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Abstract

Real-Time Bidding (RTB) is revolutionising display advertising by facilitating a real-

time auction for each ad impression. As they are able to use impression-level data,

such as user cookies and context information, advertisers can adaptively bid for each

ad impression. Therefore, it is important that an advertiser designs an effective bidding

strategy which can be abstracted as a function - mapping from the information of a

specific ad impression to the bid price. Exactly how this bidding function should be

designed is a non-trivial problem. It is a problem which involves multiple factors,

such as the campaign-specific key performance indicator (KPI), the campaign lifetime

auction volume and the budget.

This thesis is focused on the design of automatic solutions to this problem of creat-

ing optimised bidding strategies for RTB auctions: strategies which are optimal, that is,

from the perspective of an advertiser agent - to maximise the campaign’s KPI in relation

to the constraints of the auction volume and the budget. The problem is mathematically

formulated as a functional optimisation framework where the optimal bidding function

can be derived without any functional form restriction. Beyond single-campaign bid

optimisation, the proposed framework can be extended to multi-campaign cases, where

a portfolio-optimisation solution of auction volume reallocation is performed to max-

imise the overall profit with a controlled risk. On the model learning side, an unbiased

learning scheme is proposed to address the data bias problem resulting from the ad

auction selection, where we derive a “bid-aware” gradient descent algorithm to train

unbiased models. Moreover, the robustness of achieving the expected KPIs in a dy-

namic RTB market is solved with a feedback control mechanism for bid adjustment.

To support the theoretic derivations, extensive experiments are carried out based

on large-scale real-world data. The proposed solutions have been deployed in three

commercial RTB systems in China and the United States. The online A/B tests have
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demonstrated substantial improvement of the proposed solutions over strong baselines.



Acknowledgements

First, I would like to express my sincere gratitude to my first supervisor Prof. Jun Wang.

I got to know Jun in Mar. 2012 when I was reading one of his papers on personalised

recommendation techniques published in RecSys 2010. After a careful survey about

his research on computational advertising and recommender systems, I decided to only

apply his research group in UCL for pursuing my Ph.D. Fortunately, I got the offer and

the scholarship from Jun and started my Ph.D. career from Sep. 2012.

During these 3.5 years of Ph.D. research work with Jun, I have been always feel-

ing lucky that I have made the right choice. Jun is a nice and easy-going professor,

just like a senior friend of mine. I totally have no pressure but only enjoyment when

discussing research problems with him. Jun usually emphasises the novelty of a re-

search topic, including the research problem novelty and methodology contributions.

He dedicates quite a lot of time to discuss with Ph.D. students and helps revise their

papers very carefully. In addition, he encourages me to pursue research internships in

large companies like Google and Microsoft Research as well as technology startups

like MediaGamma. Without his invaluable and generous support, I do not believe I

could complete 4 internships and publish 16 research papers during 3.5 years.

Luckily, I have got the offer and am going to join Shanghai Jiao Tong University

as an assistant professor in Aug. 2016, working on big data mining and artificial in-

telligence research. I believe Jun’s philosophy of being a good Ph.D. supervisor will

deeply help me in my future academic career.

Second, I want to show my great respect and appreciation to my second supervisor

Prof. Stephen Robertson. When he agreed to be my second supervisor, Steve was

about to retire and planned to fully change the shape of his life. I sincerely thank Steve

for travelling to London to provide me both high-level research advices and specific

solution tips during our meetings and my first-year and transfer vivas.



8 Acknowledgements

Third, I would like to thank my Ph.D. viva examiners Prof. Sebastian Riedel

and Prof. Maria Polukarov for taking time to review my thesis and offer constructive

comments and suggestions.

Fourth, I am grateful to the industrial collaborators Dr. Xuehua Shen and Hairen

Liao from iPinYou, Jie Liu, Tianchi Zhu, Lei Gong from BigTree, Jian Xu and Dr. Quan

Lu from Yahoo!, Yifei Rong from YOYI, Tianxiong Zhou from TukMob. Without their

technique support, none of my research solutions could be deployed and tested on any

online commercial platform.

Fifth, I would like to thank my internship supervisors and colleagues Dr. Ulrich

Paquet, Dr. Katja Hofmann, Prof. Thore Graepel from Microsoft Research Cambridge,

Jie Yang, Dr. Amr Ahmed, Dr. Vanja Josifovski, Prof. Alex Smola, Dr. Andrei

Broder from Google, and the CEO Rael Cline from MediaGamma for their patient and

invaluable help in guiding me towards more successful and useful research.

Sixth, I would like to thank my UCL research colleagues Prof. Emine Yilmaz,

Prof. Shi Zhou, Prof. Ingemar Cox, Prof. Antonis Bikakis, Dr. Xiaoxue Zhao, Dr. Jie

Xiong, Dr. Shuai Yuan, Dr. Bowei Chen, Dr. Ye Pan, Dr. Marc Sloan, Dr. Jagadeesh

Gorla, Dr. Kleanthis Malialis, Dr. Thomas Stone, Dr. Tamas Jambor, Dr. Shangsong

Liang, Rui Yu, Manisha Verma, Rishabh Mehrotra, Savvas Karagiannidis, Jie Li, Bin

Zou, Rui Luo and Yixin Wu for their kind help and many insightful discussions.

Moreover, I will not forget the patient help from my home university and industrial

supervisors before my Ph.D. study. They are Prof. Yong Yu and Prof. Gui-Rong Xue,

Prof. Xiaofan Wang from Shanghai Jiao Tong University, Dr. Bin Gao, Dr. Tie-Yan Liu

and Dr. Feng Zhao from Microsoft Research Asia. I sincerely thank them for opening

the door of the research world for me.

Last but not least, I am very grateful to my parents and my girlfriend for their love

and unconditional support during these years. Without them, I cannot imagine how I

could survive in my Ph.D. grind.



Contents

List of Figures 17

List of Tables 20

1 Introduction 21

1.1 Background of Internet Advertising Market . . . . . . . . . . . . . . . 21

1.2 Real-Time Bidding based Display Advertising . . . . . . . . . . . . . . 24

1.3 Research Problems and Contributions . . . . . . . . . . . . . . . . . . 26

1.3.1 Single-Campaign Bidding . . . . . . . . . . . . . . . . . . . . 27

1.3.2 Multi-Campaign Bidding . . . . . . . . . . . . . . . . . . . . . 28

1.3.3 Unbiased Learning and Optimisation on Censored Data . . . . . 29

1.3.4 Feedback Control for Handling Data Dynamics . . . . . . . . . 30

1.3.5 Summarised Contributions . . . . . . . . . . . . . . . . . . . . 31

1.4 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Supporting Publications . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Related Work 35

2.1 Display Advertising . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Bid Optimisation for Sponsored Search . . . . . . . . . . . . . . . . . 37

2.3 Bid Optimisation for RTB Display Advertising . . . . . . . . . . . . . 38

2.4 Risk Management Models and Applications . . . . . . . . . . . . . . . 40

2.4.1 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . 40

2.4.2 Statistical Arbitrage . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Learning on Biased or Censored Data . . . . . . . . . . . . . . . . . . 43

2.6 Feedback Control Theory and Applications . . . . . . . . . . . . . . . 45



10 Contents

3 Single-Campaign Optimal Real-Time Bidding 47

3.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 Optimal Solutions of Bidding Functions . . . . . . . . . . . . . . . . . 55

3.3.1 Winning & Bidding Function 1 . . . . . . . . . . . . . . . . . 55

3.3.2 Winning & Bidding Function 2 . . . . . . . . . . . . . . . . . 56

3.3.3 Discussions on Derived Bidding Functions . . . . . . . . . . . 58

3.3.4 Optimal Solution of λ . . . . . . . . . . . . . . . . . . . . . . 58

3.3.5 Special Case Discussion: Linear Winning Function . . . . . . . 60

3.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Dataset and Analysis . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 KPI Estimator Training . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Test Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . 65

3.4.5 Compared Bidding Strategies . . . . . . . . . . . . . . . . . . 66

3.5 Offline Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.1 Performance Comparison . . . . . . . . . . . . . . . . . . . . . 68

3.5.2 The Impact of Budget Constraints . . . . . . . . . . . . . . . . 69

3.5.3 Clicks vs. Impressions . . . . . . . . . . . . . . . . . . . . . . 70

3.5.4 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.5 Results for an Alternative KPI . . . . . . . . . . . . . . . . . . 72

3.6 Online A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Chapter Appendix: Game Theoretic Analysis . . . . . . . . . . . . . . 76

3.8.1 Problem Settings . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8.2 Equilibrium Bidding Function in the First Price Auctions . . . . 78

3.8.3 Equilibrium Bidding Function in the Second Price Auctions . . 80

3.8.4 Discussion: Tragedy of the Commons in RTB . . . . . . . . . . 84

4 Multi-Campaign Statistical Arbitrage Mining 87

4.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 87

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90



Contents 11

4.3 Optimal Arbitrage Bidding Function . . . . . . . . . . . . . . . . . . . 94

4.3.1 Uniform Market Price Solution . . . . . . . . . . . . . . . . . 95

4.3.2 Long Tail Market Price Solution . . . . . . . . . . . . . . . . . 96

4.4 Optimal Campaign Selection . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Single Campaign . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.2 Campaign Portfolio . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4.3 Campaign Portfolio Optimisation . . . . . . . . . . . . . . . . 100

4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . 102

4.5.3 Compared Strategies . . . . . . . . . . . . . . . . . . . . . . . 103

4.5.4 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 105

4.6 Offline Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.6.1 Single Campaign Arbitrage . . . . . . . . . . . . . . . . . . . . 105

4.6.2 Multiple Campaign Arbitrage . . . . . . . . . . . . . . . . . . 108

4.6.3 Dynamic Multiple Campaign Arbitrage . . . . . . . . . . . . . 110

4.7 Online A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Unbiased Learning and Optimisation on Censored Auction Data 115

5.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Unbiased Learning and Optimisation Framework . . . . . . . . . . . . 117

5.2.1 Auction Winning by Survival Models . . . . . . . . . . . . . . 118

5.2.2 Task 1: CTR Estimation . . . . . . . . . . . . . . . . . . . . . 121

5.2.3 Task 2: Bid Optimisation . . . . . . . . . . . . . . . . . . . . . 122

5.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.3.2 Experiment Flow . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.3 Compared Settings . . . . . . . . . . . . . . . . . . . . . . . . 128

5.4 Offline Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4.1 Winning Probability Estimation . . . . . . . . . . . . . . . . . 129

5.4.2 CTR Estimation Results . . . . . . . . . . . . . . . . . . . . . 131



12 Contents

5.4.3 Bid Optimisation Results . . . . . . . . . . . . . . . . . . . . . 132

5.5 Online A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Feedback Control Mechanism 139

6.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 RTB Feedback Control System . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 Actuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2.2 PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.3 Waterlevel-based Controller . . . . . . . . . . . . . . . . . . . 143

6.2.4 Setting References for Click Maximisation . . . . . . . . . . . 143

6.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . . 147

6.3.3 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . 148

6.4 Offline Empirical Study . . . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.1 Control Capability . . . . . . . . . . . . . . . . . . . . . . . . 149

6.4.2 Control Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.4.3 PID Settling: Static vs. Dynamic References . . . . . . . . . . 153

6.4.4 Reference Setting for Click Maximisation . . . . . . . . . . . . 156

6.4.5 PID Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Online A/B Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.7 Chapter Appendix: Reference Adjust Models . . . . . . . . . . . . . . 162

7 Conclusions and Future Work 165

Appendices 167

A Full List of Publications 167

B Glossary of Technical Terms 169

Bibliography 189



List of Figures

1.1 An example snapshot of sponsored search: after a user submits a query

“car insurance” to the search engine, relevant text ads will be retrieved

and shown in the search engine result page along with the retrieved

web pages. The match between the ads and the user is mainly based

on the relevance of the advertisers’ bid keywords to the user’s query

keywords. Source: Google. . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 An example snapshot of display advertising: when a user browses a

web page, some image-based or multimedia ads will be shown along

with the web page content. The match between the ads and the users is

mainly based on the correspondence between the advertisers’ targeting

rules and the user’s segmentations, such as demographics and interest

tags. Source: NYTimes. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 A brief illustration of the interactions between user, ad exchange and

the advertiser’s DSP bidding agent. The solid-line arrows represent

real-time interactions, while the dashed-line arrows represent the inter-

actions that are not necessarily in real-time. The step (1+) is optional,

i.e., the DSP may use their own user segmentation information instead

of calling the third-party DMP for this user information. Besides, this

figure is mainly from a DSP’s perspective, thus some components, such

as supply-side platform (SSP) and ad server are omitted for simplicity. . 25

1.4 A bidding strategy can be abstracted as a function mapping from the

given bid request (in a high dimensional feature space) to a bid price (a

non-negative real or integer number). . . . . . . . . . . . . . . . . . . . 26



14 List of Figures

1.5 An overview of the research problems studied in this thesis and their

links: (1) single-campaign bid optimisation; (2) multi-campaign bid

optimisation; (3) handling auction selection bias for unbiased model

learning; (4) feedback control mechanisms for dealing with data dy-

namics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.6 The proposed quantitative bidding: the logic of the bidding function

only depends on two (sets of) factors, i.e., the estimated utility and the

cost of the ad display opportunity. . . . . . . . . . . . . . . . . . . . . 27

1.7 The DSP (or other intermediary roles) in display advertising ecosystem

may face the risk of buying CPM ad inventory from publishers and

earning CPA payoffs from advertisers. This is also possibly a good

opportunity to make profits by mining statistical arbitrage opportunities. 28

1.8 In a DSP, all the learning models serve the bidding agent to perform

bidding on the pre-bid full-volume data with the true data distribution.

