
Machine-Learning Based Active Measurement
Proxy for IoT Systems

Wenqing Yan†, Christofer Flinta∗, and Andreas Johnsson∗†
∗ Ericsson Research, Sweden, Email: {christofer.flinta, andreas.a.johnsson}@ericsson.com

† Uppsala University, Department of Information Technology, Sweden, Email:{wenqing.yan, andreas.johnsson}@it.uu.se

Abstract—Network operators are accustomed to using IP-
layer active measurements for assessing end-to-end network
performance and expect that new technology, such as IoT, pro-
vides similar means. Unfortunately, active measurements in IoT
systems are associated with both energy and network overhead.

This paper presents and evaluates a novel active-measurement
proxy approach, based on machine learning, that enables re-
duction of active measurement overhead in IoT systems. The
paper describes the approach and its implementation. Further,
the approach is evaluated in a IEEE 802.15.4 testbed, and the
results show high-performing and accurate modeling.

Index Terms—Active Measurements, IoT, Machine Learning,
Wireless Networks, Network Management.

I. INTRODUCTION

Internet of Things (IoT) is an emerging technology that
comes with great opportunities in health care, digitalized
industry, and smart homes. However, to make IoT robust and
reliable many challenges are still only partly addressed, for
example network management and observability [1].

Wireless sensor networks (WSN), as part of an IoT system
exemplified in Figure 1, monitors and interacts with the
environment for different use-case driven purposes. A key
challenge is observing and managing the wireless devices
while keeping the operational expenditures and overhead low.

Telecommunication operators are accustomed to use Inter-
net Protocol (IP) active measurements, such as ICMP [2]
or TWAMP [3][4], for assessing observability in terms of
network performance. They expect that new technology, such
as IoT, provides a similar toolkit. Performance observability
enables anomaly detection, bottleneck localization and timely
mitigation, which lowers the costs for operations while pro-
viding a smoother service for the consumers.

In previous work [5] we presented an active measurement
tool based on TWAMP, for IoT devices running Contiki OS
and communicating over IEEE 802.15.4. The main contribu-
tion was a study on the relation between active-measurement
frequency and overhead; specifically power consumption, self-
induced loss, and round-trip time, see an example in Figure
2. Power, loss, and round-trip time (RTT), scaled from [0,8]
seconds, are small and stable for measurement frequencies
below 0.03Hz, marked by the dashed vertical line. Increasing
the frequency further results in an unacceptable overhead. Ac-
tive measurements in IoT systems must provide performance
observability while at the same time minimize overhead. From

Fig. 1. An IoT system includes devices, wireless sensor networks (WSN),
gateways (GW), a network infrastructure, operators, and customers. Active
measurements for network performance assessment, using e.g. TWAMP, may
cause overhead in the WSN.

Fig. 2. Power, loss, and RTT vs measurement frequency, originally from [5].

the figure it is evident that the active measurement frequency
should be limited.

This paper extends our work in [5] and contributes with a
novel proxy-based approach, using machine learning, aiming
at reducing the overhead of active measurements in WSNs
while keeping the observability. The proxy, residing in the
gateway (GW) in Figure 1, intercepts and drops measurement
packets, with a source address in the network infrastructure
and a destination address in the WSN. For each packet it
estimates the WSN contribution to, for example, the total
RTT. This contribution is the expected delay if the packet
had been forwarded from the gateway and reflected back
by the IoT device. The gateway waits during this estimated
time before returning an emulated measurement packet to its
origin. This paper specifically targets machine-learning models
for estimation of the WSN contribution to the performance
metrics. A testbed evaluation shows that the approach is
accurate and generalizes across multiple scenarios.978-3-903176-15-7 c© 2019 IFIP
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The rest of the paper is organized as follows. Section II de-
scribes background and related work. Section III describes the
measurement proxy and problem setting. Section IV describes
the experimental setup, and Section V provides details about
features and data traces. Section VI provides an evaluation.
Section VII provides conclusions and future work.

II. BACKGROUND AND RELATED WORK

The purpose of an IoT system is to monitor and/or control an
environment or process using multiple sensors and actuators.
Sensing and actuation produces business-critical data, and an
example of this is monitoring and control of smart cities
as discussed in [6]. However, from a network management
perspective there are other coveted data; including perfor-
mance metrics, errors, bottlenecks, and expected lifetime. For
example, the authors of [7] consider performance metrics for
an industrial IoT settings, which requires not only strict per-
formance boundaries but also real-time monitoring. Normally,
the observability of an IoT system in terms of performance
is reduced by energy constraints, limited sensor capabilities,
unreachable sensors, or limited performance. Hence, much
work has focused on predictions, inference, process models,
and measurements for increased observability.

