
An Architecture for Multimedia Delivery Over
Service Specific Overlay Networks

Ibrahim Al-Oqily1, Ahmed Karmouch1, and Roch Glitho2

1School of Information Technology & Engineering (SITE), University Of Ottawa, PO Box
450, Ottawa, ON, K1N 6N5, Canada. {ialoqily, karmouch}@site.uottawa.ca.

2Ericsson Canada, 8400 Decarie, Montreal Quebec, Canada, H4P2 N2,
roch.glitho@ericsson.com

Abstract. Overlay networks are becoming widely used for delivering content,
since they provide effective and reliable services that are not otherwise available.
However, overlay management systems face the challenges of increased com-
plexity and heterogeneity due to the numerous entities that are involved in realiz-
ing overlay services. We believe that autonomic management is a key solution for
dealing with the complexity of overlay management. In this paper, a management
architecture for service specific overlay networks is proposed. Overlays are
viewed as a dynamic organization for self-management in which self-interested
nodes can join or leave according to their goals. The objective of this architecture
is to create autonomic overlays that are driven by different levels of policies. Pol-
icies are generated at different levels of the autonomic management hierarchy and
enforced on the fly. The proposed autonomic management dynamically adapts the
behavior of the overlay network to the preferences of the user, network, and ser-
vice providers. A description of our novel architecture that addresses these chal-
lenges is presented.

Keywords— Autonomic Computing, Adaptive SSONs, Network Management,
Overlay Networks, Policies.

1 INTRODUCTION

Overlay networks are a virtual topology on top of a physical topology, and they
are becoming more popular due to their flexibility and their ability to offer new
services. Recent research in this area has focused on designing specific overlay
networks to deliver media in heterogeneous environment. For example, SMART
[1] was developed in the context of the Ambient Network project [2] in order to
optimize media delivery services by moving control and resource allocation to the
network itself, since it has more knowledge about topology and network proper-

ties. SMART creates a Service Specific Overlay Network (SSON) for each media
delivery service or group of services. SSON construction uses network side func-
tions, called MediaPorts (MPs). MPs, thereby, provide the flexibility to modify the
content and the services, such as caching, adaptation and synchronization [3].

A service delivered to a customer by a SP is usually formed from a composi-
tion of different services. Some services are basic in the sense that they cannot be
broken down further into component services, and usually act on the underlying
resources. Other services are composed of several basic services. Every service
consists of an allocation of resource amounts to perform a function. However,
with the increasing demands for QoS, service delivery should be efficient, dynam-
ic, and robust. Current manual approaches to service management are costly and
consume resources and IT professionals’ time, which leads to increased customer
dissatisfaction. With the advent of new devices and services the complexity is fur-
ther increased.

Given the multiple sources of the heterogeneity of networks, users, and applica-
tions, constructing SSONs in large distributed networks is challenging. Media
content usually requires adaptation before it is consumed by media clients. For ex-
ample, video frames must be dropped to meet QoS constraints. Other examples are
when a client with a PDA requires a scale down for a video, or when content must
be cached to be viewed by a mobile user. In addition to adaptation, new users
may request to join or leave the overlay, a network node may fail, or a bottleneck
may degrade the SSON’s performance. Consequently, the overlay must be adapted
to overcome these limitations and to satisfy the new requests. It is obvious that
with a large number of overlays, the management task becomes harder to achieve
using traditional methods. Therefore new solutions are needed to allow SPs to
support the required services and to focus on enhancing these services rather than
their management.

The concept of autonomic computing (AC) [4] is proposed by IBM to enable
systems to manage themselves through the use of self-configuring, self-healing,
self-optimizing, and self-protecting solutions. It is a holistic approach to computer
systems design and management with the goal to shift the burden of support tasks,
such as configuration and maintenance, from IT professionals to technology.
Therefore, AC is a key solution for SSON management in heterogeneous and dy-
namic environments.