However, the user feedback, e.g., clicks, conversions, and the market

price of a particular potential ad impression can be observed only if the

DSP wins the corresponding auction. Thus, the post-bid winning im-

pression data with feedback labels are censored and biased - this being

caused by auction selection. As a result, the learning models trained on

such feedback data are biased when subsequently performing predic-

tions or bidding on the pre-bid full-volume data in the next stage. . . . . 29

1.9 The instability of CPM (cost per mille), AWR (auction winning ratio),

eCPC (effective cost per click), and CTR (click-through rate) for two

example campaigns without a controller. Dataset: iPinYou. . . . . . . . 31

2.1 Feedback control loop. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 An illustration of a demand-side platform and its bidding agent in RTB

display advertising. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 Winning function 1 and corresponding optimal bidding function

bORTB1(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Winning function 2 and corresponding optimal bidding function

bORTB2(θ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57



List of Figures 15

3.4 Concave bidding function bids higher on the cases with predicted CTR

less than 0.0011 (example) and vice versa, which allocates more budget

on the cases with low bid price and thus low cost. . . . . . . . . . . . . 58

3.5 Relationship between auction winning rate and bid value for different

campaigns. There may be some “angles” in the winning functions of

some campaigns. The reason is there are some “needles” in market

price p.d.f. because of the constant bidding by some advertisers. . . . . 63

3.6 Winning price distribution against different features for campaign

1458. Note that these are the overall market price distributions w.r.t.

different features, rather than individual cases. . . . . . . . . . . . . . . 64

3.7 Evaluation flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Overall performance comparison. The higher clicks and lower eCPC,

the better. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.9 Overall click improvement of ORTB1 over LIN under different budget

conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Performance on different measures with different budget conditions. . . 71

3.11 Parameter tuning on λ of ORTB1 under different budget conditions. . . . 72

3.12 Parameter tuning on λ of ORTB2 under different budget conditions. . . . 72

3.13 Performance comparison with the new KPI (Eq. (3.32)) as optimisation

target. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 Relative performance for online test. . . . . . . . . . . . . . . . . . . . 74

4.1 An ad agency running a meta-bidder (arbitrageur) for statistical arbi-

trage mining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Linear winning function w(b(θ)) and beta CVR pdf pθ (θ). . . . . . . . 95

4.3 Single-campaign arbitrage performance against different settings. . . . . 107

4.4 Multi-campaign arbitrage performance comparison and trend against

different parameter and budget settings. . . . . . . . . . . . . . . . . . 108

4.5 A case study of a 4-campaign portfolio. . . . . . . . . . . . . . . . . . 110

4.6 Dynamic multi-campaign arbitrage profit distribution with different up-

date frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



16 List of Figures

4.7 A case study of dynamic multi-campaign arbitrage performance and

the corresponding margin estimation and volume allocation. . . . . . . 112

4.8 Online A/B test performance on BigTree DSP. . . . . . . . . . . . . . . 113

5.1 From an advertiser’s perspective, the ad auction selection acts as a dy-

namic data filter based on bid value, which leads to distribution dis-

crepancy between the post-bid training data (red) and pre-bid predic-

tion data (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2 Winning probability and reweighting term in Eq. (5.9) against historic

bid price. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 The gradient direction term in Eq. (5.21) against historic bid price bxxx

with two new bids b( f (xxx),λ ). . . . . . . . . . . . . . . . . . . . . . . 125

5.4 Experiment flow chart. . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Winning probability against bid price (iPinYou). . . . . . . . . . . . . . 129

5.6 CTR performance training convergence (iPinYou). . . . . . . . . . . . 132

5.7 Improvement over BIAS w.r.t. budget proportions. . . . . . . . . . . . . 134

5.8 Relative performance difference between KMMP and BIAS in Yahoo!

online A/B testing: (KMMP-BIAS)/BIAS. . . . . . . . . . . . . . . . . . 137

6.1 Feedback controller integrated in the RTB system. . . . . . . . . . . . . 141

6.2 Different eCPCs across different ad exchanges. Dataset: iPinYou. . . . 143

6.3 #Clicks against eCPC on different ad exchanges. . . . . . . . . . . . . 145

6.4 Control performance on AWR and eCPC. . . . . . . . . . . . . . . . . 151

6.5 Control difficulty comparison with PID. . . . . . . . . . . . . . . . . . 152

6.6 Control performance for campaign 3386 on AWR and eCPC with dif-

ferent reference values. . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.7 Dynamic reference control with PID. . . . . . . . . . . . . . . . . . . . 154

6.8 Dynamic vs. static reference with PID. . . . . . . . . . . . . . . . . . . 155

6.9 Bid optimisation performance. . . . . . . . . . . . . . . . . . . . . . . 157

6.10 Settlement of multi-exchange feedback control. . . . . . . . . . . . . . 158

6.11 Control with online/offline parameter updating. . . . . . . . . . . . . . 159

6.12 The online eCPC control performance and the accumulative click num-

bers of a mobile game campaign on BigTree DSP. . . . . . . . . . . . . 160



List of Figures 17

6.13 Relative performance for online test. . . . . . . . . . . . . . . . . . . . 161





List of Tables

3.1 Notations and descriptions. . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 iPinYou dataset statistics. Here CNY means Chinese Yuan, while CNF

means Chinese Fen, which is 0.01 CNY. . . . . . . . . . . . . . . . . . 62

3.3 Bidding strategy attributes. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4 Click improvement of ORTB1 over LIN for each campaign under differ-

ent budget conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 An example of tragedy of the commons in RTB. . . . . . . . . . . . . . 85

4.1 Notations and descriptions. . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Single-campaign statistical arbitrage overall performance. . . . . . . . . 106

4.3 Multi-campaign statistical arbitrage overall performance. . . . . . . . . 109

5.1 An example of data transformation of 8 instances with the bid price

between 1 and 4. Left: tuples of bid, win and cost 〈bi,wi,zi〉i=1...8.

Right: the transformed survival model tuples 〈b j,d j,n j〉 j=1...4 and the

calculated winning probabilities. Here we also provide a calculation

example of n3 = 4 shown as blue in the right table. The counted cases

of n3 in the left table are 2 winning cases with z≥ 3−1 and the 2 lost

cases with b≥ 3, shown highlighted in blue color. . . . . . . . . . . . . 121

5.2 Winning data statistics: the full-volume data is used in FULL training

scheme, while the winning data is used in BIAS, UOMP and KMMP

training schemes (both datasets). . . . . . . . . . . . . . . . . . . . . . 130

5.3 Winning probability estimation performance comparison (iPinYou). . . 130

5.4 CTR performance on iPinYou dataset. . . . . . . . . . . . . . . . . . . 131

5.5 CTR performance on TukMob dataset. . . . . . . . . . . . . . . . . . . 131

5.6 Bid optimisation click performance (iPinYou). . . . . . . . . . . . . . . 133



20 List of Tables

5.7 Bid optimisation click performance (TukMob). . . . . . . . . . . . . . 133

5.8 Online A/B testing of CTR estimation (Yahoo!). . . . . . . . . . . . . 135

5.9 Online A/B testing of bid optimisation (Yahoo!). . . . . . . . . . . . . 136

6.1 Overall control performance on eCPC. . . . . . . . . . . . . . . . . . . 150

6.2 Overall control performance on AWR. . . . . . . . . . . . . . . . . . . 150

6.3 Control performance on multi-exchanges with the reference eCPC set

for click maximisation. . . . . . . . . . . . . . . . . . . . . . . . . . . 156



Chapter 1

Introduction

“Half the money I spend on advertising is wasted; the trouble is I don’t know which

half.”

— John Wanamaker (11 July, 1838 - 12 December, 1922)

This popular quotation from John Wanamaker, a pioneer of advertising and depart-

ment stores, illustrates how difficult it was, a hundred years ago, to quantify customer

response and so an advertising campaign’s potential performance. Over the last twenty

years, advancements related to the world wide web have fundamentally changed this

situation. The web provides not only new, efficient, ways to connect customers to

retailers but also effective feedback mechanisms whereby customer response can be

measured. Some of these mechanisms are as follows: observing users’ search queries

[1], web browsing patterns [2], clicks [3] and conversions [4] etc. With the techniques

of user cookie matching and online behaviour tracking, a user’s feedback on a single

ad impression can be quantitatively evaluated. Based on such quantitative feedback,

advertisers are able to refine their campaigns, e.g., by refining the targeting rules and

reallocating the budget, to improve their ad campaigns’ performance. Therefore, Inter-

net advertising has become more and more efficient and thus one of the most important

forms of advertising.

1.1 Background of Internet Advertising Market
According to marketing investigation reports from the Interactive Advertising Bureau

(IAB) and eMarketer.com, in 2014, the total Internet advertising spend in the United

States reached $49.5 billion, a 15.6% increase from the same figure for 2013. This
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Figure 1.1: An example snapshot of sponsored search: after a user submits a query “car in-
surance” to the search engine, relevant text ads will be retrieved and shown in the
search engine result page along with the retrieved web pages. The match between
the ads and the user is mainly based on the relevance of the advertisers’ bid key-
words to the user’s query keywords. Source: Google.

amount is 75.0% of the television advertising spend [5]. The total Internet advertising

spend in the United Kingdom, in 2014, reached £7.0 billion, a 13.0% increase from

2013, and it was estimated to have become more than half of the total UK ad spend in

2015 [6]. It is also reported that the global Internet advertising spend will jump 18.0%,

in 2015, to reach $170.2 billion: i.e., 29.9% of the total advertising market [7].

There are different ways to categorise the various Internet advertising formats.

From the point of view of mechanisms, there are two major categories: sponsored

search, accounting for 50.0% of the total Internet advertising spend in the United States

in 2014, and display advertising, accounting for 35.2%. The remaining 14.8% was

spent on other ad formats such as classifieds [8].

Sponsored search refers to the text ads placed on the top and at the right-hand side

of the search engine result pages [9]. An example is shown in Figure 1.1. Sponsored

search connects advertisers to users via keywords, i.e., the advertisers bid on a number

of keywords and the users search for certain keywords according to their interests at the

time. The search engine tries to make the best match it can between the user’s search

keywords and the advertisers’ bid keywords via an auction mechanism [10]. The best

matched ads will be ranked according to a score calculated from the ad’s relevance and

the bid price. The pricing scheme for sponsored search is cost per click (CPC), i.e., the

advertiser has to pay the search engine provider only when her ad has been clicked on
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Figure 1.2: An example snapshot of display advertising: when a user browses a web page,
some image-based or multimedia ads will be shown along with the web page con-
tent. The match between the ads and the users is mainly based on the correspon-
dence between the advertisers’ targeting rules and the user’s segmentations, such
as demographics and interest tags. Source: NYTimes.

by a user.

Display advertising plays in more general scenarios than does sponsored search.

The image-based or multimedia ads are displayed to users when they use any online

media: web pages, mobile apps and videos, i.e. not just when they are performing a

search [11], shown in Figure 1.2 as an example. Without the search keywords to ex-

plicitly indicate the user’s interest, display advertising tries to match the advertisers and

the users via users’ demographical and interest segmentations [12]. This represents a

more challenging problem than that related to sponsored search. With the rapid growth

of mobile applications, display advertising (mobile and non-mobile) has achieved very

fast growth in the past five years (from $9.9 billion in 2010 to $17.4 billion in 2014,

United States) [13, 5]. Display advertising is set to create much larger business value

in the near future.

Before the emergence of real-time bidding techniques in 2009 - these will be

discussed in Section 1.2 - the main trading mechanisms for display advertising were

negotiation-based contracts and ad network volume aggregations [14]. In this scenario,

publishers sell the website volume in batches, either to the premium advertisers di-
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rectly or to intermediate ad agencies (ad networks), while advertisers buy the media

volume in batches from publishers directly or through ad agencies. There are several

obvious inefficiencies involved with such a trading mechanism: (i) There is usually an

imbalance between demand side (advertisers) and supply side (publishers) in relation

to a particular (often local) market, e.g., a publisher and several advertisers, or an ad

agency linked with some advertisers and publishers. Usually, the advertisers cannot

buy the expected amount of the targeted volume while the publishers cannot sell all

the volume. (ii) As the contract is based on aggregated volume, the price for each ad

impression, in the contract, is uniform despite the fact that there is always large utility

difference among the ad impressions in a contract volume [15, 4].

1.2 Real-Time Bidding based Display Advertising
Since 2009, Real-Time Bidding (RTB) based display advertising has emerged and has

become the new frontier for Internet advertising [16, 17]. Unlike conventional spon-

sored search or contextual advertising, where an advertiser pre-sets a bid price for each

selected keyword for her campaign, RTB allows an advertiser to use computer algo-

rithms to submit a bid for each impression within a very short time frame, often less

than 100ms [14]. These bids will be based on the impression-level features, such as

user cookie and context information. A real-time auction is hosted by an intermediary,

called the ad exchange [16], which will select the ad with the highest bid for display

to the user. RTB has fundamentally changed the landscape of Internet advertising and

solved the above mentioned problems of conventional display advertising because (i)

allowing per-impression transactions scales the buying process across a large num-

ber of available ad inventories including the leftovers; (ii) the real-time audience data

encourages behavioural targeting and makes a significant shift towards buying that is

focused on user data [18] rather than contextual data. With its fine-grained user target-

ing and auction mechanism, RTB has significantly improved the campaign return-on-

investment (ROI) and become an essential Internet advertising paradigm.

Demand-Side Platforms (DSPs) are thus created to help advertisers manage their

campaigns and optimise their real-time bidding activities. The interaction process

among the DSP and the other main components of the RTB eco-system is summarised

into the following steps in Figure 1.3: (0) when a user visits an ad-supported site (e.g.,
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Figure 1.3: A brief illustration of the interactions between user, ad exchange and the adver-
tiser’s DSP bidding agent. The solid-line arrows represent real-time interactions,
while the dashed-line arrows represent the interactions that are not necessarily in
real-time. The step (1+) is optional, i.e., the DSP may use their own user segmen-
tation information instead of calling the third-party DMP for this user information.
Besides, this figure is mainly from a DSP’s perspective, thus some components,
such as supply-side platform (SSP) and ad server are omitted for simplicity.

web pages, streaming videos and mobile apps), each ad placement will trigger a call

for an ad (ad request) to the ad exchange. (1) The ad exchange sends the bid requests,

for this particular ad impression, to each advertiser’s DSP bidding agent, along with the

other available information such as the user cookie and context information. (2) With

the information of the bid request and each of its qualified ads,1 the bidding agent cal-

culates a bid price. Then the bid response (a pair consisting of the ad and the bid price)

is sent back to the exchange to take part in the auction. (3) Having received the bid

responses from the advertisers within a predefined time window, the ad exchange hosts

an auction and picks the ad with the highest bid as the auction winner. (4) Then the

winner is notified of this result and the price which will be charged by the ad exchange.

(5) Finally, the winner’s ad will be shown to the visitor along with the regular content

of the publisher’s site. It is commonly known that a long page-loading time will greatly

reduce the user’s’ experience, in terms of quality [16]. Thus, advertiser bidding agents

are usually required to return a bid in a very short time frame (e.g., 100ms). (6) The

user’s feedback (e.g., click and conversion) on the displayed ad is tracked and finally

sent back to the winning advertiser. A more detailed discussion concerning the whole

RTB eco-system is given in [14].