Prediction-based examples include the work by Wolosz et
al [8] where the throughput of a WSN is modeled using mea-
surements of radio receiver signal strength indicators. Another
example is modeling round-trip time (RTT) as a linear function
of the distance [9]. A review of other predictive techniques
for IoT is available in [10]. Further, performance degradation
and fault localization techniques for WSNs are reviewed in
[11]. Note however that these methods do not relate to IP-
layer active measurements - one of the most commonly used
troubleshooting approaches in telecom networks.

The purpose of active measurements is to observe the net-
work health to enable proactive actions for optimization with
respect to an objective. Metrics of interest include availability,
one-way delay, RTT, delay variation, and loss. The basic idea
in this study is to use an active measurement protocol with
packet reflection, where measurement packets are sent from
a controller to a reflector which sends back response packets
to the controller. Time stamps are generated at the transmit
and receive events on both sides, as in IETF TWAMP [3][4]
or only at the sender side, as in IETF ICMP [2]. Ethernet
and MPLS networks have their own versions based on ITU-T
Y.1731 [21]. In TWAMP each probe packet is time stamped
4 times, enabling estimation of RTT, one-way delay if clocks
are in sync, and the reflector processing time.

In [14] Metongnon et al presents a light-weight approach for
active measurements in heterogeneous IoT networks consisting
of both IEEE 802.11 and IEEE 802.15.4 networks. They
discuss RTT measurements, and propose a device communica-
tion technology identification approach. Their work does not
target the balance between overhead associated with active
measurements and observability.

Active measurements have also been used for bandwidth
estimation in IEEE 802.15.4 networks. For example, an en-

hanced approach considering MAC layer overhead for accurate
estimation results is given in [19].

In [20] Steinert and Gillblad describe a method for adjusting
the active-measurement frequency based on the stability of the
measurement results. This technique mainly targets transport
networks with more stable characteristics, but can also be
applied in IoT systems to reduce overhead, for example in
combination with the approach described in this paper.

In previous work we presented a first implementation and
testbed evaluation of using standardized active measurements,
based on TWAMP, for IoT devices running the Contiki OS
[5]. Further, the paper also provided initial results on infer-
ence of active measurement results for localizing performance
bottlenecks. This is an example of an approach for increased
observability, often referred to as network tomography, which
has been extensively investigated in wired networks, e.g. in
[15][16], but is not well-understood for IoT systems.

This paper describes and evaluates a new approach aiming
at reducing the overhead associated with observability in
IoT systems, specifically using active measurements. A novel
proxy-based approach using machine learning reduces the
active measurement traffic. The machine-learning methods
used by the proxy are briefly reviewed below.

Lasso regression is an interpretable linear machine learning
approach performing both feature selection and regularization.
It was introduced by Tibshirani [22], and mitigates overfitting
with an additional regularization parameter, which tends to
result in a model with smaller linear coefficients.

A decision tree differentiates from linear methods by iter-
atively partition the feature space to find the best mapping
between features and targets. Examples of partitioning algo-
rithms include ID3, C5.0, and CART. Random forest [23] is an
ensemble learning method, trying to mitigate the decision tree
overfitting problem, by constructing multiple decision trees in
the training phase. The output of the model is based on targets
from the individual trees.

Data used for machine-learning often contains redundant or
irrelevant features [24]. This can result in longer training times,
overfitting, and reduced prediction performance. Feature selec-
tion, either based on human domain knowledge or statistical
methods, effectively overcomes many of these problems. In
this paper we specifically use the univariate feature selection,
along with manual feature selection.

In univariate feature selection, features are selected based
on a univariate statistical test. In this paper an F-test is used
to determine the linear effect from individual features on the
target output. Then the K top-ranked features are selected.
The manual feature selection is based on domain knowledge,
which is described in more detail in Section VI.