Establishing a SSON involves 1) Resource discovery to discover network-side
nodes that support the required media processing capabilities. 2) An optimization
criterion to decide which nodes should be included in the overlay network. 3)
Configuring the selected overlay nodes, and 4) Adapting the overlay to the chang-
ing network context, user, or service requirements, and joining and leaving nodes.
In AC, each step must be redesigned to support autonomic functions. In other
words, in Autonomic Overlays (AO), each step imposes a set of minimum re-
quirements. For example, the resource discovery scheme should be distributed and
not rely on a central entity, dynamic to cope with changing network conditions, ef-
ficient in terms of response time and message overhead, and accurate in terms of
its success rate. The optimization step is mapped into a self-optimization that se-

lects resources based on an optimization criterion (such as delay, bandwidth, etc.)
and should yield the cheapest overlay, and/or an overlay with the least number of
hops, and/or an overlay that is load-balanced, and/or a low latency overlay net-
work, and/or a high bandwidth overlay network. The configuration of the selected
overlay nodes in a given SSON is mapped into a self-configuration and self-
adaptation. Self-configuring SSONs dynamically configure themselves on the fly.
Thus they can adapt their overlay nodes immediately to the joining and leaving
nodes and to the changes in the network environment. Self-adapting SSONs self-
tune their constituent resources dynamically to provide uninterrupted service. Our
goals are to automate overlay management in a dynamic manner that preserves the
flexibility and benefits that overlays provide, to extend overlay nodes to become
autonomic, to define the inter-node autonomic behavior between overlay nodes,
and to define the global autonomic behavior between SSONs.

This paper proposes a novel management architecture for overlay networks.
Our contributions are twofold. First we introduce the concept of Autonomic Over-
lays (AO), in which SSONs and their constituent overlay nodes are made auto-
nomic and thus become able to self-manage. Second, autonomic entities are driven
by policies that are generated dynamically from the context information of the us-
er, network, and service providers. This ensures that the creation, optimization,
adaptation, and termination of overlays are controlled by policies, and thus the be-
haviors of the overlays are tailored to their specific needs.

The paper is organized as follows. Section 2 discusses the related work. Section
3 introduces the proposed autonomic overlay architecture. Section 4 discusses the
experimental evaluation. Finally, in Section 5, we draw our conclusion and sug-
gest future work.

2 RELATED WORK

The proposed autonomic overlays draw upon IBM’s vision and blueprint [7]. The
work presented in this paper is concerned with all possible phases of the service
delivery in SSONs – from the instant of requesting a service to the instant of ter-
minating it. Thus we present an integral approach to SPs wishing to deliver servic-
es over their infrastructure.

IBM identified the complexity of current computing systems as a major barrier
to its growth [5]. The solution to this problem lies in more intelligent systems
called autonomic computing (AC). AC simplifies and automates many system
management tasks traditionally carried out manually. Systems that manage them-
selves are able to adapt to changes in their environment in accordance with busi-
ness objectives. The result is a great savings in management costs and IT profes-
sionals’ time. This will free the latter to focus on improving their offered service
rather than managing them manually. Some of the main scientific and engineering
challenges that collectively make up the grand challenge of autonomic computing

were outlined in [6]. Also, a set of characteristics required by AC were identified
and explained in [7].

According to the IBM vision [4], an AC system is a system that knows itself
and its environment, configures and reconfigures itself under varying and unpre-
dictable conditions, heals itself, provides self-protection, and keeps its complexity
hidden. Although the IBM vision is a holistic approach to designing computer sys-
tems, much of the research in this field focuses on a few specific aspects of this
vision.

Autonomic communications were proposed in [8]. It has a similar concept to
IBM’s autonomic computing. The difference is that, in the former, the focus is on
individual elements of the network, how their behavior is learned and altered, and
how they interact with other elements. Our work focuses on service specific over-
lay networks; thus, the interaction between the network and computing entities is
based on a service request/offer concept in which each entity is responsible for its
internal state and resources. An entity may offer a service to other entities. The of-
fering entity responds to a request based on its willingness to provide a service in
its current state. A generic architecture for autonomic service delivery was pro-
posed in [9]. It defines a resource management model based on virtualization.
However, it is service-independent, and is unlikely to achieve the specific QoS re-
quirements for each service dynamically without human intervention. A model for
dynamic fault tolerance technique selection for grid work flow, that allows the
system to configure its fault tolerance mechanism, was developed in [10].

Policy-based management for computer systems has also been studied. Pattern
classification and clustering techniques that support online decision making and
incremental learning in autonomic systems were proposed in [11]. The use of pol-
icies to configure autonomic elements to enforce the required behavior in an
Apache web server was presented in [12]. A set of UML-based models were de-
veloped and used in [13] to specify autonomic properties and to deploy policies as
an executing system based on composition and model modification. A policy-
driven model based on multi-agent systems was also proposed in [14]. In their
model, Web services are represented as agents and agent behavior is controlled us-
ing high level policies. A mapping of biological systems to PBMS was introduced
in [15]. Their system is hierarchical and relies on mechanisms for organism regu-
lation, which supports self-management at different levels of the hierarchy. Hu-
mans in an organization thus specify policy at a level of abstraction that reflects
their specific needs. The difference between our work and all these approaches is
that the above approaches consider a particular service to which their design is ap-
propriate. In addition, policy generation is not a fully automatic process and hu-
man intervention is still needed.