From the above interaction processes, it is obvious that, for DSPs, the most signif-

1The qualification of each ad for the bid request is based on ad size matching, the campaign’s target
rules, etc.
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Figure 1.4: A bidding strategy can be abstracted as a function mapping from the given bid
request (in a high dimensional feature space) to a bid price (a non-negative real or
integer number).

icant module is the bidding agent which enables advertisers to perform per-impression

bidding in real-time via computer algorithms [19]. The bidding strategy used here

can be abstracted as a function which takes in the information of a specific ad display

opportunity, i.e., the bid request, and outputs the corresponding bid price for each qual-

ified ad, as illustrated in Figure 1.4. How this bidding function should be designed

involves multiple factors, including the auction type [20], campaign’s lifetime, ad auc-

tion volume, the campaign budget and the campaign-specific key performance indicator

(KPI) - such as ad click number or advertising revenue. Calculating all these factors is

non-trivial. To the best of our knowledge, most studies on bidding strategies are still

restricted to truthful bidding for second price auctions [21, 4] and there is no previ-

ous work which describes a system which directly learns a bidding strategy in order to

optimise campaign performance in RTB display advertising.

1.3 Research Problems and Contributions

In this thesis, we focus on designing automatic algorithms which optimise the bidding

strategies for impression-level auctions, from the perspective of an advertiser or a DSP,

to improve the supported single or multiple campaigns’ advertising performance within

the auction volume and budget constraints. Advertising performance is measured by

specific KPIs, such as the number of campaign clicks, effective cost per click (eCPC)

and profit etc. In the model learning stage, the data bias problem caused by the ad auc-

tion selection is carefully handled in order to facilitate unbiased model learning and op-

timisation. Moreover, we explicitly consider the robustness of achieving the expected

KPIs [21] in relation to dynamic RTB market competition by embedding a feedback

control mechanism in the bidding agent. The overview of the research problems and

their connections are shown in Figure 1.5.



1.3. Research Problems and Contributions 27

Bid Request Data

Feedback DataFeedback Data

3. Remove Auction Selection Bias 4. Control Data Dynamics

p(Data|Bid)

Bid

DSP Bidding Agent

1. Single Campaign Bidding

2. Multi-Campaign Bidding

Time

KPI

RTB
Ad

Exchange

Ad Request

AdBid

Page

User
Campaign

Campaign

Campaign

Campaign

Ad

Figure 1.5: An overview of the research problems studied in this thesis and their links: (1)
single-campaign bid optimisation; (2) multi-campaign bid optimisation; (3) han-
dling auction selection bias for unbiased model learning; (4) feedback control
mechanisms for dealing with data dynamics.
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Figure 1.6: The proposed quantitative bidding: the logic of the bidding function only depends
on two (sets of) factors, i.e., the estimated utility and the cost of the ad display
opportunity.

1.3.1 Single-Campaign Bidding

The fundamental research problem addressed by this thesis is bidding strategy optimi-

sation for a single campaign, given its lifetime auction volume and budget. In such a

performance-driven advertising scenario, each ad display opportunity, i.e., bid request,

is quantified where its utility, e.g., the probability of a user clicking on the displayed

ad [22] or the expected revenue from this ad impression [23, 4], and cost, e.g., the cost

of winning this ad impression in the auction [24], are carefully estimated. Based on

the estimated utility and cost of each bid request, the concept of quantitative bidding is

proposed. This means that the logic of the bidding function should only depend on two

factors: the estimated utility of the ad display opportunity and the estimated cost to win

it. All other information can be regarded as independent with the bid price conditioned
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Figure 1.7: The DSP (or other intermediary roles) in display advertising ecosystem may face
the risk of buying CPM ad inventory from publishers and earning CPA payoffs from
advertisers. This is also possibly a good opportunity to make profits by mining
statistical arbitrage opportunities.

only by these two factors2, as illustrated in Figure 1.6. For example, a sneakers adver-

tiser would like to bid high on users with ages between 15 and 30; this is motivated

by the fact that users in such a segment are more likely to be converted to purchase

the sneakers after seeing the ads. This is quantified as a higher conversion rate. This

is analogous with a high frequency trading strategy in a stock/option market where the

trading action is wholly based on the quantified risks and the returns for each asset,

regardless of the specific asset attributes or fundamentals [25].

Using the estimated utility and cost, the optimal bidding function to maximise

the specific KPI under the target campaign budget and auction volume constraints is

derived. This is a functional optimisation framework [26] for each campaign, as will

be shown in Chapter 3. In such a framework, the optimal bidding function can be

directly derived without any prior restriction on the function form. To our knowledge,

such a methodology for bid optimisation has not been studied before in previous RTB

display advertising research.

1.3.2 Multi-Campaign Bidding

Furthermore, for a DSP serving multiple campaigns, each of which has a value of con-

version, an important research problem would be how to optimise the bidding strategy

so as to maximise the total profit from all these campaigns. More interestingly, such a

problem can be equivalently studied as a multi-campaign statistical arbitrage problem.

Suppose the campaigns all have cost-per-action (CPA) contracts, i.e., the advertisers

will pay a predefined value only when the DSP brings a conversion via advertising. In

2All the information needed to determine the bid has been reflected in the utility and cost factors, just
like the conditional independence in probabilistic graphic models.
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Figure 1.8: In a DSP, all the learning models serve the bidding agent to perform bidding on
the pre-bid full-volume data with the true data distribution. However, the user
feedback, e.g., clicks, conversions, and the market price of a particular potential ad
impression can be observed only if the DSP wins the corresponding auction. Thus,
the post-bid winning impression data with feedback labels are censored and biased
- this being caused by auction selection. As a result, the learning models trained
on such feedback data are biased when subsequently performing predictions or
bidding on the pre-bid full-volume data in the next stage.

such cases, the DSP could take the risk of buying ad impressions by the cost-per-mille

(CPM) pricing scheme and get the CPA return. This turns out to be a novel statistical

arbitrage mining problem for display advertising, as illustrated in Figure 1.7. The re-

search problem is to design a DSP-level bidding strategy to maximise the profit of the

DSP with a reasonable total budget and try to avoid negative profit cases.

In our proposed solution framework, in Chapter 4, the profit margin for each cam-

paign with the derived bidding strategy can be estimated, and in relation to this, a

portfolio-based solution [27] of auction volume (and budget) reallocation can be per-

formed to optimise the DSP-level profit. We propose to maximise the total expected

profit across multiple campaigns under a constrained risk by alternatively learning the

auction volume allocation across the campaigns and the DSP-level bidding function

in an EM-fashion (Expectation Maximisation). To the best of our knowledge, such

an EM-fashion optimisation solution has not been proposed in any previous literature

relating to computational advertising.

1.3.3 Unbiased Learning and Optimisation on Censored Data

On the model learning side, the labels of each data instance, e.g., the user’s feedback

(click or conversion) and the charged price for the ad impression, can be observed by the

advertiser only if her bid is high enough to win the auction [14], as shown in Figure 1.8.

Such an ad auction selection process causes a strong data bias which in turns results
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in model bias in supervised learning tasks such as user response prediction, market

price estimation3, and optimisation tasks, such as bid optimisation. Most existing work

on RTB model learning and optimisation fail to consider such data and model bias

problems [22, 4, 24, 21, 19].

To deal with such data bias problem, we propose a general learning framework

which explicitly models the underlying probability of generating each observed train-

ing data instance and incorporate this into the model learning or optimisation process.

Specifically, by estimating the market price distribution [28], it is feasible to calcu-

late the auction-winning probability of each auction with the historic bid. Based on an

importance sampling method, the unbiased data distribution can be recovered. The de-

rived learning algorithm is called “bid-aware” gradient descent, which incorporates the

historic bid price into the learning of each training instance to provide much less biased

and more effective learning models for RTB display advertising. Specifically, for bid

optimisation tasks, as will be shown in details in Chapter 5, we find the historic bid

price not only influences the learning rate for each data instance, but also the gradient

directions.

1.3.4 Feedback Control for Handling Data Dynamics

Besides the ability to deal with KPI optimisation on biased data, the robustness of

achieving the expected KPI is very important for advertisers. However, in practice such

robustness is non-trivial to guarantee due to high dynamics from the impression-level

bidding competition and user response behaviour [29]. To illustrate this, Figure 1.9

plots the four major KPIs — CPM (cost per mille), AWR (auction winning ratio), eCPC

(effective cost per click) and CTR (click-through rate) — over time for two example

campaigns in a real-world RTB dataset. All four KPIs fluctuate heavily across the time

under a widely-used bidding strategy [19]. Such instability may result in the risk of

unsatisfactory RTB advertising overall performance.

To address this problem, a feedback control mechanism specifically for RTB is

proposed in Chapter 6. Using this feedback control mechanism, the advertiser can

set a reference value for a specific KPI and the bidding agent will dynamically adjust

3According to [28]. From an advertiser’s perspective, the market price refers to the highest bid price
in an ad auction from all other competitors. The advertiser needs to bid higher than the market price to
win the auction. Market price estimation is also referred to as bid landscape forecasting [24].
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Figure 1.9: The instability of CPM (cost per mille), AWR (auction winning ratio), eCPC (ef-
fective cost per click), and CTR (click-through rate) for two example campaigns
without a controller. Dataset: iPinYou.

the bids to effectively control the KPI to this reference value. Furthermore, with the

assumption that, via feedback control, the reference KPI can be achieved, an optimisa-

tion framework is built to calculate the optimal reference value to set so as to optimise

the campaign click performance.

1.3.5 Summarised Contributions

The scientific contributions of this thesis are fourfold.

First, the RTB display advertising bidding strategy is abstracted as a function map-

ping from the bid request features to a bid price. For a single campaign, a general func-

tional optimisation framework is proposed to directly solve the optimal bidding func-

tion to maximise the predefined KPI with constraints of the campaign’s lifetime auction

volume and the budget - without any assumption of the bidding function’s form.

Second, for a DSP serving multiple campaigns, a joint optimisation framework is

proposed to optimise both the DSP-level bidding strategy and the auction volume al-

location across the campaigns to maximise the total profit from these campaigns. In a

special case, if the campaigns use the CPA pricing scheme and the DSP buys CPM ad

inventories, then there exist statistical arbitrage opportunities, and the proposed frame-

work is capable of maximising the DSP-level profit with a controlled risk.
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Third, a general training framework based on importance sampling is proposed to

handle the training data bias problem caused by the RTB auction selection. The novel

“bid-aware” gradient descent algorithm is derived and is shown to work flexibly in re-

lation to various supervised learning and optimisation tasks in RTB display advertising.

Fourth, a feedback control mechanism, embedded in the bidding agent, is pro-

posed to address the KPI instability problem caused by the highly dynamic user feed-

back and market competition situation which pertains to RTB display advertising. With

the efficacy of the feedback control mechanism, an alternative click optimisation frame-

work is further formulated.

Besides these significant scientific innovations, extensive and repeatable experi-

ments on large-scale real-world data have been performed to verify the effectiveness of

each proposed solution. More importantly, these proposed solutions are quite flexible

in relation to any models of the bid request utility and cost estimation, which means

that there would be only small engineering costs involved in their deployment to dif-

ferent real-world platforms. All the proposed bidding strategies, training schemes and

feedback mechanisms have been (once) deployed in one of three commercial DSP sys-

tems located in China and the United States and have provided significant performance

improvements over strong baselines.

In summary, the scientific and empirical contributions of this research are signifi-

cant in terms of moving towards optimal RTB display advertising performance.

1.4 Thesis Structure
The rest of this thesis is organised as follows. In Chapter 2, we perform a literature re-

view of related techniques and their connections to our research. In Chapter 3, we study

the fundamental single-campaign bid optimisation problem and propose a general func-

tional optimisation framework to derive the optimal bidding function. In Chapter 4, we

discuss the advanced multi-campaign bid optimisation in the statistical arbitrage min-

ing scenario. In Chapter 5, we propose a bid-aware learning/optimisation framework

to reduce the model bias caused by the ad auction selection. In Chapter 6, to achieve

robust advertising performance against RTB data dynamics, we propose a feedback

mechanism to control the advertising KPIs via adaptive bid adjustment. Finally, we

conclude this thesis and discuss future research plans in Chapter 7.
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Chapter 2

Related Work

This chapter covers various techniques which form the background of the research

problems or the basis of proposed solution models. In Section 2.1, the background of

display advertising is discussed. In Section 2.2, the related research work on keyword

bid optimisation in sponsored search is discussed, which provides a comparison to the

bid optimisation techniques in RTB display advertising discussed in Section 2.3. The

latter supports the modelling parts of Chapters 3 and 4 and the experiment comparison

in Chapters 3-6. Later in Section 2.4, financial risk management models are discussed,

which serve as basis of the proposed risk-sensitive statistical arbitrage models in Chap-

ter 4. Then a survey of research work on learning and evaluation on biased or censored

data is provided in Section 2.5 to support the technique background of the solutions in

Chapter 5. In Section 2.6, the feedback control theory is discussed, which supports the

basis of the proposed feedback control system in Chapter 6.

2.1 Display Advertising
Display advertising is one of the major types of online advertising that comes in several

forms, including banner ads, rich media and more. Unlike text-based ads in sponsored

search, display advertising relies on elements such as images, audio and video to com-

municate an advertising message with the users [11]. It plays a crucial role in the

online marketing for both branding and performance-driven campaigns. According to

the IAB’s report in 2015 [5], display advertising accounted for $18.9 billion (38% of

total) revenue during 2014.

Before the emergence of the auction-based RTB market, the transactions between

advertisers and publishers of display advertising were mostly made by direct negoti-
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ations or through ad networks [14]. The user targeting settings were normally based

on inferred user demographics [30]. Some transactions guaranteed the ad impression

volume within a certain period, typically several weeks or months, called guaranteed

delivery [31], and some were based on CPM pricing scheme but did not guarantee the

delivered volume, called non-guaranteed delivery [15]. Before the popularisation of

RTB in 2011 [17], most research work on display advertising optimisation was about

ad inventory allocation across campaigns on behalf of publishers in order to maximise

the overall revenue or other advertising KPI with the guaranteed delivery constraints

[32, 33, 34, 35] using linear programming techniques. The authors in [31] further pro-

posed an automatic model for pricing the guaranteed-delivery contracts based on the

prices of the targeted individual user visits in a spot market.1 Generally speaking, such

a conventional display advertising trading mechanism is of large granularity on user tar-

geting and the advertisers cannot perform acquisition on demand thus it is of relatively

low efficiency.

With the rise of ad exchange and RTB in 2011, a lot of work emerged on auction-

based optimisation for display advertising [17]. RTB mechanism enables advertisers to

bid for an individual ad impression with a specific user in a specific context [14], thus

immediately solves the inefficiency problem of conventional ad trading mechanism of

display advertising.

On the advertiser side, the bid optimisation for campaign performance improve-

ment is studied. The authors in [36] proposed a budget pacing scheme embedded in a

campaign conversion revenue optimisation framework to maximise the campaign rev-

enue. The authors in [19] focused on a bidding function formulation to maximise the

campaign clicks. Bid landscape forecasting models [24] were studied to estimate the

campaign’s impression volume and cost given a bid price. A detailed discussion of

research work on bid optimisation of RTB display advertising will be given in Sec-

tion 2.3.