III. ACTIVE-MEASUREMENT PROXY USING MACHINE
LEARNING FOR REDUCED OVERHEAD

This paper proposes an active-measurement proxy approach
to overcome the overhead associated with measurements in
IoT systems, see Sections I and II. The main functionality of
the proxy is to intercept measurement packets, for example
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Fig. 3. Interaction between a TWAMP controller, the Active-Measurement
Proxy residing in the IoT gateway, and IoT devices. Instead of forwarding the
TWAMP packet, the proxy intercepts, predicts a delay or loss, and returns an
emulated TWAMP reflect packet.

Fig. 4. The main components of the active-measurement proxy. This paper
focus on the ML Model component.

based on TWAMP, sent from a controller towards a reflector
located in an IoT device in the WSN. Figure 3 shows an
example. A TWAMP packet is sent from the controller in
step 1. The packet is intercepted by the proxy, instead of
being forwarded to the reflector (as illustrated by the dashed
line). The proxy predicts a delay (or loss) corresponding to
the expected delay in the WSN, in step 2. Then, in step 3 the
proxy returns an emulated TWAMP reflect packet. The delay is
estimated using a machine-learning model, based on features
extracted from the WSN, such as radio signal quality, logical
and geographical topology, and sensor outputs. The machine-
learned model may also predict a probability for packet loss
for each packet. Packets are then dropped randomly based on
this probability, which means that no reflect packet will be
sent back by the proxy for those packets.

Section III-A formalizes the machine learning problem,
which is part of the main contribution of this paper, while
Section III-B outlines the proxy architecture.

A. Problem Setting and Modeling

Figure 1 shows the system under consideration. In an
IoT system scenario a set of devices are connected via an
IoT gateway to a network infrastructure. The devices are
assumed to execute a service S, such as collecting data via
a set of sensors, or affecting their environment through a set
of actuators. The service operates under strict service-level
agreements with requirements on network performance.

The network operator is interested in determining network
performance, using active measurements, in terms of metrics
such as RTT and packet loss, between two devices in the
sensor network, a device and the gateway, or a device and
a network node in the network infrastructure. However, as
discussed in Section I and II, active measurements are as-
sociated with overhead in terms of network load and power
consumption, and should therefore be limited if possible.

Hence, the goal with the approach presented in this paper
is to accurately predict the WSN contribution to network
performance metrics Yt at time t for a path including for
example the gateway and a specific device i, based on knowing
all or a subset of features Xt. In terms of machine learning,
the first problem is to find a model M : Xt → Ŷt, such that Ŷt
closely approximates Yt for a given Xt. The second problem
is to find a small subset of features Xt to reduce costs of
transferring feature data across the WSN. The model M can
then be implemented in the proxy, which is described in the
next subsection, and shown in Figure 4.

In this setting, features Xi for devices i = 1..s refer to
metrics related to characteristics of device i, including posi-
tion, signal quality, sensor output, and routing data. The device
statistics X is the concatenation of all device statistics, i.e.
X = [X1, X2, ..., Xs]. The exact means of feature collection
depends on the capabilities of the WSN. This work leverages
testbed properties as discussed in Section IV. However, for a
real scenario other mechanisms may be deployed, but this is
outside the scope of this paper.

As stated earlier, the network performance metrics Y i
t

corresponds to the WSN contribution to RTT and packet loss,
that is the performance between the gateway and a device i at
time t, or between two devices i and j.

The metrics X and Y evolve over time, influenced by the
network load, radio channel dynamics, the terrain, movements,
etc. We model the evolution of the metrics X and Y as time
series {Xt}, {Yt}, and {(Xt, Yt)}. Note that features X may
not be collected exactly at the same time as targets Y , for
example due to power saving strategies. In this case X is
binned over a time interval containing the time stamp of Yt.

B. Active-Measurement Proxy Architecture

The main components of the active-measurement proxy are
shown in Figure 4 and an example of interaction between
the TWAMP controller, the IoT gateway, and a reflector
implemented in an IoT device, is illustrated in Figure 3.

The active-measurement proxy consists of four compo-
nents. The TWAMP Interception component captures incoming
TWAMP packets with a destination in the WSN. Instead of
forwarding a measurement packet the component extracts data
such as destination address and packet size. The IoT feature
monitoring component collects data from the WSN, such
as radio signal quality, topological data, and sensor/actuator
results. This is shown as steps A and B in Figure 3. This paper
describes a testbed-oriented approach for collecting features,
see Section IV, but not a generic approach. The ML Model
component learns several models MY that predicts e.g. YRTT
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Fig. 5. Illustration of the placement of motes in the testbed, the TWAMP controller positions, and JamLab positions.

and Yloss between the gateway and the destination device,
using input from IoT feature monitoring and TWAMP Intercep-
tion component. Finally, the TWAMP Construction component
prepares and transmits a TWAMP reflection packet, with
proper delay and time stamps, emulating a response from
the IoT device at the destination address. If the ML Model
component predicts a loss, the packet is immediately dropped.