Projects such as Service Clouds [16], Autonomia [17], GridKit [18], Auto-Mate
[19], and Unity [20] are using the autonomic concept in different ways. Service
Clouds provides an infrastructure for composing autonomic communication ser-
vices. It combines adaptive middleware functionality with an overlay network to
support dynamic service reconfiguration. Autonomia provides dynamically pro-
grammable control and management to support the development and deployment

of smart applications; primarily, it achieves the self-healing property for failed
entities. GridKit proposes a middleware that offers a consistent programming
model across different communication types. AutoMate enables the development
of autonomic Grid applications by investigating programming models, frame-
works, and middleware services that support autonomic elements. Finally, Unity
designs both the behavior of individual autonomic elements and the relationships
that are formed among them in order to create computing systems that manage
themselves. A detailed survey on autonomic computing is available in [21].

3 AUTONOMIC OVERLAYS

To tackle the complexity of overlay management, each SSON is managed by an
SSON Autonomic Manager (SSON-AM) that dictates the service performance pa-
rameters. This ensures the self.* functions of the service. In addition to this, over-
lay nodes are made autonomic to self-manage their internal behavior and their in-
teractions with other overlay nodes. In order to ensure system wide performance,
System Autonomic Managers (SAM) manages the different SSON managers by
providing them with high level directives and goals. The following sections detail
the different aspects of our architecture.

Fig. 1. Autonomic overlays architecture

3.1 Architecture Overview

The set of components that makes up our architecture is shown in Fig. 1. The low-
est layer contains the system resources that are needed for multimedia delivery
sessions. In particular, the Overlay Support Layer (OSL) receives packets from the
network, sends them to the network, and forwards them on to the overlay. Overlay

System Autonomic Managers (SAM)

OSLMC MS MP

VMO

SSON Autonomic Managers (SSON‐AM)

Overlay Nodes

Resources

Distributed
Knowledge Coordination

Configuration
Adaptation

Regulation
Configuration
Adaptation

Policies

Knowledge
Base

Context

nodes implement a sink (MediaClient, or MC), a source (MediaServer, or MS), or
a MediaPort (MP) in any combination. MPs are special network side components
that provide valuable functions to media sessions; these functions include, but are
not limited to, special routing capabilities, caching, and adaptation. These ma-
naged resources can be hardware or software and may have their own self-
managing attributes.

The next layer contains the overlay nodes. Overlay nodes are physical Ambient
Network nodes that have the necessary capabilities to become part of the SSON.
They consist of a control plan and a user plan. The control plan is responsible for
the creation, routing, adaptation, and termination of SSONs, while the user plan
contains a set of managed resources. The self-management functions of overlay
nodes are located in the control plan. The Ambient manageability interfaces are
used by the self-managing functions to access and control the managed resources.
The rest of the layers automate the overlays’ management in the system using
their autonomic managers. SSON-AMs and SAMs may have one or more auto-
nomic managers, e.g. for self-configuring and self-optimizing. Each SSON is ma-
naged by an SSON-AM that is responsible for delivering the self-management
functions to the SSON. The SAMs are responsible for delivering system wide
management functions; thus, they directly manage the SSON-AMs. The manage-
ment interactions are expressed through policies at different levels. All of these
components are backed up with a distributed knowledge. The following sections
describe each component in detail.

Fig. 2. The set of components that makes up the intelligent control loop

3.2 Autonomic Elements

1) Overlay Nodes Autonomic Manager(ONAM): Each overlay node contains a
control loop similar to the IBM control loop [5] as shown in Fig. 2. The

Resource Interface Agents

Monitoring Agents

Analyze/Learning
Agent

Receive External Events/Policies

Policy Generator
Agent

Conflict Resolution
Agent

Report / Export Events

Policy Enforcement
Agents

Autonomic Manager (AM) collects the details it needs from its managed
resources, analyzes those details to decide what actions need to change, generates
the policies that reflects the required change, and enforces these policies at the
correct resources. As shown in the figure, the ONAM consist of the following:

