized at the cache before streaming the requested
video (with advertisements) to the users.

Despite significant progress in NFV-related research, exist-
ing approaches (e.g. ETSI [2]) cannot properly specify services
such as the described video streaming network service: First,
as stated by IETF [3], [4], common network services often
have loops and are bidirectional, i.e., some VNFs are traversed
multiple times. In the example of Fig. 1, requested videos
return to the users (bidirectional) and the cache is traversed
again when loading videos from the server. However, existing
approaches assume network services to have a relatively
simple, unidirectional structure. Network services with such
structures cannot be specified at all with current approaches
and thus cannot be efficiently deployed and managed by
management and orchestration (MANO) systems.

Second, current specification techniques are ambiguous as
they do not clarify whether incoming traffic at multiple inputs
of a VNF is synchronized or not. Synchronization can lead
to additional delays, which need to be considered during
orchestration to ensure QoS guarantees. Existing approaches
cannot express synchronization needs of traffic from multiple
connections, such as the synchronization of video and corre-
sponding advertisements at the cache in Fig. 1.

Third, current specification techniques are ambiguous re-
garding traffic characteristics and the assignment of outgoing
traffic to the outputs of a VNF, which are essential for orches-
tration. For example, they cannot distinguish the following two
cases: The cache in Fig. 1 sends out either a video stream
to the users or a request to the server, leading to either low
or high end-to-end delay, respectively. In contrast, the server
sends out VNF requests to both the video optimizer and the
ad insertion. Considering such individual VNF requests rather978-3-903176-15-7 c© 2019 IFIP
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than just the overall traffic volume is necessary to estimate
the VNF workload and required resources as well as the
end-to-end delay. This information is crucial for successful
orchestration, especially with QoS guarantees.

Finally, current models only consider VNF traffic processing
and the corresponding delays in very simplistic ways (if at all),
disregarding effects like queuing and stochastically distributed
processing delays. Hence, using current models can easily
lead to overly optimistic claims, not reflecting the actual QoS,
which can cause accidental SLA violations.

Creating a model that is generic and flexible enough to
specify complex services, yet precise and unambiguous, re-
alistically capturing all relevant characteristics, is highly non-
trivial. Our main contribution is to fill the identified gaps by
proposing such a modeling approach using Petri nets (Sec. III).
Petri nets are an established method to express and analyze the
behavior of distributed and concurrent processes (Sec. II) and
have been used successfully in related areas (Sec. VI). We also
propose a novel DevOps workflow that leverages the Petri net-
based model and our new open-source simulation compiler.
This allows service developers to tune their service efficiently
(Sec. IV) and enables operators or MANO systems to make
realistic QoS estimates before actual deployment (Sec. V).
This workflow is an important step to supporting network
services and use cases with strict QoS requirements.

II. BACKGROUND ON PETRI NETS

This section summarizes core ideas of Petri nets, as a basis
for the following discussions.

A Petri net [5] is a specific kind of directed, weighted, and
bipartite graph comprising two kinds of nodes: Transitions,
modeling active components, and places, describing passive
entities. Directed arcs connect either places to transitions or
transitions to places and typically model the flow of data in
the system, i.e., a transition consumes data (from places) and
produces data (on places). In graphical representations, places
are depicted by circles and transitions by boxes or bars.

More formally, a Petri net can be defined as a 5-tuple PN =
(P, T,A,W,M0) with
• P the finite set of places,
• T the finite set of transitions,
• A ⊆ (P × T ) ∪ (T × P ) the set of directed arcs,
• W : A→ N the weight function, and
• M0 : P → N the initial marking.

The sets of places and transitions have to be disjoint. The input
places P in

t of a transition t are all places with arcs going into
t. Similarly, the output places P out

t are all places to which t
has an outgoing arc.