Note that the RPL root, which is a functionality of the
WSN routing protocol, can be co-located with the active-
measurement proxy, as shown in Figure 3, and discussed
further in Section IV.

Further note that the ML Model component may have to
re-train the machine-learning models due to changes in the
wireless environment. In this case new samples of Xt and Yt
are obtained by allowing a fraction of the TWAMP packets
through at the gateway.

IV. EXPERIMENTAL SETUP

A. Testbed

The EWSN’17 testbed [17] is used to evaluate the active-
measurement proxy approach with specific focus on the ML
component, discussed in Section III.B, and its predictive
capabilities with respect to RTT and packet loss.

The testbed is located at Uppsala University, Sweden, and
has 18 Tmote Sky Motes1. A mote (or device) is a tiny
but complete execution environment including CPU, memory,
radio, antenna, battery, and sensors for temperature, humidity,
and light. The mote placement is shown in Figure 5. They
reside in a building that constitutes a challenging environment
for wireless communication due to thick stone walls and
rebars. There is also an uncontrolled impact from faculty
members and students, and their wireless devices. The motes
communicate, for the experiments considered in this paper,
over IPv6 enabled by IETF 6LoWPAN [12], running on top
of IEEE 802.15.4. All motes in the testbed are configured to
run the default Contiki Radio Duty Cycle and MAC protocols,
which provides low-power communication and operation as
described in IETF 6LoWPAN. Further, IETF RPL [13] is used

1http://www.eecs.harvard.edu/˜konrad/projects/shimmer/references/tmote-
sky-datasheet.pdf

for wireless routing, which enables a dynamic three-shaped
routing topology relying on transient network performance.
The root of the tree is denoted RPL root. Figure 5 also show
positions for JamLab, further described below.

For the purpose of experiment administration and monitor-
ing, separate monitoring modules, connected to a administra-
tive central node over a fixed network, based on Raspberry Pi
3 are attached to each mote. The monitoring modules provide
capabilities for easy and large-scale reprogramming of motes,
power profiling, and high-precision event detection, without
interfering with the motes nor the wireless medium during
execution of experiments. They are connected to the motes via
USB to enable logging and reprogramming. The monitoring
modules are also connected to the mote via general purpose
input/output (GPIO) pins available on the integrated circuit.
The monitoring frequency is set to a default value of 62.5kHz,
which enables event detection with 16 µs resolution. Two
monitoring modules are connected to GPS time synchronized
clocks, marked with ”GPS” in the figure, enabling precise
and accurate time stamping of GPIO events. This capability
has been used to verify, with a positive outcome, the device
time stamping precision and accuracy. The monitoring module
also passively monitor voltage and current to calculate power
consumption per mote.

B. TWAMP Active Measurements for Contiki

We implemented IETF TWAMP Light [3] for a Contiki 3.0
environment2, the predominant OS for IoT devices, to enable
active measurements between the motes. The implementation
supports GPIO signaling upon packet receive and transmit
events, which allows the monitoring modules to detect events
occurring at the motes, and hence we can accurately calculate
RTT using the monitoring-module clock, in addition to the
RTT calculation using device clocks.

The same code runs on all motes, but executes along
different paths depending on the mote identifier, that is whether
the mote should act as a TWAMP controller or reflector.
The TWAMP controller is placed on one of the motes
[125, 126, 134], see Figure 6. There can only be one controller

2http://http://www.contiki-os.org/
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TABLE I
SELECTION OF REPRESENTATIVE EXPERIMENTS AND PARAMETERS.

Exp. ID TWAMP Ctrl. Exec. Time JamLab pos.

1 #125 144h -

2 #126 144h

3 #134 144h -

4 #126 24h Jstart

5 #126 24h Jstop

6 #126 7h Jstart → Jstop

for a given experiment. Hence, there is always 1 controller and
17 reflectors in the testbed for a given experiment.