• Monitoring Agents (MAs): collects information from the overlay node re-
sources, such as packet loss, delay jitter, and throughput. It also correlates the
collected data according to the installed policies and reports any violation to the
Analyze/Learning Agent (ALA). For example, an MA for a caching MP col-
lects information about the MP’s available capacity, and whenever the available
capacity reaches 10% it reports to the ALA. Another example is the MA for a
routing MP that relays data packets between overlay nodes: its MA collects in-
formation about the throughput and reports to the ALA whenever the through-
put reaches a high value. These collected data will be used to decide the correct
actions that must be taken to keep the overlay node performance within its de-
fined goals. The MAs interact with the Resource Interface Agents (RIAs) to
monitor the overlay node resources availability and to collect data about the de-
sired metrics. They also receive policies regarding the metrics that they should
monitor as well as the frequency in which they report to the ALA.

• Analyze/Learning Agent (ALA): observes the data received from the MAs and
checks to see whether a certain policy with which its overlay node is abided is
not being met. It correlates the observed metrics with respect to the contexts,
and performs analysis based on the statistical information. In the case that one
of policies is violated, it sends a change request to the Policy Generator (PG).
This component is an objective of future work.

• Policy Generator (PG): The difference between this control loop and the IBMs’
control loop lies in the use of a PG instead of a Plan component. The Plan
function –according to IBM [5] – is to select or create a procedure that reflects
the desired change based on the received change request from the Analyze
Agent. This is not sufficient in our case, where each overlay node receives high
level policies and it is up to the overlay node to decide how to enforce these
policies based on its available resources. Therefore, we envisioned a PG in-
stead. The PG reacts to the change request in the same way as in the Plan com-
ponent, although it also generates different types of policies in response to the
received high level policies. For example, based on the goal policies received
by the overlay node, the policy generator generates the tuning polices and
passes them to the MAs (more about this in Section 3.4). Upon generating new
policies, the policy generator consults a Conflict Resolution Agent (CRA) that
ensures the consistency of the new generated policies with those that already
exist. Generally, we divide conflicts into two types: static conflicts and dynam-
ic conflicts. In our model, a static conflict is a conflict that can be detected at
the time of generating a new policy, while a dynamic conflict is one that occurs
at run time.

• Policy Enforcement Agent (PEA): The PG generates suitable policies to correct
the situation in response to a change request, and passes these policies to the

PEA. The PEA then uses the suitable RIA to enforce them. This includes map-
ping the actions into executable elements by forwarding them to the suitable
RIA responsible for performing the actual adjustments of resources and para-
meters. The enforced policies are then stored in the Knowledge Base (KB).

• Resource Interface Agents (RIAs): These implement the desired interfaces to
the overlay node resources. The MAs interacts with them to monitor the availa-
bility of overlay node resources and the desired metrics in its surrounding envi-
ronment. Each resource type has its own RIA that translates the policy actions
into an adjustment of configuration parameters that implements the policy ac-
tion.

• Each overlay node has a set of interfaces to receive and export events and poli-
cies to other overlay nodes. These interfaces are essential to enable multiple
overlay nodes to cooperate to achieve their goals. In particular, these interfaces
are used by the SSON-AM to interact with the overlay nodes that agreed to par-
ticipate in the SSON. The SSON-AM sends the system policies to the overlay
nodes through these interfaces, through which it also receives reports on their
current status.

2) SSON Autonomic Managers (SSON-AM): SSON-AMs implement the
intelligent control loop in much the same way as ONAMs. They automate the
task of creating, adapting, configuring, and terminating SSONs. They work
directly with the ONAM through their management interfaces. They perform
different self-management functions, such as self-configuring, self-optimizing,
and self-adapting. Therefore, they have different control loops. Typically, they
perform the following tasks:

• Self-configuration: SSON-AMs generate configuration policies in response to
the received system policies. They use these policies to configure overlay nodes
that are participating in a given SSON.

• Self-optimization: during SSON construction, SSON-AMs discover the overlay
nodes required to set up a routing path for the multimedia session. Therefore,
they are responsible for optimizing the service path to meet the required QoS
metrics induced from high level policies as well as the context of the service.

• Self-Adaptation: SSON-AMs monitor the QoS metrics for the multimedia ses-
sion and keep adapting the service path to the changing conditions of the net-
work, service, and user preferences. They also monitor the participating overlay
nodes and find alternatives in case one of the overlay nodes is not abiding to the
required performance metrics.