In Petri nets, data is abstractly represented by tokens, which
reside on places. A marking describes how many tokens each
place currently contains, where the initial marking M0 is
the first marking. Depending on the current marking and the
weight function W , an activity can occur, i.e., a transition
consumes tokens from its input places and adds tokens at its
output places. Specifically, a transition t is enabled if each of
the input places p ∈ P in

t has at least W (p, t) tokens. If t is

Fig. 2. Example of a simple Queuing Petri Net.
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Fig. 3. Transition t changes the color (here: numerical values) of traversing
tokens as indicated by the arc expressions.

enabled, it can fire, removing W (p, t) tokens from every input
place p ∈ P in

t and adding W (t, p′) tokens to every output
place p′ ∈ P out

t . Note that transitions without input places are
always enabled and generate new tokens periodically.

For ease of modeling, this basic concept of Petri nets has
been extended to various high-level Petri nets. We propose to
use Queuing Petri Nets (QPNs) [6] for specifying and analyz-
ing network services. QPNs combine and extend stochastic [7]
and colored [8] Petri nets, supporting transition timing, token
colors, and queuing places. We describe each of these features
in the following, using the example in Fig. 2.

Transition timing: The set of transitions T is divided into
immediate and timed transitions. In Fig. 2, t1 is timed and
t2 and t3 are immediate. While immediate transitions fire
directly when enabled, timed transitions only fire after a
certain delay d(t). This delay can either be fixed or follow
a stochastic distribution (e.g., a uniform distribution with
d(t) = Uni(1, 2)). If two or more immediate transitions are
enabled, one of the transitions is selected randomly to fire
first. The firing weight f(t) determines the probability for each
transition to be selected.

Token color: To distinguish different tokens and to con-
vey additional information, tokens can take arbitrary values
(or tuples of values) called colors. When tokens traverse a
transition, the transition may manipulate the token color. In
QPNs, arc expressions specify how a transition changes the
color of traversing tokens. For each outgoing arc aout, E(aout)
defines how the token color is changed in relation to the color
of incoming tokens. In the example of Fig. 3, token colors
are numerical values, where the value of tokens from the arc
referenced as x is doubled at the first output. At the second
output, outgoing tokens have the aggregated value x + y of
incoming tokens from both inputs.

Queuing places: In a QPN, there are ordinary place and
queuing places. While tokens in ordinary places simply form
an unordered set, queuing places organize tokens in queues
with a certain access strategy (typically FIFO). When firing,
transitions take tokens from the front of the queues of their
input places and generate tokens at the end of the queues at
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their output places. In Fig. 2, p1, p3, p4 are ordinary places
and p2 is a queuing place.

III. SPECIFYING NETWORK SERVICES USING QPNS

To formally and accurately specify network services and
the behavior of their constituting VNFs, we use Queuing
Petri Nets (QPNs) as defined in Sec. II. In the following,
we describe how developers can model traffic characteristics
and systematically specify the behavior of the individual
VNFs, taking queuing, synchronization of incoming traffic,
processing, etc. into account. Based on the specified behavior
of the individual VNFs, we illustrate how to specify an overall
network service using the video streaming example of Fig. 1.
The resulting specification is useful for accurately analyzing
the network service’s behavior and performance (Sec. IV) and
can support MANO systems in selecting service placements
with better QoS (Sec. V).

A. Traffic characteristics

We use tokens to model generic units of traffic, e.g.,
representing VNF requests or corresponding responses. These
tokens can convey any kind of information in their token color,
e.g., the request type and the size of the request in bytes. When
a token is processed by a VNF, the VNF can behave differently
for different token colors and can modify the color as further
discussed in Sec. III-B4.

B. Network function behavior

Using QPNs, it is possible to clearly and formally define
the relevant behavior of VNFs that are involved in a net-
work service. Behavior like queuing, synchronization, traffic
processing, and different options for assigning traffic to the
outputs greatly impact the overall behavior of the network
service and should be considered during specification. In the
following, we describe each of these aspects and explain how
to specify them with QPNs. To set the relevant modeling
parameters, developers can use, e.g., previous monitoring
data [9] or systematic benchmarking tools [10], [11].

1) Queuing: When tokens arrive at a VNF and cannot
be processed immediately, they are queued. In QPNs, this
behavior can be specified using places at the inputs of a VNF.
Using queuing places, a specific queuing strategy is applied to
queue tokens before they become accessible to the VNF. We
assume FIFO (first in, first out) queuing, but other queuing
strategies can also be specified. The use of queuing places
ensures that tokens traverse VNFs in an ordered way and
captures potential queuing delays.