The testbed is configured to co-locate the TWAMP con-
troller and the RPL root functionality to emulate the gateway
between the WSN and the network infrastructure, as exempli-
fied in Figure 1. That is, the testbed is used to execute TWAMP
measurement experiments to generate data traces Xt and Yt
for the WSN only.

The TWAMP controller conducts measurements towards
the reflectors in a round-robin fashion. The probe-packet
interval, that is the time between two consecutive measure-
ments for a controller-reflector pair, is set to 6 seconds to
avoid measurement interference. The value is found through
experimentation and is valid for this specific testbed. Further,
for each controller-reflector pair the measurement is repeated
5 times (found experimentally) to enable result averaging.

The MTU for the network is 127 bytes, and to avoid
packet fragmentation the probe-packet size is set to 100 bytes,
including the TWAMP header and payload, and IPv6/MAC
headers and preambles.

C. Radio interference

The testbed is mounted in a lively radio environment with
several sources of noise and interference, as mentioned above.
However, in order to create additional and partly controlled
scenarios for radio interference we utilize JamLab [18], which
is a system that can record and playback interference patterns
as well as generate customizable and repeatable interference
in real-time. JamLab is executed on a separate Tmote Sky
device. Its position is changed manually.

Three scenarios with JamLab are considered; a JamLab
mote at position Jstart, at position Jstop, and moving the
JamLab device from Jstart to Jstop at discrete times, with
intermediate positions Ji, see Figure 5. The JamLab device
generates interference by emulating video streaming, at a high
transmission power. No other traffic, except for TWAMP pack-
ets, is carried over the WSN testbed during the experiments.

We choose to inject noise only at the radio layer, mainly
because we do not expect large volumes of cross traffic in a
commercially deployed IoT network. Rather, we expect mainly
controlled application traffic between devices and gateway.

D. Experiments

This paper reports on a selection of representative exper-
iments, summarized in Table I, with the aim of evaluating
the active-measurement proxy approach, with focus on the
performance of the ML Module. TWAMP measurements are
executed in a variety of scenarios to create Xt and Yt time
series for training of a model M .

Experiments 1-3 run for approximately 6 days each, and
are executed without JamLab, and serve as a baseline. They
consider three logical wireless topologies; two multi-hop trees
with TWAMP controllers co-located with the RPL root on
motes 125 (to the left in Figure 5) or 134 (to the right), and
one star-like topology with the TWAMP controller and RPL
root at mote 126 (in the middle of Figure 5).

In experiment 4 and 5 the JamLab device is stationary.
Now the TWAMP controller and RPL root resides on mote
126, since such star-like topologies are common in industrial
settings. These experiments runs only for 24h each, to limit
disturbance from JamLab in the building hosting the testbed.

The last experiment, with identifier 6, considers a scenario
where the JamLab device moves from position Jstart to Jstop
via the intermediate positions shown in Figure 5. The JamLab
device stays at each position for 1h. This experiment lasts for
7h, also in order to limit disturbances.

V. DEVICE FEATURES X AND TARGETS Y

Data traces in terms of features X and targets Y are
generated through a set of experiments using the testbed, as
described in Section IV. This section describes and explores
the features and targets in detail.

A. Device Features X

All features X are described below, and summarized in
Table II for completeness. Note that the features are collected
using the Raspberry Pi 3 monitoring modules, as described
in Section IV, which eliminates any impact on radio network
performance, in terms of RTT and loss.

The first category of features describe the current state of
the devices in the WSN, their position and configuration, time,
and radio signal quality. They are described below.

• Geographical coordinates (xcon, ycon) of the TWAMP
controller node. The features are approximated by manual
inspection of a map.

• Geographical coordinates (xref , yref ) of a TWAMP re-
flector node. The features are approximated by manual
inspection of a map.

• Euclidean distance D between the TWAMP controller
and a TWAMP reflector node, calculated using respective
coordinates.

• Time of day T is a categorical feature with a granularity
of 4 hours, which is considered enough for the purpose
of this paper. This feature is engineered from timestamps
in each TWAMP packet.

• Weekday is defined as a categorical feature W ∈ [0, 6],
and is derived from the same timestamps.
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TABLE II
FEATURES X COLLECTED FROM THE TESTBED.