On the publisher side, the placement-level reserve price optimisation was stud-

ied in [37], where the authors considered the reaction between the publishers’ reserve

1Here the term “spot market” comes from finance, which originally means a public financial market
where the commodities are traded for immediate delivery. In display advertising, the traded commodities
are ad display opportunities. The “spot market” here means display advertising marketplaces with non-
guaranteed delivery contracts or RTB ad auctions.
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price and the advertisers’ bid price and modelled this problem from a game-theoretic

prospective. The authors in [38] suggested that the publisher could act as a bidder on

behalf of its guaranteed contracts so as to make smart inventory allocations among the

guaranteed and non-guaranteed delivery contracts. One step further, the authors in [39]

proposed a mathematical model of allocating and pricing the future ad inventory be-

tween guaranteed delivery contracts and RTB spot markets. Their solution assumed

that advertisers are risk-averse and prefer guaranteed ad inventories if there is positive

profit. Also the advertisers’ purchase behaviour is based on the option price and the

starting date of the guaranteed contracts.

2.2 Bid Optimisation for Sponsored Search
As auctions have been a major trading mechanism of online advertising, bid optimi-

sation becomes a crucial problem for advertisers [40, 41, 42, 19]. Nonetheless, most

research has been so far limited to keyword auction in the context of sponsored search

[10, 43, 44]. Typically, under the scenario of pre-setting the keyword bids (not impres-

sion level), the keyword utility, cost and volume are estimated and then an optimisation

process is performed to maximise the advertisers’ objectives (KPIs) [45, 46, 47, 48].

Specifically, the keyword utility is normally evaluated as the expected CTR on a spe-

cific ad slot in the search engine result page of this keyword; the cost is estimated as

the market competitiveness on bidding this keyword; the volume of a keyword is based

on the estimation of the volume of users’ relevant search queries [48, 45]. Given a

campaign budget as the cost upper bound, optimising the advertiser performance is de-

fined as a budget (allocation) optimisation problem [40, 49]. Furthermore, the authors

in [50, 51] focused on the bid generation and optimisation on broad matched keywords,

where the user’s query keywords do not exactly match the bid keywords. In the solu-

tion, query language features were leveraged to infer the relevance between the search

query and bid keywords, which then helped estimate the optimal bid price of the broad

match. Extending the bid optimisation to the multi-campaign level, the authors in [52]

proposed to jointly optimise the keyword-level bid and account-level budget allocation

under a multi-campaign sponsored search account.

Some recent work focused on periodically changing the pre-setting keyword auc-

tion price, taking into account the remaining budget and lifetime. For instance, in
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[28, 53], Markov decision process was used to perform online decision in tuning the

keyword bid price, where the remaining auction volume and budget acted as states and

the bid price setting as actions. In [47] authors proposed to calculate a bid alloca-

tion plan during the campaign lifetime, where the bid price on each keyword was set

in different discrete time unit by considering the market competition and the CTR on

different ad positions. However, none of the work evaluated per-impression auction

because in sponsored search all the bids are associated with keywords and impression-

level features are seldom considered, especially for advertisers and their agencies.

Moreover, in sponsored search bid optimisation, a search engine plays as two

roles: setting the keyword bids as well as hosting the auctions. The objective function

could be diverted to optimise the overall revenue for the search engine [54, 55, 56, 57],

rather than the performance of each advertiser’s campaigns.

2.3 Bid Optimisation for RTB Display Advertising
The bid optimisation problem for RTB display advertising is fundamentally different

from that for sponsored search. First, the bids are not determined by pre-defined key-

words in a search session, but are based on impression-level features in a general web

or mobile page view [14]. In addition to setting up their target rules, advertisers or

DSPs need to estimate the value of each ad impression that is being auctioned in real

time and accordingly make the bid decision for each ad auction [19]. As such, the bid

optimisation is never just to find a bid value for a keyword or a part of user volume

but to design an effective bidding function to calculate the bid values for billions of

different ad auctions daily. Second, in RTB, CPM pricing scheme is generally used

[19, 14], which is different from the CPC pricing scheme in sponsored search. Win-

ning an impression directly results in the cost. Thus, the dependencies over various

effectiveness measures such as eCPC2, CPM, campaign lifetime volume and budget

constraints need to be jointly studied in a single framework. Third, DSPs act on behalf

of the advertisers and optimise the served campaigns’ performance while the search

engine primarily serves for itself and the main goal is to maximise the total revenue.

For DSPs, the observed auction data and user feedback data is partial – only the data

2Effective cost per click (eCPC) - The cost of a campaign divided by the total number of clicks
delivered.
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related to the served campaigns is observed, while for search engines the whole data

from all campaigns can be observed [52].

With the emergence of ad exchanges for display advertising in 2009, dynamic

bidding strategies start to be investigated. In [42], the authors proposed an algorithm

that learned winning bids distribution from full or partial information of auctions in

display advertising. The algorithm then made bidding decisions to achieve the best

delivery (i.e., number of impressions) with the budget constraint. In [21], the bid price

from each campaign could be adjusted by the publisher or the supply-side platform

in real time and the target was to maximise the publisher’s revenue. Borrowing the

idea of the optimal truth-telling bidding in sponsored search [10], a basic and reason-

able bidding strategy is to bid the estimated true value for each ad impression. For

performance-driven campaigns, the predefined true value is normally based on actions,

such as a click or a conversion. As such, the expected true value for a specific impres-

sion is estimated as the action value times the auction rate, e.g., click value times CTR

(click-through rate) and conversion value times CVR (conversion rate) [4, 21]. How-

ever, the truth-telling bidding strategy is optimal only when the budget and auction

volume are not considered. With the campaign lifetime auction volume and budget

constraints, the optimal bidding strategies are probably not truth-telling. Extending

from the truth-telling bidding strategy, the authors in [19] proposed the generalised

bidding function with a linear relationship to the predicted CTR for each ad impression

being auctioned. Compared to [19], the analytic solution from our proposed functional

optimisation framework (in Chapter 3) shows that an optimal bidding function could

be non-linear. The non-linearity is closely related to the bidding landscape (i.e., the

market price distribution [28]), but is loosely correlated with the prior distribution of

the bid request features. In a recent study [58], the authors proposed to set the bid price

for each ad impression proportional to the lift (instead of the absolute value) of the user

conversion rate after seeing the ad. Their empirical study showed such a lift-based bid-

ding strategy would bring more user conversions to the advertisers but the DSP would

be unfortunately attributed with fewer user conversions because of the disadvantages

of the last-touch conversion attribution mechanism [59].

As a new advertising paradigm, other problems related to the bidding in RTB dis-

play advertising have also been studied. In [36], the authors focused on the pacing
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problem, where the target was to smoothly deliver the campaign budget. In [4], the

sparsity problem of conversion rate estimation was handled by modelling the conver-

sions at different selected hierarchical levels. In [2], the authors studied the evaluation

measures of the display advertising performance and they found the site visit turned to

be a better proxy than the user click. In addition, there is some work on the ad exchange

communication problem [60, 16]. More discussion on related research of RTB can be

found in [14].

2.4 Risk Management Models and Applications
Risk is a consequence of action taken in spite of uncertainty [61]. And the objective of

risk management is to assure uncertainty does not to some extent deflect the business

from its goals [62, 63]. Computational advertising, as one of the advertising paradigms,

is associated with a certain level of risk of deficit, no matter how high ROI expectation

it could bring. The risk comes from the dynamics of advertising market and the user

online behaviour [64].

In Chapter 4, a risky business in RTB display advertising, called statistical arbi-

trage mining, will be studied, where the intermediary agent has the possibility of a loss

when running campaigns with contracts of performance-based pricing schemes. As

such, risk management is a key feature in the effective solution.

In this section, modern portfolio theory, the quantitative approaches of risk man-

agement, and its applications will be discussed. Then, the statistical arbitrage problem

in finance and its links with the research in Chapter 4 will be discussed.

2.4.1 Modern Portfolio Theory

Modern portfolio theory (MPT), Harry Markowitz’s Nobel Prize work [65], originates

from modelling uncertainty of the return of multiple financial asset combinations. It is

desirable to have quantitative methods to measure such uncertainty (or risk) and model

it into the decision making of investment [66]. In MPT, the variance of the return of

each asset is modelled as its risk. Then the risk and expected return of a portfolio of

invested assets can be quantified based on the funding allocation, the mean return of

the assets and the covariance matrix of them [65, 66]. MPT utilises the mean-variance

analysis to make an investment portfolio for any tradeoff between the risk and the
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expected return, or w.r.t. a reference investment such as bank deposits [67]. MPT

is a model-free quantitative framework that can incorporate different risk and return

estimation models. With such advantages, MPT has been adopted in almost everywhere

of financial investment [68].

Recently, the ideas of risk management have been introduced to the information

retrieval area to improve the model robustness or capture the users’ satisfaction psy-

chologically [69, 70, 71, 72, 73, 27, 74].

Risk-sensitive models were proposed to measure the uncertainty of document

ranking performance in web search tasks. The authors in [69] proposed an asymmet-

ric loss between the estimated relevance and the true relevance of a query-page pair

to explicitly punish more on the overestimation cases. The authors in [70] studied the

risk-sensitive evaluation measure when comparing a new document ranking model to

the existing baseline model. Specifically, the downside risk factor of the new model was

defined as the averaged performance reduction due to using the new model compared

to the baseline model. The risk factor was then used for model selection with dif-

ferent risk-averse levels. The risk-sensitive optimisation models for query expansion

were studied in [71], where the authors used the variance of relevance of the expanded

queries as the risk and an objective with the balanced relevance expectation and risk to

make the expanded queries of both high quality and low risk of irrelevance. In [72],

the idea of leveraging MPT to optimise document ranking was formally presented. For

a given query, the mean and variance of the relevance of each document were defined

as the expected return and risk, respectively; the probability of the user noticing each

document of the search engine result page was regarded as the funding allocation. The

optimisation objective was again the balance between the risk and return with the risk-

averse level as the hyperparameter of the model.

Moreover, for recommender systems, the risk of delivering an item or a list of

items is also significant. However, quite little work explicitly models the risk to im-

prove the performance of recommender systems. In [73], the idea of MPT for ranking

documents [72] was borrowed to collaborative filtering (CF) to adaptively diversify the

recommended items. Specifically, in a matrix factorisation CF framework, the vari-

ance of each user’s latent feature vector was defined by its averaged divergence from

the rated items’ latent feature vectors. As such, the mean and variance of a rating
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from a user to an item could be derived. Then a risk-return balanced objective was

optimised to rank the items. As a result of risk reduction, the items were naturally di-

versified even though the item categorical information was never used in the training

stage. Furthermore, the authors in [27] proposed a risk-sensitive switching model be-

tween personalised and non-personalised recommendation lists, which were regarded

as two portfolios. Probabilistic matrix factorisation [75] was adopted to naturally model

the mean and variance of user-item ratings. Compared with [27], [73] mainly focused

on diversification of recommended items instead of carefully modelling the individ-

ual item risk and the decision making of whether to personalise. Furthermore, the

risk-sensitive approaches were extended to modelling privacy and security factors in

recommendation. The risk concepts were naturally applied in financial item recom-

mendation scenario [76, 77], where the uncertainty of the return from each investment

opportunity (or startup company) was modelled into the recommendation objective of

an MPT framework. Moreover, in [74], the security risk of each mobile application

was considered and the proposed recommendation objective balanced the mobile ap-

plication popularity and the users’ security preferences using MPT.

To our knowledge, there is almost no work adopting MPT into the profit opti-

misation with risk diversification in online advertising. In [78], the authors studied a

batch-mode ad selection from a publisher’s perspective in order to maximise the to-

tal profit. MPT was adopted to model the risk of selected ads and their correlations.

Compared to the RTB display advertising scenario with bidding and auction selection,

the studied scenario in [78] is closer to that in recommender systems. In Chapter 4, a

novel way of applying MPT is proposed and it is naturally integrated into our bidding

strategy designing and optimisation framework to balance the risk and expected reward

of a package of ad campaigns in a competitive RTB display advertising market.

2.4.2 Statistical Arbitrage

In financial markets, as a trading strategy, statistical arbitrage is a quantitative approach

to security trading. It utilises statistical methods with high-frequency trading systems to

detect statistical mispricing of securities caused by market inefficiency to make profit

with a large number of transactions [79]. For the statistical arbitrage opportunities,

the payoff is stochastic with a positive expectation and a certain variance, where the
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optimal action is mainly based on portfolio selection [80, 81].

Drawing an analogy with the statistical arbitrage of security pairs trading in fi-

nance [82], for the statistical arbitrage mining problem in RTB display advertising as

will discussed in Chapter 4, the campaign’s CPA contract and its performance in RTB

spot markets can be regarded as a pair of correlated securities. Statistically speaking,

if the campaign’s performance in an RTB spot market ensures that the average cost to

acquire a conversion (i.e., eCPA) is lower than the payoff from the CPA contract, then a

statistical arbitrage opportunity exists. Such an opportunity could also be considered to

be caused by informational inefficiency of the advertising market where the advertisers

fail to lower their CPA payoff when their campaigns in the RTB spot market have a

good performance.

The authors in [83] studied auction mechanisms considering arbitrage between

CPC and CPM pricing schemes. The study aimed at designing an auction mechanism

on behalf of the ad exchange and yielding truthful bidding from advertisers and truthful

CTR reporting from arbitrageurs. By contrast, the research in Chapter 4 aims at devel-

oping a statistical method for mining and exploiting arbitrage opportunities between

CPA and CPM on behalf of a DSP.

2.5 Learning on Biased or Censored Data
As pointed out in [84], direct online evaluation and optimisation for a new learning

model solution are expensive and risky, which is also a dilemma in online advertising

[85]. By contrast, it is cheap and risk-free if the model can be optimised and evaluated

using offline historic data that was previously collected using another model. The au-

thors in [86] proposed to use historic data for unbiased offline evaluation of news article

recommendation model by historic data replay and rejection sampling. Prerequisites of

this approach are that the previous model generating the training data (called explo-

ration model) is known, and that it has sufficiently explored all actions in the support of

the evaluated policy [87]. For cases where historic data is collected using a biased (non-

uniform) or non-stationary policy, the authors in [88] suggested an adaptive rejection

sampling approach. For cases where the exploration model is unknown, an evaluation

scheme with the estimated propensity scores and a lower bound of the data observation

probability was proposed in [89]. In the CTR estimator learning and bid optimisation
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based on the historic data with the observed market prices and user feedback in RTB

display advertising, the exploration model is known as the historic bid price is available

for each bid request.

Handling the missing data is a well-studied problem in machine learning with

various applications [90], such as recommender systems and online advertising.