2) Synchronization: If a VNF has multiple inputs, it is
fundamental to distinguish whether the traffic from different
incoming arcs is synchronized or not. In the example network
service in Fig. 1, videos and corresponding advertisements
are synchronized at the cache to produce complete video
streams. The cache queues incoming videos until correspond-
ing advertisements are available (or vice versa) and can
be synchronized, possibly inducing additional delays. If the
traffic at different inputs is independent of each other, no

...
Input 2

Input 1

(a) Synchronization

...
Input 1

Input 2

(b) No synchronization

Fig. 4. QPNs can be used to easily specify whether the inputs of a VNF are
(a) synchronized or (b) not.

synchronization is needed and the tokens at different inputs do
not have to wait for each other. The distinction is important
as it affects the end-to-end delay and throughput of a network
service and, hence, has to be taken into account during
orchestration or evaluation.

To specify synchronization in a QPN, separate queuing
places are used for each input (Fig. 4a). Each of these input
places has an arc to the timed transition representing the VNF.
This indicates that the transition can only fire once there is a
token at each input place, i.e., the VNF synchronizes the traffic
from all inputs before processing it. Weight function W (p, t)
specifies how many tokens at each input place p are required
for synchronization, which are then consumed by transition t
(typically, one per input).

If no synchronization is required, a single queuing place can
be used for all inputs, i.e., the incoming arcs are connected to
the same input place (Fig. 4b). This place is directly connected
to the timed transition of the VNF. In doing so, incoming
tokens are collected in a single queue and can be processed
directly by the VNF independent of tokens from other inputs.
For VNFs with more than two inputs, it is also possible to
only synchronize some but not all inputs by combining the
different specification options.

3) Processing delay: In QPNs, the core element of a VNF i
is a timed transition ti that represents the processing of the
VNF. The processing delay of the VNF can be specified
by setting delay d(ti). This delay can represent the abstract
effort for processing (e.g., number of instructions) or the
actual processing time depending the underlying hardware.
The processing delay of a VNF can either be fixed or follow
a stochastic distribution. It can also be a function of the token
color, e.g., to express different processing times for different
request types.

4) Token color changes: As mentioned before, the token
color can represent multiple attributes of traversing traffic such
as request type (e.g., HTTP request) and size in byte. When
processing tokens, a VNF can change any attribute of the token
color such as the traffic volume. For example, WAN optimizers
compress traffic and reduce traffic volume, but BCH encoders
increase the volume [12]. In QPNs, the color of outgoing
tokens in relation to incoming tokens (possibly at multiple
inputs) can be expressed using arc expressions E.

5) Token number changes: In addition to the token color,
transitions also decide the number of outgoing tokens as
specified by weight function W . For example, multiple in-
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Fig. 5. One of two outputs is selected randomly according to the firing
weights of the immediate transitions (here, 70% and 30%).

coming tokens can be merged to a single outgoing token or
an incoming token can be replicated into multiple outgoing
tokens.

6) Selection of outputs: If a VNF i has only one output, its
transition ti is directly connected to the next VNF such that its
outgoing tokens directly enter an input place of the next VNF.
If a VNF has multiple outputs, it may want to send requests on
all outputs. For example, the server in Fig. 1 sends requests to
both the video optimizer and the ad insertion. For each output,
the number of tokens and their individual color is specified
using separate weights and arc expressions, respectively.

Alternatively, a VNF with multiple outputs may select a
subset of its outputs whenever sending out tokens, e.g., to
perform load balancing. Randomly selecting one output for
each outgoing token can be specified as follows in QPNs: An
additional place collects outgoing tokens and immediate transi-
tions are connected for each output. The firing weight f(t) de-
termines the probability for each of the immediate transitions
to fire first, assigning the token to the corresponding output.
Fig. 5 shows an (incomplete) VNF, where one of two outputs is
randomly selected. It is also possible to express other selection
methods such as round robin by adding auxiliary places and
transitions (for brevity, we skip details).