Features Description

xcon, ycon Position of the controller

xref , yref Position of each reflector

D Distance (m) between controller and each reflector

T Time of day, a categorical feature ∈ [0, 5]

W Weekday, a categorical feature ∈ [0, 6]

IPcon, IPref IPv6 addresses for controller and reflector

RCH Radio Channel, an ordinal feature ∈ [1, 16]

RLQI LQI measured at the controller

RRSSI RSSI measured at the controller

r1, ..., rk−1, rk RPL rank for k motes

n1, ..., nk−1, nk Number of neighbors for k motes

L1, ..., Lk−1, Lk Light radiation registered by each mote

• IP con and IP ref corresponds to the IP addresses of the
TWAMP controller and reflector.

• Wireless transmission channel, RCH , corresponding to
one of the 16 available channels defined in the IEEE
802.15.4, 2.4GHz band.

• Received Signal Strength Indicator, RRSSI , measured at
the TWAMP controller. This metric is a measurement of
power present in a received radio signal, and gives an
indication of the radio environment at the gateway.

• Link Quality Indicator, RLQI , measured at the TWAMP
controller. This is a metric of the current quality of
the received signal. That is, it provides an estimate of
the difficulty of demodulation, and gives an additional
indication of the radio environment at the gateway.

Further, topological information is collected during the
experiments. As described in Section IV the network uses
RPL for routing. Each node maintains a neighbor list with the
information about the number of neighbors, the rank value of
each neighbor, as well as the rank value of the node itself.
The following features are extracted.

• Rank ri for a device i is a topological property of the
device that depends on current radio conditions and its
logical position. The rank determines how packets are
routed through the WSN.

• Number of neighbors ni for a mote i corresponds to
the number of motes within radio reach for that specific
device.

In addition to the above features the testbed also collects
light radiation statistics Li from each mote i. It is sampled for
every TWAMP measurement.

B. Targets Y

The target metrics Y corresponds to performance metrics
observed between the TWAMP controller, residing at the
gateway, and a TWAMP reflector on an IoT device. The
target metrics are obtained through active measurements. This

Fig. 6. Representative examples of RTT and loss density functions. The
graphs are generated from experiment 3 for a selection of motes.

paper specifically considers two targets, namely round-trip
time YRTT and packet loss Yloss.

Representative density functions for YRTT and Yloss are
illustrated in Figure 7. The plots correspond to experiment 3,
where the TWAMP controller is located at mote 134. For the
purpose of illustration the figure only display density functions
for a selection of motes; where mote 135 is closest, 132
and 126 on similar distances but different positions, while
mote 125 represents a greater controller-reflector distance.
The density functions are generated using the kernel density
estimation function in Scikit-Learn.

It is striking how both YRTT and Yloss show completely dif-
ferent characteristics compared to traditional wired networks.
For example, RTT samples above 1 seconds are very common,
for most motes. Further note that the density function average
value and variance seems to increase with the distance between
the TWAMP controller and reflector, which is also expected.

Note that Yloss is defined as the fraction of lost TWAMP
measurement packets during a 20 minute time interval, which
is supported by industry standards such as ITU-T Recommen-
dation Y.1540. This results in maximum 200 samples (Xt, Yt)
per 20 minute interval, assuming a 6 second interval between
measurements, as described in Section IV. The 20 minute
interval is needed for collecting enough samples per device
for accurate performance modeling.

The other experiments show similar distributions for the tar-
get metrics, however they are omitted due to page limitations.

VI. EVALUATION

The evaluation in this paper focuses on the performance of
several machine-learning models for RTT and loss given data
from the experiments described in Section IV.

The evaluation metric reported in this paper is the Nor-
malized Mean Absolute Error, defined as NMAE =
1
ȳ ( 1

m

∑m
t=1 |yt − ŷt|), where ŷt is the model prediction for

the measured performance metric yt, and ȳ is the average of
the samples yt of the test set of size m. The train and test split
is 90/10. Further, the standard deviation is also reported for
each model. Other evaluation metrics such as MAE, MSE, and
NMSE showed similar results. Note that each model is tuned
with respect to its hyper-parameters to lower the NMAE.

Each model is evaluated using three feature sets. XAll is
self-explanatory and contains all features discussed in Section
V-A. Further, the set Xuni contains features selected from
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TABLE III
PREDICTION RESULTS FOR RTT AND LOSS MODELS IN SCENARIOS WITHOUT JAMLAB.