SSON-AMs receive goal policies from the SAMs to decide the types of actions

that should be taken for their managed resources. A SSON-AM can manage one or
more overlay nodes directly to achieve its goals. Therefore, the overlay nodes of a
given SSON are viewed as its managed resources. In addition, they expose mana-

geability interfaces to other autonomic managers, thus allowing SAMs to interact
with them in much the same way that they interact with the ONAMs. See Fig. 3.

Fig. 3. The lower part represents an SSON that consists of a Source (S), a Destination
(D), and a MediaPort (MP). The SSON is managed by a SSON-AM. It has its own Know-
ledge Base (KB). The upper part represents a SAM and its components.

3) System Autonomic Managers (SAM): A single SSON-AM alone is only able
to achieve self-management functions for the SSON that it manages. If a large
number of SSONs in a given network with their autonomic managers is
considered, it is observable that these SSONs are not really isolated. On the one
hand, each overlay node can be part of many SSONs if it offers more than one
service or if it has enough resources to serve more than one session. On the other
hand, the SSONs’ service paths may overlap, resulting in two or more SSONs
sharing the same physical or logical link. For example, consider two SSONs
sharing the same routing MP with the same goal to maximize throughput. This
will lead to a competition between autonomic managers that are expected to
provide the best achievable performance. Therefore, and in order to achieve a
system wide autonomic behavior, the SSON-AMs need to coordinate their self-
managing functions. Typically this is achieved using SAMs.

SAMs can manage one or more SSON-AMs. They pass the system high level
policies, such as load balancing policies, to the SSON-AMs. Moreover, whenever
they find shared goals between two different SSON-AMs, they inform them to
avoid conflicting actions. The involved autonomic managers then contact each
other and create a Virtual Management Overlay (VMO) among themselves as illu-
strated in Fig. 4. They use this VMO to coordinate their management actions be-
fore they are passed to their overlay nodes.

SSON‐AM

S MP
D

SSON_X

KB

Policy Generator (PG)

Conflict Resolution
(CRA)

Context

SAMKB

Policy Generator (PG)

Conflict Resolution
(CRA)

Context

Sharing goals is not the only reason to create VMOs; SSONs sharing common
links as well as SSONs that belong to the same policy domain (same service class,
ISP, etc.) may also create VMOs among themselves to coordinate their actions.
Moreover, SSONs that share common nodes/links affect each other’s perfor-
mance, as they compete for the shared resources. This might result in a degraded
performance as the competition will cause the control loop to be invoked frequent-
ly in an attempt to reach the desired performance goals. Also, all the SSONs in a
given domain (ISP) are expected to achieve the domain wide policies together.
VMOs allow these policies to be dispatched and adapted to each SSON in a way
that achieves the desired goals. Moreover, VMOs also allow the sharing of control
and information between different SSONs. A set of SSONs that are co-located in
given vicinity (such as an area, domain, AS, etc.) usually has independent rout de-
cisions based on its observations of its environment. Sharing this information will
result in a reduced overhead for each overlay to compute this information, and al-
lows for adapting and generating policies to achieve better performance.

Fig. 4. Virtual Management Overlay (VMO) hierarchy

3.3 Distributed Knowledge

Each autonomic manager obtains and generates information. This information is
stored in a shared Knowledge Base (KB) (see Fig. 3). The shared knowledge con-
tains data such as SSON topology, media type descriptions, the set of policies that
are active, and the goal policies received from higher level autonomic managers.
The shared knowledge also contains the monitored metrics and their respective
values. When VMOs are created, each autonomic manager can obtain two types of
information from its VMO peers. The first is related to the coordination actions
and the second is related to the common metrics in which each autonomic manag-
er is interested. Therefore, knowledge evolves over time; the autonomic manager’s

SSON_1 SSON_2 SSON_3 SSON_4

VMO_1
VMO_2

VMO_3

functions add new knowledge as a result of executing their actions, obsolete
knowledge is deleted or stored in log files, and autonomic managers in VMOs ex-
change and share knowledge. Also, goal policies are passed from high level auto-
nomic managers to their managed autonomic managers. The context information
of the network, users, and services is also used primarily to aid in generating suit-
able policies at each level of autonomic managers.