Finally, the selection of outputs may depend on the token
color, e.g., leading to varying selection probabilities of the
outputs. To specify such general behavior, immediate transi-
tions could be extended to support varying firing weights that
depend on the token color. Hence, in the most general case, a
VNF has a list of production rules that depend on the incoming
token color. Each production rule generates an outgoing token,
specifying the token color and the probability distribution for
the different outputs to be selected.

C. Complete network services

The presented comprehensive model allows a flexible, yet
clear and unambiguous specification of the behavior of individ-
ual VNFs inside a network service. Having all involved VNFs
specified formally using QPNs, they can easily be chained to
form a complete network service by connecting the outgoing
arcs of a VNF with the input places of the next VNF. In doing
so, any kind of structure can be specified, including uni- or
bidirectional network services and even network services with
multiple loops. When specifying network services with loops,
where some VNFs are traversed multiple times, additional
places and transitions can be added to separate the behav-
ior for each traversal (e.g., for upstream and downstream).
To specify parallel processing, e.g., for video optimization,

multiple copies of the corresponding VNF can be included in
the network service.

To represent sources (e.g., users or sensors) and specify how
they are connected to the network service, timed transitions
can be added in front of the first VNF. In QPNs, such timed
transitions without input places periodically generate tokens of
a certain color and at a certain rate. This rate can correspond to
fixed or randomly distributed inter-arrival times of tokens (e.g.,
forming a Poisson process), depending on the timing d(ts) of
the corresponding transition ts. To specify the generation of
tokens with different colors (e.g., different types of requests),
multiple transitions can be used.

After traversing all subsequent VNFs of a specific network
service, the tokens finally reach an destination, where the
tokens are consumed. In QPNs, such destinations are modeled
using places, collecting the incoming tokens. In bidirectional
network services, where traffic returns to the sources, the
places representing destinations are co-located with the tran-
sitions representing sources.

D. Example: Video streaming service

We illustrate the aforementioned possibilities of QPNs by
specifying the example video streaming network service of
Fig. 1. In the resulting QPN in Fig. 6, all places and transitions
belonging to one VNF are visually framed with a gray, labeled
rectangle (not part of the QPN notation).

To represent users requesting video streams, a transition
generates new tokens, here in exponentially distributed time
intervals with mean 1 second. The place at the user is the
destination of the network service and collects returning tokens
(i.e., the requested video streams). Other specifications are
also conceivable, e.g., where users only request new video
streams after receiving (and watching) previously requested
ones. This could easily be specified by connecting the place
to the transition.

Incoming user requests at the cache are queued at the
input place and then traverse the timed transition with delay
corresponding to a cache lookup. Depending on the success of
the lookup, requests reach one of the two immediate transitions
with a probability corresponding to the cache hit ratio. Here,
we assume a cache hit ratio of 70% and specify it using
firing weights. In case of a cache hit, the token traverses
the upper transition and returns to the user. When traversing
the transition, it changes the color of the token to represent
a returning video stream with much larger size than the
incoming request.

In case of a cache miss (here with probability 30%), the
token is forwarded via the lower immediate transition to the
queuing place of the server. After processing the incoming
request, the server transition generates two outgoing tokens of
different color: One token representing the raw video, going
to the video optimizer, and one token requesting ad insertion
from the corresponding VNF.

The video optimizer also delays traversing tokens corre-
sponding to its processing delay and modifies the token color
according to the optimized bit rate of the videos. At the same
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Fig. 6. Video streaming network service of Fig. 1 specified as QPN.

time, tokens traverse the ad insertion, where they are processed
and the outgoing tokens represent the selected advertisements.
The tokens then reach the two downstream inputs of the cache,
which are visually separated from the upstream direction by
a dashed line (not part of the QPN notation). At the cache,
the video and advertisements are synchronized. Only when
both tokens are available at the transition, it generates a
new outgoing token representing the complete video stream.
While this synchronization can introduce additional delay, it
is necessary to ensure that each video is matched with the
corresponding advertisements.

The example illustrates the capabilities of specifying com-
plex network services using QPNs. Each involved VNF and
its behavior is described clearly (e.g., synchronization at the
cache). The specification remains simple, using only few
places and transitions, especially for VNFs with just one
input and output such as the server. While the bidirectional
structure of the video streaming network service (containing
backward loops) cannot be expressed with current specification
approaches, it can easily be specified with QPNs.