Data source Features RTT Loss

RF NMAE (%) σ LR NMAE (%) σ RF NMAE (%) σ LR NMAE (%) σ

Experiment #1,
TWAMP Controller
at mote 125

XAll 10.5 0.661 44.5 1.15 17.7 0.795 86.6 2.64

Xuni 9.88 0.853 46.2 1.47 15.8 1.08 88.4 1.48

XRank 6.87 0.464 66.8 1.42 13.1 0.781 98.5 2.68

Experiment #2,
TWAMP Controller
at mote 126

XAll 7.89 1.24 46.8 1.37 22.5 0.804 102 8.23

Xuni 5.93 1.19 46.7 1.69 16.9 2.30 130 6.15

XRank 6.52 0.428 53.5 1.40 16.8 2.29 136 7.98

Experiment #3,
TWAMP Controller
at mote 134

XAll 8.49 0.288 45.4 1.10 14.9 0.469 82.3 1.44

Xuni 8.16 0.323 47.3 0.653 15.2 0.958 83.0 1.65

XRank 6.78 0.289 71.1 1.31 12.4 0.674 100 1.82

using univariate feature selection. A study of feature impor-
tance shows that rank, Euclidean distance, and geographical
coordinates are dominating. Finally, the XRank feature set
contains ri, for all i.

Scenarios without JamLab are discussed in Section VI.A
while Section VI.B. shows the impact from JamLab. The
scenario configurations are given in Table I.

A. Prediction results for scenarios without JamLab

This section discusses model accuracy for RTT and packet
loss in scenarios without a JamLab device, corresponding
to experiments 1 - 3 in Table I. That is, we would like to
determine the NMAE for a model M : Xt → Yt, for RTT and
packet loss, respectively.

Results for prediction of YRTT are located in the left part
of Table III3. The table shows three main rows corresponding
to experiments 1 - 3. Two machine-learning approaches are
used to build the prediction models, namely lasso regression
(LR) and random forest (RF), briefly reviewed in Section II.
Each model is trained and evaluated using 3 different feature
sets based on X , see above.

The results for RTT show a set of interesting phenomenons.
First, the NMAE for the linear models range from 44.5% to
71.1% and thus they can not capture the mapping between
Xt and YRTT . Random forest on the other hand has lower
NMAE across all the scenarios. Lowest NMAE is obtained
using the rank features XRank in experiment 1 and 3, while
the univariate feature set Xuni produces an NMAE of 5.93%
in experiment 2. Most likely, the additional features in XAll

introduce noise that reduce model performance. Finally, note
that the models are capable of predicting RTT with low NMAE
irrespectively of the logical network topology, given by the
location of the TWAMP controller/RPL root.

The results for modeling Yloss, over a 20 minute time
interval, are shown in the right part of Table III. Similarly
to RTT, the linear-model approach is not complex enough to

3Note that the target YRTT is averaged over 5 measurements in order to
reduce noise. Without such averaging the NMAE, using random forest, is
approximately 60% across all scenarios and experiments.

capture the mapping between Xt and Yloss. Random forest
models prove useful again, with lowest NMAE using the
XRank feature set, ranging from 12.4% to 16.8%.

Generally, the models for loss have a higher NMAE com-
pared to RTT. Averaging packet loss over longer time intervals,
for example 60 minutes, reduces the NMAE to approximately
7%, which is comparable to the RTT models. That is, more
samples per loss interval increases the model performance.
However, the loss interval, measurement frequency, and over-
head needs to be balanced for a specific deployment scenario.

It is clear from the results above that linear models do
not perform well. An explanation for this is the observed
low linear correlation between target Y and XRank, which
is the dominating feature set in most experiments. The rank
describes the topological structure and performance of the
wireless network and is defined as the accumulated sum, over
a number of hops, of the inverse of the link-loss probability.
Hence, it can be assumed that Yloss is a non-linear function of
the dominating XRank. Further, since the link-loss probability
reflects the channel noise, which can increase the transmission
time in 802.15.4 networks, it is also assumed that YRTT is a
non-linear function of rank.

B. Prediction results for scenarios with JamLab

This section reports on prediction accuracy for RTT and
loss models in scenarios with a JamLab device in different
positions in the testbed, corresponding to experiments 4 - 6 in
Table I. The question is identical - what is the NMAE for a
model M : Xt → Yt, for RTT and packet loss, respectively.