Fig. 5. Policy Levels

3.4 Policies

The use of policies offers an appropriately flexible, portable and customizable
management solution that allows network entities to be configured on the fly.
Usually, network administrators define a set of rules to control the behavior of
network entities. These rules can be translated into component-specific policies
that are stored in a policy repository and can be retrieved and enforced as needed.
Policies represent a suitable and efficient means of managing overlays. However,
the proposed architecture leverages the management task to the overlays and their
logical elements, thus providing the directives on which an autonomic system can
rely to meet its requirements. Policies in our autonomic architecture are generated
dynamically, thereby achieving an automation level that requires no human inte-
raction. In the following we will highlight the different types of policies specific to
autonomic overlays. These policy types are being generated at different levels of
the system.
Configuration policies: are policies which can be used to specify the configura-
tion of a component or a set of components. The SSON-AMs generate the confi-
guration polices for the service path that meets the SSON’s QoS requirements.
The ONAMs generate the specific resource configuration policies that, when en-
forced all together, achieve the SSON QoS metrics. The user, service, and network
context are used by these autonomic managers to generate configuration policies.
Adaptation policies: are policies that can be used to adapt the SSON to changing
conditions. They are generated in response to a trigger fired by a change in the us-
er, service, or network context. SSON-AMs receive these triggers either from the

System Policies ‐ Goals

SSON A SSON X

ONode1 ONode2 ONodeM

R1 R2 R3 R4 RN

System
Level

Service
Level

Autonomic
Elements

Level

Resource
Level

SAMs or from the ONAMs, while the ONAMs receive these triggers either from
the SSON-AMs or from their internal resources. Whenever a change that violates
the installed policies occurs, an adaptation trigger is fired. The autonomic manager
that first detects this change tries to solve the problem by generating the suitable
adaptation policies; if it does not succeed, it informs the higher level autonomic
manager.
 Coordination policies: are policies which can be used to coordinate the actions
of two or more SSON-AMs. They are generated by the SAMs to govern the beha-
vior of SSON managers that have conflicting goals to avoid race conditions.
 Regulation policies: are generated by the overlay nodes themselves to control the
MAs’ behavior with respect to their goals. For example, a MA that measures
throughput has a policy to report throughput < 70%. Another regulation policy can
be installed to replace this policy and report throughput < 90%. The second regu-
lation policy can be generated in response to an adaptation policy that requires
throughput to be at least 90%. The MAs therefore are made more active to contri-
bute to achieving the required tasks.

Figure 5 shows how these policies are related to our autonomic architecture. At

the highest level the SAMs define the set of system polices. These policies
represent the system wide goals and do not describe either the particular devices
that will be used to achieve the system goals or the specific configurations for
these devices. SAMs pass these policies to the SSON-AMs. SSON-AMs refine the
system policies and generate service specific policies. They do so by adding fur-
ther details to the system policies. These details are induced from the system poli-
cies as well as from the context information of the users, the network, and the ser-
vice. At this level, the goals of the SSON under discussion, such as the permitted
QoS metrics, are defined. These goals are still device independent policies. The
set of service polices is then passed to the ONAMs. These autonomic managers
further refine the received policies and generate the overlay node polices and their
respective resource specific policies. Overlay node policies represent the goals
that this overlay node is expected to achieve, while resource specific policies
represents the actual actions that the resources of the overlay node has to do to
achieve the overlay node goals. This separation of policies allows each autonomic
element to focus on its goals and how to achieve them using its current resources
while contributing at the same time to the overall system performance. By de-
coupling the functionality of adapting overlay node resources policies from the
task of mapping system objectives and abstract users’ requirements, the policy se-
paration offers users and IT professionals the freedom to specify and dynamically
change their requirements. The hierarchical policy model is used to facilitate the
mapping of higher level system policies into overlay node objectives. Given sets
of user, service and network context and constraints, as well as sets of possible ac-
tions to be taken, decisions for policy customizations are taken at run time based
on values obtained from MAs to best utilize the available overlay node resources.

In addition to generating policies from high level goals, the policy generator lo-
cated in each autonomic manager serves as a Policy Decision Point (PDP) for the

low level autonomic manager. For example, the SSON-AM serves as a PDP for
the ONAM. Whenever an ONAM detects that one of the configuration policies
has been violated, it tries to solve the problem locally. If it is unable to do so, it
consults the SSON-AM to which the overly node is providing a service. The
SSON-AM then tries to solve the problem by either relaxing the goals of the ser-
vices or by finding an alternative overlay node that is able to achieve the SSON’s
goals. The SSON-AM then informs the ONAM of its decision, and may also con-
sult its designated SAM to acquire decisions on situations that it cannot handle lo-
cally. The autonomic manager acting as a PDP decides which policies, if any con-
figuration or adaptation policies have been violated, were most important and
what actions to take. It uses information about the installed policies and the cur-
rent context of the user, network, and service.