IV. ANALYZING QPN-SPECIFIED NETWORK SERVICES

As QPNs are an established method, which has been used
for years, different tools are available supporting the specifi-
cation of QPNs. Among these tools, TimeNet 4.4 [13] stands
out since it supports most features for formally specifying
network services introduced in Sec. III, e.g., synchronization,
stochastically timed transitions, arbitrary token colors, and
firing weights. Developers can use its graphical user inter-
face (GUI) to specify their network services in a simple drag-
and-drop manner.

In theory, network services specified as QPNs can be
analyzed mathematically, e.g., to compute the steady state dis-
tribution or check for deadlocks. In practice, such theoretical
analysis is often intractable due to explosion of possible states,
leading to prohibitive complexity [14]. Hence, we focus on
efficient analysis of such network services through simulation.

Since TimeNet 4.4 and similar tools only have limited
analysis support, we provide a simulation compiler that gen-
erates simulation code based on the QPN specification for the
popular simulation framework OMNeT++ [15] (Sec. IV-A).
In Sec. IV-B, we illustrate some of the various analysis

possibilities in a case study. We provide the compiler software
and the analysis case study as publicly available open-source
project [16]. In doing so, we hope to encourage further
experimentation and contributions.

A. Generating discrete event simulations

To alleviate TimeNet’s limited simulation capabilities, we
introduce a compiler that processes TimeNet’s structured
XML-based storage format to automatically create simulation
programs for general-purpose simulation tools. As an example,
the compiler generates simulations for OMNeT++ 5.2 that re-
alize the same semantics as the QPNs specified with TimeNet.

Specifically, the compiler automatically generates modules
in OMNeT++ corresponding to the different places and transi-
tions. It then connects the modules to form a network service
as specified in TimeNet. The compiler considers all specified
characteristics like processing delay, queuing, synchronization,
and changes of token color by retrieving them from the XML
specification and automatically mapping them to configuration
files in OMNeT++. The generated files can be used directly
as an OMNeT++ project to accurately simulate and analyze
the behavior of the specified network service.

During the simulation, OMNeT++ measures and collects
various metrics such as end-to-end delay of tokens as well as
delay to each VNF, token color, processing delays, and queue
lengths. The compiler can easily be extended, e.g., to include
other measurements or to integrate generation backends for
other simulation frameworks or even emulation platforms.

B. Case study: Analyzing simulation results

After specifying a network service as QPN with TimeNet
and generating the corresponding simulation code, developers
can accurately and efficiently simulate the behavior of their
network service. OMNeT++ can simulate the behavior of the
network service over arbitrary time intervals and with different
random seeds, providing results with high level of confidence.
It also supports automated parameter studies, where different
configurations are tested automatically while performing fine-
grained measurements. The proposed workflow is highly auto-
mated and time-efficient. For example, the simulation code for
the video streaming network service of Sec. III-D generates
in milliseconds and its behavior over ten simulated hours
can be recorded in less than a second. Hence, developers
can quickly and easily test different possible configurations
or implementation options of their network service and the
involved VNFs.

For example, in the video streaming network service, the
cache hit ratio has a crucial influence on the service’s end-to-
end delay. For every cache miss, the requested video needs to
be loaded from the server and processed by the video optimizer
and ad insertion, leading to much higher end-to-end delay
than a cache hit. Simulating and analyzing different cache
configurations with different cache hit ratios enables a better
understanding of their impact on the end-to-end delay. Fig. 7
shows the average end-to-end delay in relation to different
cache hit ratios based on 30 simulation runs with random
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Fig. 7. Impact of different cache hit ratios on the average end-to-end delay.
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Fig. 8. Queue lengths of each VNF with increasing user request rate.

seeds. Here, the analysis shows that the average end-to-end
delay quickly decreases with an increasing cache hit ratio. This
is not surprising as a higher ratio of cache hits means that more
videos can be streamed directly from the cache with short end-
to-end delay. However, the figure also indicates that further
improving an already high cache hit ratio only minimally
reduces the end-to-end delay. Here, changing from a 65% to a
70% cache hit ratio yields the biggest improvement in average
end-to-end delay. Such insights help developers to recognize
which components benefit most from further improvements.