A classic application in recommender systems is item recommendation with im-

plicit feedback [91, 92], where the observations are only (implicit) positive instances,

such as the users’ movie watching (not rating) records and web browsing history etc.,

while the unobserved positive and negative instances are mixed together. The authors

in [91] proposed a uniform, a user-oriented and an item-oriented sampling methods

of negative items to build the data matrix for learning collaborative filtering models.

The authors in [92] further proposed user response models to learn the missing data

distribution instead of regarding it as completely random observations. An intuitive

motivation of this work is that the observation of a user-item rating behaviour depends

on the rating score. For example, a user is more likely to rate an item if she likes it.

The proposed missing data model re-estimated the latent distribution of the data and

the learned models were demonstrated to be more effective in the empirical study.

In online advertising, the market price data and user feedback data are censored

because of the auction selection, i.e., the data instances associated with higher bid

prices are more likely to win the auction, thus to be observed [24]. For the market

price distribution modelling problem, the authors in [28] leveraged a non-parametric

survival model to incorporate the partial information from the losing cases, i.e., only

knowing the market price is higher than the bid price rather than the exact value, for

less unbiased estimation in sponsored search. In a recent work [93], the authors pro-

posed to use censored linear regression to model both the observed winning data and

the censored losing data. Specifically, the likelihood of the observed market price was

modelled with Gaussian noise, and the likelihood of the censored data was modelled

with the probability of the predicted market price higher than the bid price. In order

to collect comprehensive data observations to train less biased CTR estimation mod-

els, the authors in [94] added a covariance factor periodically to the Baysian Probit

regression weight vectors to incorporate dynamics in the prediction stage. However,

they failed to consider the data bias in the learning or optimisation stage. Compared
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to the discussed work, the main novelty of the research in Chapter 5 lies in directly

incorporating the auction-selection data bias into the learning process to perform the

“bid-aware” gradient descent training algorithm to learn an unbiased model.

2.6 Feedback Control Theory and Applications
As defined in [95], a “dynamic system” refers to the system with its behaviour changes

over time, normally in response to different external force or stimulation as input sig-

nal. In a situation with two or more dynamic systems interacting with each other, their

dynamics are strongly coupled. This situation refers to “feedback”. Feedback con-

trol theory deals with the reaction and control of dynamic systems from feedback and

ambient noise [96].

Figure 2.1 briefly shows the interactions between the controller and the dynamic

system. The usual objective of feedback control theory is to control a dynamic system

so that the system output follows a desired control signal, called the reference, which

may be a fixed or changing value. To do this, a controller is designed which monitors

the output and compares it with the reference. The difference between actual and de-

sired output, called the error factor, is applied as feedback from the dynamic system to

the control system. With the specific control function, the controller outputs the con-

trol signal, which is then transformed by the actuator into the system input signal sent

back to the dynamic system. These processes form a feedback control loop between

the dynamic system and the controller.

There were many instances of feedback control in the ancient history [97]. The

most typical example was to exploit the feedback mechanism to improve the accuracy

of water clocks [98]. In modern age, with the invention of steam engine in 18th century

and the later formal concept proposal in 1930’s from Bell Labs [99], automatic control

emerged and was subsequently employed routinely with other system components such
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as actuators and sensors [100]. Now feedback control techniques have been widely

used in various engineering applications for maintaining some signals at the predefined

or changing reference values, such as robot navigation [101] and indoor temperature

maintenance [102].

Recently, feedback control techniques have been leveraged in intelligent systems.

There are a few research papers on recommender systems leveraging feedback con-

trollers for performance improvement and maintenance. In [103], a rating updating

algorithm based on the proportional-integral-derivative (PID) controller was developed

to exclude unfair ratings in order to build a robust reputation system. The authors in

[104] applied a self-monitoring and self-adaptive approach to perform a dynamic up-

date of the training data fed into the recommender system to automatically balance

the computational cost and the prediction accuracy. Furthermore, the authors in [105]

adopted the more effective and well-studied PID controller to the data-feeding scheme

of training recommender systems, which was proven to be practically effective in their

studied training task.

Compared to the work of controlling the recommender system performance by

changing the number of training cases, the studied control task in RTB (Chapter 6)

is more challenging, with various dynamics from advertising environment such as the

fluctuation of market price, auction volume and user behaviour patterns. In [21], the

authors discussed multiple aspects in a performance-driven RTB system, where the im-

pression volume control was one of discussed aspects. Specifically, a waterlevel-based

controller and a model-based controller were implemented to control the impression

volume during each time interval. In [106], feedback control was used to perform

budget pacing in order to stablise the conversion volume. Compared to [21, 106], the

research work in Chapter 6 is a more extensive study focused on the feedback con-

trol techniques to address the practical instability problem in RTB. Besides waterlevel-

based controller, the more sophisticated PID controller is extensively investigated. Re-

garding the controlled KPIs, the control tasks on both eCPC and AWR are studied,

which are crucial KPIs for performance-driven campaigns and branding-based cam-

paigns, respectively. In addition, an effective model to calculate the optimal eCPC

reference to maximise the campaign’s clicks using feedback controllers is proposed.



Chapter 3

Single-Campaign Optimal Real-Time

Bidding

3.1 Background and Motivation
Demand-Side Platforms (DSPs) help advertisers manage their campaigns and perform

their real-time bidding activities. Figure 3.1 briefly illustrates the role of a DSP in

the RTB eco-system and some of its important modules. In RTB display advertising,

once a user visits a web page and an ad impression is to be created, an ad request

for the impression is immediately triggered by the publisher (usually the Supply-Side

Platform, a.k.a. SSP, a technology platform to manage publishers’ ad inventories) and

then sent to the DSPs via an ad exchange. On behalf of an advertiser, the DSP will

compute a bid for this impression and return a bid response to the exchange, where a

second price auction is usually held to select the winner. Finally the winner is notified

and her ad is displayed to the user through the publisher.

More specifically, after receiving a bid request, the DSP will find all eligible ad

creatives from all campaigns1 and compute a bid for each of them. The DSP uses both

contextual [107] (e.g. domain, web page, keywords, time and date, geographical loca-

tion, weather, language, operating system, browser, etc.) and behavioural [108] (e.g.

search, browsing, and purchase history, occupation, income, sentiment, etc.) data to

compute a bid. It is common and usually encouraged that advertisers buy user inter-

est segments from third-party data providers [18], e.g., a data management platform

1The eligibility of the creative and campaign means their target combinations match the bid request,
such as placement size, user demographics, geographical location, language, etc. It acts as pre-filtering
rules before the bidding process.
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(DMP). Note that although we confine our work to the cost-per-mille (CPM) pricing

scheme which is commonly adopted in RTB, other less popular models are also avail-

able (e.g. cost-per-click and cost-per-action).

This bid calculation (see the bidding engine in Figure 3.1) is the most important

problem for a DSP. The solution to this problem is referred to as a bidding strategy. In

pure second price auctions [109] for strategic competitors, theoretically the dominant

strategy for advertisers is truth-telling: to bid their private values [10]. When facing a

bid request, a DSP will evaluate the value of the impression i.e. to estimate the click-

through/conversion rate (CTR/CVR) and multiply it by the value of a click/conversion

[4]. Many advertisers simply set this value as their bid [19, 4] and keep using it through-

out a campaign’s lifetime. However, when computing a bid, practical constraints need

to be taken into account including the bid landscape (the auction winning rate against
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the bid price), total budget and the campaign’s remaining lifetime. With such practical

constraints, the optimal bidding strategy is not truth-telling any more. These consid-

erations enable the DSP to optimise towards the overall performance of a campaign

(usually quantified via a Key Performance Indicator, KPI, e.g. the number of clicks,

conversions or total revenue) using stochastic methods rather than assuming advertis-

ers are strategic and have a private “true” value per impression [28].

In this chapter, the impression-level bidding strategy is formulated as a function

that maps the individual impression evaluation to the bid value. A novel functional

optimisation framework is proposed to find the optimal bidding function: (i) given the

budget constraint and the campaign’s lifetime, and (ii) taking into account various data

statistics such as the bid landscape [24] and the prior distribution of the bid request fea-

tures. The derived analytic solution indicates that the auction winning function (from

bid landscape) plays a more critical role in shaping the bidding function, whereas the

distribution of the features is less correlated. Simple winning functions derived from

practical bidding data result in optimal bidding functions that are non-linear and in a

concave form. Unlike the linear function previously proposed [19], the derived bid-

ding function encourages to raise bids for impressions with low estimated value be-

cause compared to higher evaluated ones, those are more cost-effective and the chance

of winning them are relatively higher. We also show that the linear bidding function

can also be derived from our proposed functional optimisation framework under the

(strong) assumption of the winning function being linear. Apart from the theoretic

insights, both offline experiments on a real dataset and online experiments on a com-

mercial DSP show that the proposed bidding strategies outperform the strong baselines

that have been considered in previous work.

To summarise, the contributions of this chapter are listed as follows. (i) We pro-

pose a novel functional optimisation framework to find the optimal bidding strategy

given a single campaign in RTB display advertising. (ii) Based on the auction winning

function built from the data, the derived optimal bidding function from our framework

is in the concave form against the KPI of each impression, which to our knowledge has

not been studied in previous literature. (iii) Extensive offline and online experiments

are conducted to verify the effectiveness of our proposed bidding strategies.
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Table 3.1: Notations and descriptions.

Notation Description

xxx The bid request represented by its features.
px(xxx) The probability density function (p.d.f.) of xxx.
θ(xxx) The predicted KPI if winning the auction of xxx. It could be the

CTR, CVR etc.
pθ (θ) The probability density function of KPI θ .

B The campaign budget.
T The estimated number of bid requests during the lifetime of the campaign.

b(θ(xxx),xxx) The bidding strategy is defined as function b().
Assume a generative process: xxx→ θ → b, so b(θ(xxx),xxx)≡ b(θ(xxx)).
See the text. We occasionally use notation b to refer to a specific bid value.

w(b(θ(xxx)),xxx) The probability of winning the bid request xxx with bid price b(θ(xxx)).
We approximate it by the dependency assumption: xxx→ θ → b→ w,
so w(b(θ(xxx)),xxx)≡ w(b(θ(xxx))). See the text for details.

c(b(θ(xxx)),xxx) The expected cost after winning the bid request xxx with bid price b(θ(xxx)).
Like w(b(θ(xxx)),xxx), approximated by the dependency assumption:
xxx→ θ → b→ c, so c(b(θ(xxx)),xxx)≡ c(b(θ(xxx))). See the text for details.

3.2 Problem Definition
Each view of a publisher page triggers an ad auction for each ad slot on that page,

which, in real time, generates a bid request for each targeting campaign. Given a bid

request, along with features covering user, ad, context, and auction information, the

DSP bidding engine decides whether to participate this auction, and if participates, re-

turns a bid for this auction. The bid price depends on many factors. It is not only

influenced by the predicted KPI value of the ad impression being auctioned, such as

CTR and CVR, that the advertiser wants to achieve, but most importantly, related to

many other factors such as the budget constraint, the probability of auction winning,

and estimated cost after winning this particular ad impression. In this section, we for-

mulate the problem of optimally generating real-time bids as a functional optimisation

problem and propose a novel optimisation framework by taking all these factors into

account. We show that solving it leads to a practical bidding function.

To launch a campaign in display advertising, the advertiser uploads their ad cre-

atives, sets the targeting rules (e.g. the user segmentation, time, location) and the cor-

responding budget for the lifetime of the campaign.

After the targeting rules are set, before optimising the bid, the advertiser would

first spend a small amount of budget to bid random impressions in order to learn some

statistics (to serve as the training data for the initial model). For instance, as studied in
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[110, 24] the auction volume forecast (e.g. bid landscape prediction) module is usually

employed to estimate auction statistics w.r.t. the current setting and budget constraint.

More specifically, we denote the estimated number of bid requests for the targeting

rules during the lifetime as T and the campaign budget as B. Also, each bid request

is represented by a high dimensional feature vector xxx, where its entries consist of two

sets of features: one is exacted from the campaign ad itself, and the other is related

to the impression being auctioned, e.g., the cookie information of the underlying user,

location, time, user terminal, browser, the contextual information about the web page,

etc.2 We use px(xxx) to denote the prior distribution of the feature vectors which match

the campaign targeting rules. For each campaign, the advertiser can use the historic

bidding and feedback data to predict the KPI for the ad impression. We denote the

predicted KPI of a bid request xxx as θ(xxx). Note that different advertisers might consider

different KPIs. For example, if the goal of a campaign is to maximise the direct visits,

i.e. the total number of clicks, then θ(xxx) denotes the predicted CTR for that impression.

If the goal of a campaign is for conversions, then θ(xxx) denotes the predicted CVR for

that impression. Moreover, we denote pθ (θ) as the prior distribution of the predicted

KPI per bid request. The notation descriptions are given in Table 3.1.

Once the major statistics are gathered, the problem now is to design an optimal

bidding strategy such that a certain KPI objective over the budget will be maximised.

For the sake of clarity, the number of acquired clicks during the campaign’s lifeime is

studied as the objective here, while a natural extension to covering alternative KPIs and

their experimental results are given later in Section 3.5.5.

Mathematically, the optimal bid generation problem is formulated as a functional

optimisation problem:

b()ORTB = argmax
b()

T
∫

xxx
θ(xxx)w(b(θ(xxx),xxx),xxx)px(xxx)dxxx (3.1)

subject to T
∫

xxx
c(b(θ(xxx),xxx),xxx)w(b(θ(xxx),xxx),xxx)px(xxx)dxxx≤ B.

where b(θ(xxx),xxx) denotes the bidding function we intend to obtain. It depends on the

2Commonly, xxx is encoded as a high-dimensional sparse binary vector, where each entry is set as 1
only when the corresponding field takes the particular category, e.g., city=London, weekday=Sunday
etc. Furthermore, the feature space could be compressed by hashing tricks [111, 112].
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feature vector xxx and the estimated CTR θ(xxx). w(b,xxx) denotes the estimated winning

rate for a bid price b given the feature xxx of the impression auction. In Eq. (3.1), the

product of θ(xxx) and w(b,xxx) produces the probability of click given an impression auc-

tion. Marginalising it over the feature space yields the expected click per auction. Note

that in practice, the impression auctions arrive sequentially, so one can potentially make

a sequential bidding rule by taking a feedback loop and employing a dynamical optimi-

sation model such as partially observable Markov decision processes (POMDPs) [113].

However, generally these models are computationally expensive thus not feasible in our

case, where bid decisions are usually required to be returned within 100ms. We, thus,

take a two-stage approach, i.e., learning statistics such as px(xxx) and T , then optimising

the bids. As a practically feasible assumption, we consider a simple static model and

follow a widely accepted assumption in the previous bid optimisation work [53, 21]:

each time the feature vector is independently generated from an identical distribution

(i.i.d. assumption). Such assumption is convincing at least in the case of a short period,

where the market bid landscape and general user behaviour patterns can be regarded as

unchanged.