Fig. 6. Overhead due to search messages.

4 EXPERIMENTAL EVALUATION

We used a discrete event simulator to evaluate the performance of the architecture.
The measurements of search overhead, and success rate were tested in a large-
scale network.

Our first concern was to compare the performance of the architecture in build-
ing SSONs with limited-flooding and limited-scope approaches. Limited-flooding
has been predominantly used to discover services in environments such as ad hoc
and pervasive networks. In a limited-flooding protocol, a service request is broad-
cast to all direct neighbors of the requesting node. Close neighbors send it on to
their neighbors; the propagation is controlled by a TTL value that indicates how
far the query should be sent from the requesting node. In a limited-scope ap-
proach, the service request is sent to nodes that bring it progressively closer to the
destination and located within a scope angle.

SSON Search Scope

0 2000 4000 6000

N
et

w
or

k
Lo

ad

0

1000

2000

3000

4000

5000

6000

7000
Our Approach
Limited Flooding
Limited Scope

The topology used had 2000 nodes in a 1000 X 1000 node two-dimensional
overlay space. The bandwidth assigned to each node was randomly selected be-
tween 128 and 512 kbits/s. The links propagation delay was fixed at 1 ms. To fol-
low a flash crowd characteristic, all nodes issued their queries at a random point
during the first 30 seconds, with the simulation lasting for another 1000 seconds.
We ran the simulation a number of times with different search scope values (rela-
tive value, similar to TTL except it measures how far the query travels in the net-
work in terms of network distance which is a relatively stable characteristic).

4.1 Network Load

This quantifies the cost of each approach. That is the total number of messages
used to construct an SSON. Fig. 6 shows that limited-flooding has the worst per-
formance: it produces a greater number of search messages, except in searches
with small scope values. But as the search scope increases, the number of messag-
es in limited-flooding and limited-scope is at least two times higher than the num-
ber of messages in our approach.

Fig. 7. Success rate.

4.2 Success Rate

Success rate measures the accuracy of each approach. Success rate is defined as
the number of requests that receive positive responses, divided by the total number
of requests. Fig. 7 shows that our approach results in a higher success rate. Li-
mited-flooding reach the 100% success rate after a 4000 search scope value.
While limited-scope approach attains it after a 6500 search scope value. However,

SSON search Scope
0 2000 4000 6000 8000

S
uc

ce
ss

 R
at

e

0

20

40

60

80

100

120

Limited Flooding
Limited Scope
Our Approach

our approach reaches the 100% success rate earlier. We believe that this is due to
the huge network load generated by limited-flooding. For large search scope val-
ues, limited-flooding generates a large number of messages and receives a large
number of reply messages. As a consequence, messages are dropped or lost due to
collisions.

5 CONCLUSION AND FUTURE WORK

This work-in-progress provides a complete integrated architecture for autonomic
SSONs management. It shows how it can be useful to avoid the complexity of ex-
isting service management systems. The road towards fully autonomic system ar-
chitecture is still long; however, this paper presents an autonomic overlay archi-
tecture that represents the basic building blocks needed by autonomic systems.
The creation, provision, management and termination of SSONs are automated
dynamically based on the context information available from the user, service, and
the network provider. The required knowledge capability, reasoning capability,
and the different autonomic manager components capabilities are being studied.
The PG and the CRA components are being investigated in terms of their re-
quirements and implementation to generate different types of policies. The dual
goals of these policies are to drive the autonomic system and dynamically manage
SSONs.

Acknowledgments

This work was partly supported by a Strategic Research Grant from the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

1. S. Schmid, F. Hartung, M. Kampmann, S. Herborn, and J. Rey, “SMART: Intelligent
Multimedia Routing and Adaptation based on Service Specific Overlay Networks,” In
Proc. of Eurescom Summit 2005, Heidelberg, Germany. pp. 69-77, 2005.

2. N. Niebert, A. Schieder, H. Abramowicz, G. Malmgren, J. Sachs, U. Horn, C. Prehofer,
and H. Karl, "Ambient Networks -- An Architecture for Communication Networks
Beyond 3G," IEEE Wireless Communications (Special Issue on 4G Mobile Communi-
cations -- Towards Open Wireless Architecture), 2004.

3. W. T. Ooi, and R. van Renesse, “The design and implementation of programmable me-
dia gateways”, In Proc.NOSSDAV’00, Chapel Hill, NC, Jun. 2000.