In addition to analyzing the impact of different configu-
rations, it is also useful to investigate possible bottlenecks
of a network service in order to ensure QoS even for high
load. To identify a bottleneck, the network service is simulated
multiple times with an increasing rate of user requests. As long
as the rate is not too high, incoming requests are processed
immediately and the VNFs’ queues stay fairly empty. Once
requests arrive at a higher rate than they can be processed,
the queues start filling up and the end-to-end delay quickly
increases. Fig. 8 shows the queue lengths of all involved
VNFs for an increasing user request rate. The figure shows
that, in contrast to the other VNFs, the server’s queue length
dramatically increases for higher request rates, which leads to
high end-to-end delays. This indicates that the bottleneck is at
the server since it cannot process higher request rates quickly
enough. Hence, developers may focus on a more efficient
implementation of the server to decreasing its processing time
and enable higher user request rates.

This case study illustrates some of the possible analy-

sis options when specifying network services as QPNs and
generating corresponding simulation code with the provided
compiler. Further metrics can easily be measured and analyzed
to enable a more in-depth analysis. Overall, the described
specification and analysis workflow supports developers in
understanding and improving their network services.

V. PLACING QPN-SPECIFIED NETWORK SERVICES

The expressive specification of network services as QPNs
and their extensive analysis capabilities also provide benefits
when deploying network services through a MANO system.
We envision a DevOps approach, in which both developers and
MANO systems profit from using QPNs (Fig. 9). After devel-
oping their network service, developers specify its behavior
using QPNs and analyze its performance through simulation
as described in Sec. III and Sec. IV, respectively (steps 1-3 in
Fig. 9). Once satisfied with the service, developers onboard it
to a MANO system such as OSM [17] for deployment (step 4).

When deploying a network service, the MANO system
needs to place the network service in the underlying substrate
network. This requires efficient mapping of the involved VNFs
to network nodes and interconnecting them along network
links. In Sec. V-A, we outline how MANO systems can
leverage the expressive specification of QPN-based network
services to calculate better, more informed placements (step 5).
In Sec. V-B, we argue that even without using the QPN speci-
fication for calculating improved placements, MANO systems
can still benefit from the accurate analysis possibilities of
QPNs to decide between different placement options (steps 6-
9). While we do not propose specific orchestration algorithms
for QPN-specified network services, we highlight the impact
and benefits of having a QPN specification available.

A. Leveraging QPN specifications for placement

Even though network services are often bidirectional or con-
tain loops [3], [4], typical service descriptors cannot specify
such network services. In contrast, QPNs allow to specify
network services with arbitrary structures (e.g., containing
loops). Hence, extending MANO systems to understand QPN-
specified network services opens the door to support placement
of realistic, bidirectional services with loops.

Even when placing network services without loops, using
the additional information of a QPN specification allows
a more informed placement decision. For example, using
QPNs, developers can clearly specify whether incoming traffic
from multiple VNFs is synchronized or not, whereas typical
descriptors are ambiguous. If the traffic from multiple VNFs is
synchronized, it can lead to additional synchronization delay,
which should be minimized during placement.

For example, in the video streaming service of Fig. 1,
videos and advertisements coming from the video optimizer
and ad insertion, respectively, are synchronized at the cache.
Hence, an orchestration algorithm should try to place these
VNFs such that both the video optimizer and the ad insertion
are equally close to the cache. In doing so, videos and
corresponding advertisements arrive at roughly the same time
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Fig. 9. Envisioned DevOps approach: Both developers and MANO systems
benefit from using a QPN-based specification.

at the cache, minimizing the synchronization delay. In contrast,
placing only the video optimizer (or only the ad insertion)
close to the cache would not help. For synchronizing videos
with advertisements, videos arriving at the cache would be
blocked until the corresponding advertisements arrive, leading
to additional delay.

Generally, MANO systems can leverage the QPN specifica-
tion of a network service to better understand its behavior and
anticipate the resulting QoS of possible placements. Placement
algorithms taking this information into account can compute
better placements and provide more realistic QoS estimates,
which is crucial for QoS-sensitive network services.