The constraint is formulated by the cost function c(b(θ(xxx),xxx),xxx) for each bid re-

quest and the campaign total budget B. RTB normally applies the second price auction

(pay the second highest bid) for the majority of ad volume. However, due to the re-

serve price setting, the cost is quite often higher than the second highest bid [37, 14].

In some first-price auctions or second-price auctions with high soft reserve price set-

ting, the winner still pay the bid price. In order to deal with these various auction

cases together, the cost function in our research is defined as the upper bound of the

cost, i.e., the bid price b(θ(xxx),xxx). Specifically, the product of the cost and the winning

rate produces the expected cost per auction. The functional optimisation framework is

rewritten as

b()ORTB = argmax
b()

T
∫

xxx
θ(xxx)w(b(θ(xxx),xxx),xxx)px(xxx)dxxx (3.2)

subject to T
∫

xxx
b(θ(xxx),xxx)w(b(θ(xxx),xxx),xxx)px(xxx)dxxx = B.

Marginalising it over the feature space and multiplying by T yields the upper bound

of the total cost. Here the constraint is formulated as an equation between the upper
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bound of the total cost and the budget because (i) the left part of the constraint is the

upper bound of the total cost, which means the total cost should not be higher than the

budget; (ii) the upper bound of the total cost should not be lower than the budget, as the

left cost could always be utilised to generate value to improve the KPI.

To make the above problem solvable, we consider sequential dependency among

the variables for each auction by making the following assumptions:

• Assume b(θ(xxx),xxx) ≡ b(θ(xxx)). That is: xxx→ θ → b. This allows us to largely

reduce the functional decision space for the optimisation, while still gaining the

dependency of the impression features through the KPI estimation θ(xxx). This

dependency follows the idea of the quantitative method in finance: the bid price

for a certain asset only depends on a quantified utility of the asset, which elimi-

nates the dependency from any specific attributes of the asset. The previous work

in [19] also adopts a similar dependency (bid only depends on CTR). In auction

theory, the bidding is also based on the valuation of the item [109, 114].

• Assume w(b,xxx)≡w(b). That makes the feature xxx only influence the winning rate

via its generated bid: xxx→ θ → b→ w. The assumption is sensible as we found

out (shown in Section 3.4.1) that the dependency over the bid request features

is far less than the bid price. Previous sponsored search bid optimisation work

[47, 52] also makes such an assumption on winning keyword ad slots.

With above two assumptions, the optimisation problem is rewritten as

b()ORTB = argmax
b()

T
∫

xxx
θ(xxx)w(b(θ(xxx)))px(xxx)dxxx (3.3)

subject to T
∫

xxx
b(θ(xxx))w(b(θ(xxx)))px(xxx)dxxx = B.

Furthermore, since there is a deterministic relationship between xxx and θ(xxx),

dθ(xxx) = ||∇θ(xxx)||dxxx, (3.4)
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the relationship between their p.d.f. is also determined:3

pθ (θ(xxx)) =
px(xxx)
||∇θ(xxx)||

. (3.5)

Thus we can focus on the KPI variable θ via performing integration by substitu-

tion:

∫
xxx

θ(xxx)w(b(θ(xxx)))px(xxx)dxxx =
∫

xxx
θ(xxx)w(b(θ(xxx)))pθ (θ(xxx))||∇θ(xxx)||dxxx

=
∫

θ(xxx)
θ(xxx)w(b(θ(xxx)))pθ (θ(xxx))dθ(xxx)

=
∫

θ

θw(b(θ))pθ (θ)dθ , (3.6)

and similarly on the cost upper bound:

∫
xxx

b(θ(xxx))w(b(θ(xxx)))px(xxx)dxxx =
∫

xxx
b(θ(xxx))w(b(θ(xxx)))pθ (θ(xxx))||∇θ(xxx)||dxxx

=
∫

θ(xxx)
b(θ(xxx))w(b(θ(xxx)))pθ (θ(xxx))dθ(xxx)

=
∫

θ

b(θ)w(b(θ))pθ (θ)dθ . (3.7)

Rewriting the integration w.r.t. θ leads to the final functional optimisation problem

as follows:

b()ORTB = argmax
b()

T
∫

θ

θw(b(θ))pθ (θ)dθ (3.8)

subject to T
∫

θ

b(θ)w(b(θ))pθ (θ)dθ = B.

With a reliable KPI estimation model θ(xxx), the optimisation framework is now

built on the KPI distribution of the bid request for a specific campaign: every time a bid

request with the utility θ is generated, the bid price b(θ) is based on the utility θ , and

the probability of winning the auction w(b(θ)) and the corresponding cost are based

on the bid price.

3The intuition behind Eq. (3.5) can be illustrated by a linear function f (x) = ax, where a > 0 and
x follows a uniform distribution in [0,1], i.e., p(x) = 1, and thus f (x) follows a uniform distribution in
[0,a], i.e., p( f (x)) = 1/a. Thus it is easy to see the correctness of Eq. (3.5) in this simple example.
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3.3 Optimal Solutions of Bidding Functions

The Lagrangian of the objective function (Eq. (3.8)) is

L (b(θ),λ ) =
∫

θ

θw(b(θ))pθ (θ)dθ −λ

∫
θ

b(θ)w(b(θ))pθ (θ)dθ +
λB
T

, (3.9)

where λ is the Lagrangian multiplier. Based on calculus of variations, the Euler-

Lagrange condition of b(θ) is

θ pθ (θ)
∂w(b(θ))

∂b(θ)
−λ pθ (θ)

[
w(b(θ))+b(θ)

∂w(b(θ))
∂b(θ)

]
= 0, (3.10)

⇒ λw(b(θ)) =
[
θ −λb(θ)

]
∂w(b(θ))

∂b(θ)
, (3.11)

where we can see that the KPI probability density pθ (θ) has been eliminated and the

form of bidding function b(θ) only depends on the winning function w(b(θ)).4 This

is mainly because both the objective and the constraint take the integration over the

distribution of pθ (θ). Different winning functions result in different optimal bidding

functions. The winning function should be directly built from bid landscape forecasting

[24] based on the market price observations.

Here we present two winning functions which are typical and fit the curves of

real-world data. And we derive the optimal bidding function form for each winning

function.

3.3.1 Winning & Bidding Function 1

As depicted in Figure 3.5 from our experiment on a real data5, the winning rate w(b)

consistently has an (approximately) concave shape: when the bid price is low, adding a

unit bid will increase the winning rate more than when the bid is already high. Thus a

simple winning function is in the form of

w(b(θ)) =
b(θ)

c+b(θ)
, (3.12)

4Later we will show that the optimal value of λ depends on pθ (θ), but λ is only a parameter in b(θ);
thus pθ (θ) does not change the general form of b(θ).

5All the price numbers are presented with the unit of CNF (i.e. 0.01 CNY). And the bid price is
counted on CPM.
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Figure 3.2: Winning function 1 and corresponding optimal bidding function bORTB1(θ).

where c is a parameter tuned to fit the data. An illustration of the winning function with

different c’s is given in Figure 3.2(a).

Taking a derivative w.r.t. the bid gives:

∂w(b(θ))
∂b(θ)

=
c

(c+b(θ))2 . (3.13)

Taking Eq. (3.12) and (3.13) into Eq. (3.11) gives:

θc
(c+b(θ))2 −λ

[ b(θ)
c+b(θ)

+ c
b(θ)

(c+b(θ))2

]
= 0 (3.14)

⇒
(

b(θ)+ c
)2

= c2 +
θc
λ
. (3.15)

Solving the above equation gives the final optimal bidding function:

bORTB1(θ) =

√
c
λ

θ + c2− c. (3.16)

Under the assumption of the winning function 1 in the form of Eq. (3.12), the optimal

bidding function bORTB1(θ) is in a concave form: a square root function form. Fig-

ure 3.2(b) gives an illustration of this bidding function with different parameter c’s,

fixing λ = 5.2×10−7.

3.3.2 Winning & Bidding Function 2

For some campaigns with competitive targets, or the targeted publishers/SSPs setting

a high reserve price, the winning probability will not increase rapidly when the bid
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Figure 3.3: Winning function 2 and corresponding optimal bidding function bORTB2(θ).

price is around 0; only after the bid price becomes larger than some non-zero value the

winning probability starts to dramatically increase. Such a case usually occurs in high-

profile ad slots [52]. To get this feature, we propose an alternative winning function:

w(b(θ)) =
b2(θ)

c2 +b2(θ)
, (3.17)

∂w(b(θ))
∂b(θ)

=
2b(θ)c2

(b(θ)+ c)2 , (3.18)

where the parameter c controls the increasing point of the curve6. An illustration is

given in Figure 3.3(a).

Following the same token in Section 3.3.1, we solve Eq. (3.11) using the winning

function in Eq. (3.17) and its derivative in Eq. (3.18) to get the second optimal bidding

function:

bORTB2(θ) = c ·
[(

θ +
√

c2λ 2 +θ 2

cλ

) 1
3 −
( cλ

θ +
√

c2λ 2 +θ 2

) 1
3
]
. (3.19)

Fixing λ = 5.2× 10−7, the bidding functions with different c’s are shown in Fig-

ure 3.3(b). Again the bORTB2(θ) is a concave function.

The proposed optimisation framework is a general one: Eq. (3.11) shows that dif-

ferent winning functions would lead to different optimal bidding functions. The frame-

work can adapt to various ad markets with different winning functions (bid landscapes).

6Actually we can take a more general form of the winning function: w(b(θ)) = bα(θ)/(cα +bα(θ)).
We investigate the case of α = 1,2 in this research. When α is larger than 2, there is no analytic solution
of bORTB(θ).
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Figure 3.4: Concave bidding function bids higher on the cases with predicted CTR less than
0.0011 (example) and vice versa, which allocates more budget on the cases with
low bid price and thus low cost.

Here we estimate the winning functions from real data (Figure 3.5) and limit our study

to the RTB markets only.

3.3.3 Discussions on Derived Bidding Functions

Unlike the linear form bidding function in the previous study [19, 4] (denoted as LIN),

the derived bidding functions in this research (denoted as ORTB) Eq. (3.16) and (3.19)

suggest a non-linear concave form mapping from predicted KPI to the bid value under

a budget constraint for RTB. As shown in Figure 3.4, compared with LIN, ORTB bids

higher when the estimated KPI is low, which means ORTB allocates more budget on the

low reward and low cost cases.

The strategy of bidding more on cheap impressions comes from the shape of the

winning functions. In Figure 3.5 we can find that for all the campaigns, when the bid

price increases from zero, the winning probability will have a high growth rate first and

after the bid price surpasses a region, the winning probability starts to converge to 1.

As such, the strategy of ORTB will earn much higher winning probability while only

increase a little cost upperbound because of the concavity of winning rate w.r.t. the bid

price.

3.3.4 Optimal Solution of λ

The bidding functions in Eq. (3.16) and (3.19) also take λ as the parameter. Denoting

the bidding function explicitly with λ as b(θ ,λ ). To calculate the optimal λ , the Euler-
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Lagrange condition of λ from Eq. (3.9) is

∂L ( f ,λ )
∂λ

= 0

⇒
∫

θ

b(θ ,λ )w(b(θ ,λ ))pθ (θ)dθ =
B
T
. (3.20)

Given the formula of b(θ ,λ ), the solution λ can be found. However, in many

cases such as using winning functions from Eqs. (3.12) and (3.17), there is no analytic

solution of λ . Also we can see the solution depends on the probability density of

predicted KPI pθ (θ). Alternatively, one can find the numeric solution using the bidding

log data and practically solve it using efficient numeric calculation.

Here we take a rather pragmatic approach by regarding λ as a tuning parameter

for the bidding functions and learn it from the data. Eq. (3.20) can be rewritten as

∫
θ

(
b(θ ,λ )w(b(θ ,λ ))− B

T

)
pθ (θ)dθ = 0, (3.21)

which can be solved with a tighter but practically feasible minimisation problem

min
λ

∫
θ

1
2

(
b(θ ,λ )w(b(θ ,λ ))− B

T

)2
pθ (θ)dθ . (3.22)

If there are a very large number N of observations of θ for the optimised campaign,

Eq. (3.22) can be reasonably approximated as

min
λ

N

∑
k=1

1
2

(
b(θk,λ )w(b(θk,λ ))−

B
T

)2
, (3.23)

where θk is the predicted CTR of the kth data instance in the training data. The tech-

niques like (mini-)batch descent or stochastic gradient descent can be used to solve λ

by the following iteration:

λ ← λ −η

N

∑
k=1

(
b(θk,λ )w(b(θk,λ ))−

B
T

)
· (3.24)(

∂b(θk,λ )

∂λ
w(b(θk,λ ))+b(θk,λ )

∂w(b(θk,λ ))

∂λ

)
,

until convergence. Usually, just like Eqs. (3.16) and (3.19), as b(θ ,λ ) has a mono-
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tonic relationship with λ and w(b(θ ,λ )) monotonically increases against b(θ ,λ ),

b(θk,λ )w(b(θk,λ )) has a monotonic relationship with λ . For example, with the

bidding function as Eq. (3.16) and the winning function as Eq. (3.12), the factor

b(θk,λ )w(b(θk,λ )) decreases monotonically against λ , which makes it quite easy to

find the optimal solution. Therefore, with larger per-case budget B/T , the solution

of λ becomes smaller, which corresponds to a higher bid price. The experiment will

demonstrate the trend of optimal λ corresponding to different per-case budget B/T

(Figures 3.11 and 3.12).

3.3.5 Special Case Discussion: Linear Winning Function

It is interesting to show that our proposed functional optimisation framework is able to

derive the widely adopted linear bidding functions [19, 4] with some special setting of

winning functions.

Suppose the winning function is linear w.r.t. the bid price in the interval [0,c], with

0 winning probability at 0 bid and with 1 winning probability with bid price no lower

than a constant parameter c:

wLIN(b) =
b
c
. (3.25)

The taking Eq. (3.25) into Eq. (3.11) leads to

λ
b(θ)

c
=
[
θ −λb(θ)

]1
c

(3.26)

⇒ b(θ) =
θ

2λ
, (3.27)

where the derived optimal bidding function is linear w.r.t. to the predicted KPI.

The derivation of λ solution follows Section 3.3.4, with the bidding function as in

Eq. (3.27).