In the previous subsection it became evident that a linear
approach does not capture the mapping between Xt and Yt.
Hence, this subsection only present results from using random
forest. Table IV shows results from modeling RTT and loss
in three different JamLab scenarios, two with a stationary
JamLab device and one where it moves.

For the two stationary JamLab scenarios it is clear that the
lowest RTT model NMAE values are obtained using using
univariate feature selection; ranging from 7.85% in experiment
2 up to 8.65% in experiment 1. The NMAE increases to
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TABLE IV
PREDICTION RESULTS FOR RTT AND LOSS MODELS FOR SCENARIOS WITH JAMLAB.

Data source Features RTT Loss

RF NMAE (%) σ RF NMAE (%) σ

Experiment #4,
TWAMP Controller
at mote 126, JamLab
at Jstart

XAll 11.9 3.85 16.5 2.65

Xuni 8.65 3.64 12.4 2.49

XRank 9.63 3.60 13.4 4.35

Experiment #5,
TWAMP Controller
at mote 126, JamLab
at Jstop

XAll 9.84 1.12 19.1 3.83

Xuni 7.85 1.97 15.8 2.35

XRank 8.78 1.90 16.2 3.92

Experiment #6,
TWAMP Controller
at mote 126, moving
JamLab

XAll 15.2 2.94 16.6 3.63

Xuni 13.3 2.31 16.5 6.49

XRank 15.0 2.35 18.6 3.50

approximately 13% in the moving JamLab scenario, for the
univariate feature set. Scenario complexity is the main reason
for increased NMAE for RTT models, compared to the results
in Table III. An additional reason is the lower number of
samples in all JamLab experiments, which punishes the model
performance. This is even more evident in the results from
experiment 6. This corroborates with the well-known fact that
the number of samples is correlated with model performance.

Table IV also shows corresponding results for modeling of
Yloss. Again, the NMAE is higher for loss prediction compared
to RTT model results. For example, the NMAE for experiment
4, with JamLab at position Jstart, for a loss model using
univariate feature selection is 12.4% compared to 8.65% for
the YRTT model.

The most challenging scenario for loss prediction is exper-
iment 6, with a moving JamLab device, where the NMAE is
16.5% using the Xuni feature set. Averaging over longer time
intervals decreases the NMAE as discussed above, while also
decreasing the utility of the model.

It is clear from the results above that the feature set XRank

provides the lowest NMAE for scenarios without JamLab,
and Xuni the lowest NMAE with JamLab activated. An
investigation reveals that features such as position (including
xcon, ycon, xref , yref , and D) and time T increases in impor-
tance in the JamLab scenarios. These features get included in
the univariate feature selection approach and hence reduces
the NMAE. Most likely, these additional features provide
information regarding the JamLab position and its behavior.

Finally a note on standard deviation for the JamLab scenar-
ios, which is generally higher in Table IV compared to Table
III, due to the increased complexity when JamLab is activated.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a novel active-measurement proxy
approach, based on machine learning, aiming at reducing the
overhead associated with active measurements in IoT systems,
with focus on wireless IEEE 802.15.4 networks. The main
functionality of the proxy is to capture each measurement
packet, and instead of forwarding it the proxy emulates a

measurement-packet response, and sends it back after a delay
corresponding to an estimated delay in the wireless network.
The delay is estimated using machine learning and features
such as radio quality, distance, and routing properties.

The paper described a Contiki OS implementation of the
IETF TWAMP standard for active measurements, which was
deployed in a real-world testbed to generate data traces in a
variety of scenarios. Machine-learning models for estimating
the delay and loss, originating from the wireless network, were
then developed and evaluated.

The paper shows that the proxy approach is applicable in
all considered scenarios. The RTT and loss were predicted
with a normalized mean absolute error close to 7% and
14%, respectively. The most complex scenario, with added
interference from a moving jammer device, increased the
error for RTT prediction to approximately 13%, whereas loss
prediction only shows a slight increase to 16%.

Furthermore, random forest was proven to be superior over
linear machine-learning models due to non-linearity in the
dominating features. A study of feature importance indicated
that routing data is most valuable for high-performing models.
In more complex scenarios even lower errors were achieved
when including device position and time-related features.

Future work includes implementation and evaluation of the
whole proxy functionality, and development of new models
for improvement of predictive capabilities. Further, new light-
weight mechanisms for feature collection in the wireless
network will be studied.
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