In practice, the QPN specification of a network service (e.g.,
the XML format produced by TimeNet [13]) may be refer-
enced in an additional, optional field within the typical service
descriptors (e.g., ETSI’s network service descriptor [2]). In
doing so, MANO systems supporting QPN specifications could
leverage the detailed specification while others could simply
ignore it and use only the standard information included in the
descriptors.

B. Leveraging QPN analysis for QoS estimates

Even without using specific placement algorithms that lever-
age the detailed information of QPN specifications, MANO
systems can still benefit from the powerful analysis options
of QPNs by estimating and comparing the QoS of possible
placements (e.g., regarding end-to-end delay).

Using a regular placement algorithm, a MANO system
can compute a set of promising placements based only on
the typical service descriptors (step 5 of Fig. 9). For each
of the possible placements, the MANO system creates a
matching QPN specification that represents the behavior of the
placed network service (step 6). To this end, it automatically
copies and adjusts the service’s QPN specification provided
by the developer. For example, it can add additional sources
or adjust their request rate by modifying the delay of the
corresponding timed transitions. Link delays between VNFs
placed at different network nodes can be specified by adding
a timed transition with the corresponding delay. Developing
a specific algorithm for automating the QPN specification of
placed services remains future work.

The QPN-specified placements can then be simulated auto-
matically as described in Sec. IV (step 7). This allows MANO

systems to check and evaluate the expected QoS based on the
specified behavior, taking stochastic processing delays, queu-
ing, synchronization, etc. into account. In doing so, the MANO
system can quickly simulate multiple promising placements
to compare their estimated QoS and select the best one for
deployment (step 8).

Hence, even without using the QPN specification when
computing a placement, simulating the behavior of the placed
service helps avoid overly optimistic QoS estimates, which
can lead to unexpected high delays and violations of QoS
guarantees. To complete the DevOps cycle, collected measure-
ments from the actual service deployment could be provided
as feedback to the developer (step 9). Comparing the actual
service behavior and QoS with the simulated one, allows to
iteratively improve and fine-tune the QPN specification and
the service itself.

VI. RELATED WORK

A. Related work on Petri nets

Similar to our approach of using QPNs to specify and ana-
lyze network services, QPNs have been used for specification
and analysis in related scenarios. Kounev and Buchmann [18]
discuss the benefits of QPNs compared to conventional mod-
eling paradigms such as queuing networks. In a case study,
they use QPNs to model a distributed e-business system with
concurrent system behavior, synchronization, and blocking,
which can also occur in network services. The specific model
of a e-business system cannot adequately model network
services in NFV as it misses the concept of interconnected
components like VNFs. Nevertheless, their research suggests
the applicability of QPNs to both hardware and software
aspects of a system such as physical and virtual network func-
tions. Also their accurate performance prediction encourages
the use of QPNs for specification and analysis.

In a follow-up paper [19], Kounev considers generic
component-based systems, describing the general high-level
workflow to specify such systems with QPNs. We mostly fol-
lowed the proposed workflow to specify network services with
QPNs. However, the paper focus more on technical, internal
aspects of the components (e.g., number of cores) rather than
considering how these components are connected. In contrast,
we also focus on distinguishing and clearly specifying how
VNFs are interconnected. We also consider more complex
token colors with multiple dimensions such as request type
and size.

In other related work [20], [21], the authors specify and
analyze the performance of data center networks using QPNs
(taking different SDN switching modes into account [21]).
The authors specify different kinds of network nodes as QPN
subnets, which is similar to our approach of specifying the
behavior of VNFs with multiple places and transitions. As
the authors focus on automatically generating QPNs from a
domain-specific language, they only consider three different
kinds of nodes (start, intermediate, and end nodes), where
all nodes of a type have the same structure. In contrast, the
structure of individual VNFs in a network service can vary
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greatly and cannot be predefined. Depending on how a VNF
deals with incoming traffic, processes it, and assigns it to
its outputs, various different specifications may be required.
Furthermore, the authors only consider simplistic token colors,
which mostly remain unchanged during execution. In our
approach, tokens represent various traffic attributes, which
are changed frequently and in a fine-grained way as tokens
traverse chained VNFs.