∫
θ

θ

2λ
· θ

2λc
pθ (θ)dθ =

B
T

(3.28)

⇒ λ =
1
2

√
T
Bc

∫
θ

θ 2 pθ (θ)dθ (3.29)
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Thus the analytic solution of the optimal linear bidding function is

bLIN(θ) =
θ√

T
Bc
∫

ϑ
ϑ 2 pθ (ϑ)dϑ

, (3.30)

where the term
∫

ϑ
ϑ 2 pθ (ϑ)dϑ is determined by the overall distribution of predicted

KPI, which can be directly estimated from the training data. The per auction budget

term B/T determined the overall bidding scale. The higher B/T , the higher bid scale,

which is reasonable. The parameter c indicates the market competitiveness: the higher

c, the lower winning probability given a bid price b, i.e., the higher market competitive-

ness, thus the higher bid should be performed in order to win impressions and exhaust

the budget.

From above derivation, we know that under the assumption of linear winning func-

tion the derived optimal bidding function is with the linear form w.r.t. the predicted

KPI, which is widely used in industry. However, as from Figure 3.5 we can see the

winning functions shown by the real-world data is always non-linear, which challenges

the effectiveness of the linear bidding functions. In the experiment part, we will exten-

sively investigate the comparison between our proposed non-linear bidding functions

bORTB1(θ), bORTB2(θ) and the linear bidding function bLIN(θ).

3.4 Experimental Setup
The derived bidding functions are tested both by offline evaluation (Section 3.5) using a

real-world dataset and via online A/B testing (Section 3.6) over a commercial DSP with

real advertisers and impressions. In this section, we introduce the experiment setup and

report the results from our data analysis.

3.4.1 Dataset and Analysis

iPinYou dataset description. We use the real-world bidding feedback log from

iPinYou as our dataset7. It records more than 64.8 million bid requests and 15.4 million

impressions and the user feedback of 9 campaigns from different advertisers during 10

days in 2013. The dataset disk size is 35GB. For each bid request, the log contains

7iPinYou is a mainstream DSP company in China. The dataset comes from the global RTB algorithm
competition by iPinYou [115] and has been publicly released for research on our website: http://
data.computational-advertising.org.

http://data.computational-advertising.org
http://data.computational-advertising.org
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Table 3.2: iPinYou dataset statistics. Here CNY means Chinese Yuan, while CNF means Chi-
nese Fen, which is 0.01 CNY.

Camp. Bids Imps Clicks Convs Cost AWR CTR CPM eCPC
ID (M) (K) (CNY) (CNF) (CNF)

1458 14.70 3,083.1 2,454 1 2,124.0 20.97% 0.080% 68.89 86.55
2259 2.99 835.6 280 89 777.5 27.97% 0.034% 93.06 277.70
2261 2.16 687.6 207 0 616.1 31.84% 0.030% 89.6 297.64
2821 5.29 1,322.6 843 450 1,180.8 24.99% 0.064% 89.28 140.07
2997 1.02 312.4 1,386 0 196.9 30.69% 0.444% 63.02 14.21
3358 3.75 1,742.1 1,358 369 1,609.4 46.44% 0.078% 92.38 118.51
3386 14.09 2,847.8 2,076 0 2,190.7 20.21% 0.073% 76.92 105.52
3427 14.03 2,593.8 1,926 0 2,102.4 18.48% 0.074% 81.06 109.16
3476 6.71 1,970.4 1,027 26 1,560.9 29.35% 0.052% 79.22 151.98
Total 64.75 15,395.3 11,557 935 12,358.8 23.78% 0.075% 80.28 106.94

the information from the user (e.g. the user segmentation), advertiser (e.g. the creative

format and size), publisher (e.g. the auction reserve price, ad slot, page domain and

URL) and the context (e.g. the time, region, the browser and operation system). For

each bid request, there is an auction winning bid price, and the user feedback (click,

conversion) is recorded if the campaign won the auction. More details of the dataset is

shown in Table 3.2 and the references [115, 29].

According to the data publisher [115], the last 3-day for each campaign is split

into the test dataset while the data in the previous period is the training data. The

training data is mainly used to train the CTR estimator and tune the bidding function

parameters. The test data is used to evaluate the compared DSP bidding strategies.

Data analysis on winning prices. Figure 3.5 depicts the auction winning rate w.r.t.

the bid price for all 9 campaigns. It can be observed that the data of all the campaigns

follows a similar pattern: as the bid price increases, the campaign’s auction winning

rate increases dramatically; when the bid price gets larger (e.g. more than 100), the

increasing of winning rate slows down and finally the winning rate converges to 1.

Thus, it is much more reasonable to employ concave functions like Eq. (3.12) and (3.17)

to model such relationships than linear winning functions like Eq. (3.25). For each

campaign, we fit the winning functions with the parameter c leading to the least square

error with the real curve.

Next, we study the dependency between the bid request features and the winning

bid prices (also named as market prices in [28]). Figure 3.6 gives the box plots [116] of
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Figure 3.5: Relationship between auction winning rate and bid value for different campaigns.
There may be some “angles” in the winning functions of some campaigns. The
reason is there are some “needles” in market price p.d.f. because of the constant
bidding by some advertisers.

winning price distribution against the features such as hour, weekday, user browser, op-

eration system and location regions of bid requests to campaign 1458 (other campaigns

follow the similar pattern). Compared with the clear changing relationship with the bid

price shown in Figure 3.5, Figure 3.6 shows that the winning price distributions do not

have obvious dependency on the categorical feature value. It suggests that the bid price

is the key factor influencing the campaign’s winning rate in its auctions. Once we have

known the bid value, the auction winning rate is less sensitive to the other bid request

features. Thus it is practically reasonable to simplify w(b,xxx) ≡ w(b) as proposed in

Section 3.2.

3.4.2 Evaluation Measures

The task of a DSP is to optimise each campaign’s KPI (such as clicks, conversions etc.)

given the budget. Therefore, the KPI is the primary evaluation measure of the bidding
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Figure 3.6: Winning price distribution against different features for campaign 1458. Note that
these are the overall market price distributions w.r.t. different features, rather than
individual cases.

strategies in the experiment. Specifically, the campaign acquired click number is set

as the primary KPI in the experiment, while other statistics such as CPM, and eCPC

are also monitored and reported. In addition, the optimisation on an alternative KPI,

i.e. the combination of achieved clicks and conversions, is also investigated, as will be

discussed in Section 3.5.5.

3.4.3 KPI Estimator Training

For each campaign, we use its impression/click/conversion log data to train a KPI es-

timator for each bid request. Particularly, if the KPI is click, then this task turns to be

the well-known CTR estimation [94, 1]. Regression models such as random forest and

gradient boosting regression trees can be applied here. Since this work mainly focuses

on the bidding strategy instead of the KPI estimator model, the logistic regression is

applied as the CTR estimator as it is a widely used choice [1]. The loss is the cross en-

tropy between the predicted click probability and the ground-truth result. In addition,

L2 regularisation is used. For an alternative KPI in the experiment, the KPI estimator

training will be discussed in Section 3.5.5.



3.4. Experimental Setup 65

Test Starts 

Test Ends 

Bidding Engine Test Environment

Budget

Cost

Performance

Bidding Strategy

Update the budget, cost
and performance

0. Bidding agent initialisation

3. Auction winning checking

bid > winning price ?

Test Data

If test data
has next record?

5. Go to
next

record

Auction win price
User feedback

Process flow

Data dependency

1

Get next record

4. Win notice:
the charged price & 
user feedback if win

1. One bid request

2. Bid price for 
this bid request

Yes

No

Auction win

One bid request
Auction & ad features

User feedback

Auction win price

Figure 3.7: Evaluation flow chart.

Features are extracted from the log data to train the CTR estimator model. Specif-

ically, we extract 29,408 first-order binary features and based on that generate 657,756

second-order binary features, which yields the total of 687,164 features for our train-

ing.8

3.4.4 Test Evaluation Setup

Evaluation flow. The evaluation flow is depicted in Figure 3.7. Given the bidding

strategy and a budget for the test period for a particular campaign, the offline evaluation

can be conducted via going through its test data. The test data is a list of records. Each

record consists of the features of one bid request, the auction winning price and the user

feedback information. Specifically, receiving the bid request features of each record by

the timestamp, the bidding strategy generates a bid price for it (if the cost is beyond the

budget, just returns 0, i.e. skips the remaining bid requests). If the bid price is higher

than the auction winning price of this record, the campaign wins the auction, gets its ad

shown. The corresponding user feedback (click) and the corresponding charged price

of the record are then referenced to update the performance and cost. After that, if

there is no more bid requests in the test data, then the evaluation is over, with the final

performance returned.9

It is worth mentioning that using user feedback logs for offline evaluation has limi-

8Normally, each feature index does not need to be updated but the whole feature index dictionary
needs to augment as there are usually more and more new features occurs over time.

9The code of evaluation framework: https://github.com/wnzhang/optimal-rtb.

https://github.com/wnzhang/optimal-rtb


66 Chapter 3. Single-Campaign Optimal Real-Time Bidding

tation. In the case of RTB offline evaluation, user feedback only occurs for the winning

auctions (having ad impressions); there is no user feedback for the losing bids. We thus

do not know whether the user will click or convert even if we bid enough high to win

the originally losing ad auction in our offline experiment. In this thesis, we follow the

convention of the offline evaluations from sponsored search [94], recommender sys-

tems [117] and web search [118] that the objects (auctions) with unseen user feedback

are ignored (i.e., considered as auction failure cases). To complement with the offline

evaluation, we will further show the online test performance on a commercial DSP in

Section 3.6. Note that such a problem will be focused and mathematically solved in

Chapter 5.

Budget constraints. It is easy to see that if the budget is set as the same as the original

total cost in the test log, then just simply bidding as high as possible for each case will

exactly run out the budget and get all the logged clicks. In the experiment, to test the

performance against various budget constraints, for each campaign, the evaluation test

uses 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2 of the original total cost respectively in the test

log as the budget. Likewise, in the training stage, the budget used is 1/64, 1/32, 1/16,

1/8, 1/4 and 1/2 of the original total cost of the training data respectively.

3.4.5 Compared Bidding Strategies

The following baseline and state-of-the-art bidding strategies are compared in the ex-

periment. The parameters of each bidding strategy are tuned based on the training data.

Constant bidding (CONST). The bidding agent bids a constant value for all the bid

requests to the campaign. The parameter is the specific constant bid price.

Random bidding (RAND). The bidding agent randomly chooses a bid value in a given

range. The parameter is the upper bound of the random bidding range.

Bidding below max eCPC (MCPC). As discussed in [4], given the advertiser’s goal

on max eCPC, i.e., the upper bound of effective cost per click, the bid price for

a bid request on an impression is obtained by multiplying the max eCPC and its

predicted CTR. Here the max eCPC for each campaign is calculated by dividing

its total cost with achieved number of clicks in the training data. No parameter

for this bidding strategy.



3.5. Offline Empirical Study 67

Table 3.3: Bidding strategy attributes.

Bidding Strategies CONST RAND MCPC LIN ORTB

Consider budget conditions
√ √ √ √

Evaluate per impression value
√ √ √

Consider winning function
√

Linear-form bidding w.r.t. predicted CTR (LIN). In the previous work [19], the bid-

ding agent bids the value linearly proportional to the predicted CTR for each bid

request. The formula can be generally written as

bLIN(θ) = b0
θ

θ0
, (3.31)

where θ0 is the average predicted CTR under a target condition (e.g., a user-

inventory pair or a campaign’s volume) and b0 is the basic bid price for this target

condition. b0 is the parameter to tune in the experiment. Note that this bidding

function is a generalisation of our derived linear bidding function in Eq. (3.30)

as the bidding scale can be tuned.

Optimal real-time bidding (ORTB1 and ORTB2). These are the derived optimal bid-

ding strategies in the proposed framework, as shown in Eq. (3.16) and (3.19).

The parameters are c and λ for both bidding strategies, where c is obtained by

fitting the winning probability and λ is tuned using the training data.

Table 3.3 summarises the attributes of the different strategies. MCPC is not budget-

aware to make sure it spends all the budget. MCPC, LIN and ORTB perform bidding

based on impression-level evaluation. Taking winning functions into account, ORTB

is the most informative strategy. In Section 3.5 we will analyse the impact of these

attributes in the final performance.

3.5 Offline Empirical Study
From the offline empirical study, the following questions are to be answered. (i) Does

the derived non-linear bidding function outperform the state-of-the-art linear one? (ii)

What are the characteristics of the proposed ORTB algorithms and how do the param-

eters impact the performance and what are their relationships with the budget condi-

tions?
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Figure 3.8: Overall performance comparison. The higher clicks and lower eCPC, the better.

3.5.1 Performance Comparison

The performance comparison on total clicks and eCPC under different budget condi-

tions are reported in Figure 3.8. It can be observed that (i) under every budget condition,

the proposed bidding strategies ORTB1 and ORTB2 lead the best performance on total

clicks, which verifies the effectiveness of the derived non-linear forms of the bidding

functions. (ii) Except ORTB, LIN is the best algorithm in the comparison. This algo-

rithm represents the widely used DSP bidding strategies in industry [19]. (iii) MCPC

is aware of the upper bound cost for each bid request, and dynamically changes its

bid according to the estimated CTR. However, compared to ORTB and LIN, MCPC has

no adaptability to different budget conditions. For example, when the budget is rela-

tively low for the bid request volume, MCPC will still bid based on the originally set

max eCPC, while ORTB and LIN can adaptively lower the bid to earn the impressions

and clicks with higher ROI. (iv) RAND and CONST provide very low performance even

though their parameters are tuned under different budget conditions. (v) Also from the

eCPC performance we can see RAND and CONST spend much more money to get one

click than the case-value-aware strategy MCPC, LIN and ORTB. The last two points

suggest the benefit of real-time bidding based display advertising: evaluating the value

for each bid request (impression level) plays a significant role in the performance.



3.5. Offline Empirical Study 69

Table 3.4: Click improvement of ORTB1 over LIN for each campaign under different budget
conditions.

Camp. 1/64 1/32 1/16 1/8 1/4 1/2

1458 0.68% 1.97% -0.46% 1.04% 1.25% 0.26%
2259 84.07% 49.89% 9.13% -1.99% 5.67% 3.51%
2261 85.67% 51.10% 18.50% 6.27% 2.67% 0.00%
2821 58.13% 23.78% 8.82% 1.93% 0.59% 0.65%
2997 428.26% 118.78% 103.91% 63.68% 18.82% 6.50%
3358 0.70% 0.00% 0.44% 3.38% 0.48% 0.90%
3385 27.16% 2.33% 1.45% 0.43% 6.50% 1.11%
3427 24.46% -1.19% 3.11% 2.84% 0.06% 3.14%
3476 49.54% 10.85% 0.33% 5.17% 3.82% 1.42%
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Figure 3.9: Overall click improvement of ORTB1 over LIN under different budget conditions.