4. J.Kephart, and D.Chess, “The vision of autonomic computing,” IEEE Computer Mag..
Vol. 36, No.1, PP.41–50. Jan. 2003.

5. IBM Corporation, “An architectural blueprint for autonomic computing,” White Paper,
Jun. 2006.

6. IBM Corporation,”Autonomic computing - a manifesto,”
http://www.research.ibm.com/autonomic /manifesto/, Oct. 2001.

7. J.Kephart , “Research Challenges of Autonomic Computing,” Proc. of the 27th int. conf.
on Software Engineering (ICSE’05), St. Louis, Missouri, P. 15 – 22, May 15–21,
2005.

8. A. C. Forum, “Autonomic communication.” http:// www.autonomic-
communication.org.

9. R.Farha and A.Leon-Garcia, “Blueprint for an Autonomic Service Architecture” 2006
10. J.Nichols, H.Demirkan, and M.Goul, “Autonomic Workflow Execution in the Grid,”

IEEE Tran. on Systems, Man, and Cybernetics—Part C: Applications And Review,
VOL. 36, NO. 3, MAY 2006.

11. E.Kasten and P.McKinley, “MESO: Supporting Online Decision Making in Autonomic
Computing Systems,” IEEE Trans. on Knowledge And Data Engineering, VOL. 19,
NO. 4, April 2007.

12. R.Bahati, M.Bauer, E.Vieira , O. Baek, and C.Ahn, “Using Policies to Drive Autonom-
ic Management,” Proc. of the Int. Sym.. on a World of Wireless, Mobile and Multime-
dia Networks (WoWMoM'06), 2006.

13. J. Pena, M.Hinchey, R. Sterritt A.Ruiz-Cortes and M Resinas, “A Model-Driven Archi-
tecture Approach for Modeling, Specifying and Deploying Policies in Autonomous and
Autonomic Systems,” Proc.of the 2nd IEEE Int. Symposium on Dependable, Autonom-
ic and Secure Computing (DASC'06), 2006

14. F.Zhang, J.Gao, B.Liao, “Policy-Driven Model for Autonomic Management of Web
Services Using MAS,” Proc. of the 5th Int. Conf. on Machine Learning and Cybernetics,
Dalian, 13-16 Aug. 2006.

15. S.Balasubramaniam, K.Barrett, W.Donnelly, S.Meer and J.Strassner, “ Bio-inspired
Policy Based Management (bioPBM) for Autonomic Communications Systems,” Proc.
of the 7th IEEE Int. Work. on Policies for Distributed Systems and Networks
(POLICY'06), 2006

16. P.McKinley, F.Samimi, J.Shapiro, and C.Tang, “Service Clouds: A Distributed Infra-
structure for Constructing Autonomic Communication Services,” Proc. of the 2nd IEEE
Int. Symposium on Dependable, Autonomic and Secure Computing (DASC'06), 2006.

17. D. Xiangdong, S.Hariri, L.Xue, H.Chen, M.Zhang, S.Pavuluri, and S.Rao, “Autonomia:
an autonomic computing environment,” in Proc. of the IEEE Int. Performance, Compu-
ting, and Communications Conf., pp. 61–68, Apr. 2003.

18. P.Grace, G.Coulson, G.Blair, L.Mathy, W.Yeung, W.Cai, D. Duce, and C. Cooper,
“GRIDKIT: pluggable overlay networks for grid computing,” in Proc. of the distributed
objects and applications conf. (DOA'04), Cyprus, p1463-81, October 2004.

19. M.Parashar, H.Liu, Z.Li, V.Matossian, C.Schmidt, G.Zhang, and S.Hariri, “AutoMate:
enabling autonomic applications on the grid,” Cluster Computing, Vol. 9, No. 6,
PP.161–174, 2006.

20. D.Chess, A.Segal, I.Whalley, and S.White, “Unity: Experiences with a Prototype Auto-
nomic Computing System,” Proc. of the Int. Conf. on Autonomic Computing
(ICAC’04), 2004.

21. S.Dobson, S.Denazis, A.Fernández, D.Gaïti, E.Gelenbe, F.Massacci, P.Nixon, F.Saffre,
N.Schmidt, F.Zambonelli and A.Fernández, “A survey of autonomic communications,”
ACM Transactions on. Autonomous and Adaptive Systems, Vol. 1, No. 2, P. 223-259,
Dec.2006.