Overall, the discussed related work has many similarities
to ours, but none of the existing approaches takes the specific
characteristics of network services into account, e.g., intercon-
nected VNFs and changing traffic characteristics. Nevertheless,
the successful specification and analysis in previous work
illustrate the possibilities of QPNs, confirming their modeling
power and expressiveness.

B. Related work on NFV

Herrera and Botero provide a recent survey of different
resource allocation approaches in NFV [22]. For optimal
resource allocation and placement of network services, a clear
specification of the network services and involved VNFs is re-
quired, providing all relevant information. Models for resource
allocation typically assume network services to be unidirec-
tional and do not clearly specify their behavior, e.g., regarding
synchronization. In contrast, our specification technique using
QPNs allows a clear, precise, and formal specification of
the behavior of network services and involved VNFs, even
supporting bidirectional network services with loops.

Similar to our approach, several authors [12], [23], [24]
take changing volume of traffic into account when travers-
ing different VNFs. Additionally, our specification can take
arbitrary further traffic characteristics into account, e.g., the
request type.

Moens and De Turck [25] model hybrid scenarios with
VNFs and physical network functions. Our specification ap-
proach is also applicable to both virtual and physical network
functions. Luzelli et al. [26] consider fixed processing delays
for each VNF. We also consider processing delays but allow
both fixed delays as well as stochastically distributed process-
ing delays. We assume the distribution of processing delay
for each VNF to be known. Otherwise, Lei et al. [9] show
that the distribution can be obtained using machine learning.
Complementary to our proposed simulation-based approach
to achieve accurate QoS estimates, we present an emulation-
based framework in our previous work [27].

Outside the standardization approaches by ETSI [2] and
IETF [3], there has been very little work focusing on proper
specification of network services. Mehraghdam and Karl [28]
propose a YANG data model supporting a flexible order
of VNFs within a network service, i.e., the order of some
VNFs can be switched without affecting overall functionality.
We assume this order of VNFs to be already decided when
specifying a network service using QPNs in order to enable
a meaningful analysis of the specified network service. By
specifying multiple versions of a network service with dif-

ferent order of VNFs, each version could be analyzed and
compared, e.g., regarding end-to-end delay.

Other related work focuses on the specification of scalable
service templates [24], [29]. Such service templates describe
the network service structure and involved VNFs in a network
service in a general way without specifying a fixed number of
instances. Instead, the number of instances per VNF is scaled
dynamically according to the current load. This dynamic
scaling can help ensure good service quality and avoid waste
of resources. Network services specified with our specification
technique can also be interpreted as scalable templates, where
the behavior of each VNF instance is formally specified using
QPNs. When scaling out new instances, we can clearly specify
how traffic is balanced between multiple instances of the same
VNF or whether incoming traffic from multiple instances is
synchronized.

VII. CONCLUSION

In this paper, we presented a novel approach for specifying
and analyzing network services in the context of NFV. By
using QPNs, the behavior of a network service and constituting
VNFs can be specified in a simple, yet precise fashion. In the
specification, we take queuing, synchronization, probabilistic
behavior, and complex structures with loops into account. The
clear and formal specification with QPNs ensures unambiguity
and provides MANO systems with relevant information for
optimizing the placement of VNFs. By taking stochastically
distributed processing delays and potential queuing and syn-
chronization delays into account, our approach allows an
accurate analysis of a network service’s end-to-end delay
and other metrics of interest such as throughput or queue
lengths. Our proposed tool-based and partly automated work-
flow simplifies and accelerates the specification, simulation,
and analysis process. It allows developers to test different
service configurations and to detect possible bottlenecks in
order to further improve their services. We also outline how
MANO systems can use our approach to estimate and compare
the QoS of possible placements. In doing so, they can select
the best placement and provide QoS guarantees.

In future work, we plan to further investigate placement and
orchestration of QPN-specified network services. Specifically,
we intend to design placement algorithms that leverage the for-
mal QPN-based specification to provide better service quality.
Moreover, we plan to extend a MANO system to automatically
specify calculated service placements as QPNs, simulate them
to estimate the QoS, and deploy the best one. This would
enable the envisioned fully automated DevOps workflow of
specification, placement, and analysis.
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