Table 3.4 gives detailed performance improvement on total clicks of ORTB1 over

LIN under different campaigns and budget conditions. Among the listed 54 settings,

ORTB1 wins LIN in 49 (90.7%) settings, ties in 2 (3.7%) settings, and loses in 3 (5.6%)

settings. This shows ORTB1 is fairly robust and the outperformance is stable.

3.5.2 The Impact of Budget Constraints

It is of great interest to investigate how the bidding strategy adapts the changing of

the budget constraints. In the experiment, the test budget is set as 1/64, 1/32, 1/16,

1/8, 1/4 and 1/2 of the original total cost in the history log respectively. Figure 3.9

depicts the percentage improvement on total clicks of ORTB1 over LIN w.r.t. the budget

constraints. As can be observed, (i) when the budget is quite low (e.g. 1/64 of the

original total cost), the click improvement of ORTB1 over LIN is quite high (more than

45%). This indicates that the proposed bidding strategy performs particularly well

under very limited budget conditions. Intuitively, when the budget is quite low (budget

on per bid request B/T is low), a good bidding strategy should spend relatively low
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on each bid request. Compared with the linear LIN, ORTB1 allocates more budget on

the low cost cases due to the concave form of the bidding function (see Figure 3.2(b)).

This is sensible because from the winning rate functions in Figure 3.5 we know that

lowering the high bid actually does not drop the winning probability too much. By

contrast, highering the low bid a little will increase the winning probability a lot. (ii)

When the test budget gets higher, the improvement percentage gets lower. This is

reasonable: when there is more budget per bid request, the strategy will appropriately

reallocate budget from the low cost cases to high cost cases because the high cost cases

also mean high value (CTR). Thus the concave degree of the curve in Figure 3.2(b) will

be lower. The curve will relatively approximate to (but not fully change to) the linear

form. An extreme case is that when the test budget is set the same as the original total

cost in the test log, the improvement is zero. This is because under such a condition for

every bidding strategy (except MCPC), just bidding as high as possible will exactly run

out the budget and get every impression and click in the test log.

3.5.3 Clicks vs. Impressions

Figures 3.10(a) and 3.10(b) show the total clicks and eCPC of each bidding strategy.

It can be observed that both click number and eCPC increase as the budget increases.

This is reasonable because when the budget is low, the optimal setting for each bidding

strategy will push the budget to the low cost cases, while the budget is higher, the left

budget will be allocated on the relative expensive cases (but with lower ROI), which

will higher the eCPC. MCPC is unaware of the budget condition, and its slight eCPC

fluctuation purely depends on the data. Another point is that when the budget is set

very low (1/64, 1/32, 1/16 of the original spend), the eCPC of LIN and ORTB is lower

than MCPC, and when the budget increases over 1/4 of the original spend, the eCPC of

LIN and ORTB starts to be higher than MCPC.

Figures 3.10(c) and 3.10(d) plot the total impressions and CPM of each bidding

strategy. It can be observed that while ORTB strategies generate the highest clicks,

they also produce comparable numbers of impressions against the others. This cer-

tainly benefits advertisers who aim to maximise their traffic (clicks) while still want to

maintain a good exposure (impressions).
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Figure 3.10: Performance on different measures with different budget conditions.

3.5.4 Parameter Tuning

As explained previously, although parameter λ can be directly solved numerically, for

efficiency, in the experiment, we still investigate the performance against different value

of λ to understand its influences. Figures 3.11 and 3.12 show the corresponding ORTB1

and ORTB2 click performance for the campaign 145810 when tuning its parameter λ .

For each λ , we also try different values of the other parameter c, which makes multiple

points to each x-value for volatility checking. However, practically c is directly learned

via best fitting the auction winning rate data for each campaign. From Figure 3.11 and

3.12, we can see that when the given budget is low, the optimal value of λ is high.

This is very reasonable. From Eq. (3.16) and (3.19), we can see that the parameter λ

controls the general scale of the bidding price: when λ is higher, the bid price gets

lower. Thus it is reasonable that when the budget is more limited, the general bidding

price level should get lower, which corresponds to the higher optimal value of λ .

10The trends on other campaigns are quite similar.
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Figure 3.11: Parameter tuning on λ of ORTB1 under different budget conditions.
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Figure 3.12: Parameter tuning on λ of ORTB2 under different budget conditions.

3.5.5 Results for an Alternative KPI

As discussed in Section 3.2, the optimisation framework is flexible to incorporate dif-

ferent KPIs as optimisation target. Apart from the number of clicks as the main objec-

tive studied in this chapter, we also test an alternative KPI as the target by considering

conversions, namely, a linear combination of the click number and conversion number,

with the parameter k controlling the importance of conversion:

KPI= #click+ k ·#conversion. (3.32)

This objective is practically useful [119] since the conversion is a quite important mea-

sure for performance campaigns [19], and such a linear combination can alleviate the

sparsity problem of conversion counting [4]. In the studied iPinYou dataset, only cam-

paign 2821 and 3358 have sufficient conversion records. Thus we choose them as

our optimising campaigns and we set k = 5 in our experiment. Specifically, two lo-
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Figure 3.13: Performance comparison with the new KPI (Eq. (3.32)) as optimisation target.

gistic regression models are trained to learn and predict the CTR and CVR (pCTR

and pCVR) for each bid request and the predicted KPI (pKPI) can be calculated by

pKPI= pCTR+ k ·pCVR, which is the value of θ in the bidding function.

Figure 3.13 gives the overall KPI performance and the specific clicks/conversions

obtained by each bidding strategy11. From the results we see that ORTB strategies still

outperform other compared bidding strategies, which verifies the effectiveness of ORTB

on the alternative KPI optimisation. Particularly, on 1/64 budget condition, ORTB2

achieves higher KPI and conversion numbers than ORTB1, this is mainly because the

winning function 2 in Eq. (3.17) fits these two optimised campaigns better than winning

function 1 in Eq. (3.12).

11Here MCPC is renamed as MCPI (i.e. bidding under max cost-per-unit-of-KPI).



74 Chapter 3. Single-Campaign Optimal Real-Time Bidding

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

B
id

s

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

Im
p

re
s

s
io

n
s

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

C
li
c
k

s

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

C
o

n
v

e
rs

io
n

s

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

W
in

 R
a

te

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

C
T

R

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

C
V

R

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

e
C

P
C

0.00

0.25

0.50

0.75

1.00

Lin ORTB White

C
P

M

Figure 3.14: Relative performance for online test.

3.6 Online A/B Test
With the strategy of emphasising more on lower CPM impressions than the linear strat-

egy, we conducted an online experiment on iPinYou Optimus platform, which is cur-

rently the largest DSP in China. We tested on three campaigns during consecutive three

days in December 2013. Another two compared bidding strategies are: (i) White list

(WHITE): the bidding agent keeps a list of feature combination rules and bids a high

constant value only when the case satisfies any of the white list rules; (ii) LIN, as dis-

cussed before. The target KPI in the optimisation is click. Compared with LIN, WHITE

acts like the strategy with a step function in [19]: when the predicted CTR is higher than

a threshold (matching the white list), the bidding agent bids a much high value, other-

wise bids 0. For each bid request, each of the three algorithms has the equal possibility

to perform the bidding of the bid request that iPinYou DSP receives. The performance

comparison with various measures is reported in Figure 3.14. Due to the company’s

policy about data sensitivity, we follow [52] to only present the relative performance

here.
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From the comparison we can have following observations. (i) ORTB bids much

more cases than the other two algorithms (bids lower than the auction reserve price

are not counted), and gets the most impressions, clicks and conversions. Also ORTB

achieves the lowest eCPC, which indicates it is also the most cost effective algorithm.

(ii) ORTB obtains the lowest CPM. These two points show ORTB allocates more budget

to the cheap cases. As a result, ORTB bids more cases with lower CPM. (iii) Because

of the low CPM on low predicted CTR cases, ORTB has the lowest auction winning

rate and CTR, but this is not that important since the optimisation target is the total

click number. (iv) WHITE acts oppositely compared to ORTB. It only bids high on a

subset of cases, which results in its low bidding number and high CPM. Because of

the carefully crafted white list, the cases matching the white list do have high CTR.

(v) LIN plays moderately, which is not surprising. In sum, the online test demonstrates

the effectiveness of the proposed bidding strategies which allocate more budget on the

cheap cases to perform more bids with lower CPM.

3.7 Summary
In this chapter, we formally presented the single-campaign real-time bidding strategy

optimisation problem. Then we proposed a novel functional optimisation framework to

find the optimal bidding function in a general function space. Given the winning func-

tions fitting the real-world data, the derived optimal bidding functions are non-linear

and concave w.r.t. the predicted KPI, which has not been studied in the previous litera-

ture about real-time bidding strategies. The widely adopted linear bidding function can

also be derived from our framework when assuming the winning function to be linear.

In the experiments, we compared the derived bidding strategies with other baselines and

state-of-the-art linear bidding strategies under different budget and KPI settings. Both

the offline and online experiments show that the proposed optimal bidding strategies

were also practically the most effective.

This chapter acts as the core part of this thesis. It studies the fundamental problem

of single-campaign bid optimisation in RTB display advertising. Based on the research

work in this chapter, several directions for the further work are described as follows.

• As an intermediary agent like a DSP or an ad agency, how to optimise the overall

performance over multiple campaigns it manages, particularly when these cam-



76 Chapter 3. Single-Campaign Optimal Real-Time Bidding

paigns are set with the CPA pricing scheme? This research problem and the

proposed solution will be presented in Chapter 4.

• As discussed in Section 3.4.4, the offline training and evaluation based on historic

data could be biased due to the data censorship from ad auction selection. In

Chapter 5, the probability of observing each data instance will be estimated and

a novel training and optimisation scheme will be proposed to yield less unbiased

CTR estimator and bidding strategy.

• As mentioned in Section 3.2, the RTB ad market and the user behaviour are

highly dynamic, which probably result in instability of advertising performance.

In Chapter 6, a feedback control mechanism will be proposed, which is incorpo-

rated into the bidding agent to adaptively adjust the bid scale to maintain a certain

KPI close to a predefined reference value.

3.8 Chapter Appendix: Game Theoretic Analysis
In this chapter appendix, we conduct a theoretic analysis of the optimal bidding func-

tions in a symmetric game of repeated auctions with budget constraints. We will derive

the analytic solutions of the optimal bidding function in the equilibrium of the first and

second price auctions, respectively. Then based on the derived solutions, we notice that

there actually exists a tragedy of the common situation for advertisers in RTB display

advertising.

3.8.1 Problem Settings

Monotonously Increasing Bidding Function. In a clean game theoretic analysis set-

ting [114], we suppose there are n (n ≥ 2) advertisers with the same bidding strategy

b(θ) which takes in the estimated CTR θ and outputs the bid price b. It is reasonable

to assume b(θ) monotonically increases w.r.t. CTR θ , i.e.,

b(θ1)> b(θ2)⇔ θ1 > θ2. (3.33)

Later we will show the derived bidding functions are indeed monotonically increasing

w.r.t. CTR θ .
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Each time when an impression is auctioned, for each advertiser the CTR θ follows

the same p.d.f. pθ (θ) independently (i.e., i.i.d.) and denote its c.d.f. as F(θ):

F(θ) =
∫

θ

0
pθ (ϑ)dϑ , (3.34)

∂F(θ)

∂θ
= pθ (θ). (3.35)

The Winning Probability in a Symmetric Game. In such a setting, the winning

probability of advertiser 1, without loss of generality, given her ad CTR θ is actually

the probability of her ad CTR, is the largest one among the n advertisers:

w(θ) = P(θ > θ2,θ > θ3, . . . ,θ > θn) = F(θ)n−1. (3.36)

The Expected Utility. The expected utility given the CTR is denoted as u(θ). The

specific form of u(θ) depends on the campaign KPI. For example, if the KPI is the

click number, then

uclk(θ) = θ . (3.37)

If the KPI is the campaign’s revenue, denoting the advertiser’s true value on each

click as r, then

urev(θ) = rθ . (3.38)

The Expected Cost. The expected cost if winning the auction with a bid b is denoted

as c(b). In the RTB ad market we have the first price auction cost equal to the bid price

c1(b) = b, (3.39)

and the second price auction cost equal to the expected market price when it is lower

than the bid price

c2(b) =
∫ b

0 zpz(z)dz∫ b
0 pz(z)dz

. (3.40)
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3.8.2 Equilibrium Bidding Function in the First Price Auctions

Suppose each of n advertisers wants to maximise her click number from T ad auctions

with a budget B via designing a bidding function b(ϑ), where ϑ is a signal related to

CTR θ . Suppose the advertiser knows the CTR θ but she tells her friend the CTR is

ϑ and asks the friend to participate the auction for her, i.e., to perform the bid b(ϑ).

Then its winning rate is F(ϑ)n−1 (see Eq. (3.36)). The optimisation problem with the

first price auction cost function c1(b) is formulated as

max
b()

T
∫

θ

θF(ϑ)n−1 pθ (θ)dθ (3.41)

subject to T
∫

θ

b(ϑ)F(ϑ)n−1 pθ (θ)dθ = B. (3.42)

Here the constraint could also be set as T
∫

θ
b(ϑ)F(ϑ)n−1 pθ (θ)dθ ≤ B, i.e., the

cost not higher than the budget. However, it is obvious to see that when the cost is

strictly lower than the total budget, the left budget could always generate non-negative

expected utility, i.e., the optimal situation is always when the total budget is exhausted.

Therefore, the above equality constraint is reasonable.

The Lagrangian is

L (ϑ ,λ ) = T
∫

θ

(θ −λb(ϑ))F(ϑ)n−1 pθ (θ)dθ −λB (3.43)

and its derivative w.r.t. ϑ is

∂L (ϑ ,λ )

∂ϑ
= T

∫
θ

(
−λ

∂b(ϑ)

∂ϑ
F(ϑ)n−1 +(θ −λb(ϑ))(n−1)F(ϑ)n−2 pθ (ϑ)

)
pθ (θ)dθ .

(3.44)

In a symmetric equilibrium, the objective is maximised when using the true signal,

i.e., at ϑ = θ [114]. It is intuitive that the utility can be maximised when the advertiser’s

friend uses the true CTR in the bidding. Therefore, we have

∂L (ϑ ,λ )

∂ϑ
= 0
∣∣∣∣
ϑ=θ

, (3.45)
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which is

∫
θ

(
−λ

∂b(θ)
∂θ

F(θ)n−1 +(θ −λb(θ))(n−1)F(θ)n−2 pθ (θ)
)

pθ (θ)dθ = 0, (3.46)

⇒ λ
∂b(θ)

∂θ
F(θ)n−1 = (θ −λb(θ))(n−1)F(θ)n−2 pθ (θ) (3.47)

for all θ . To solve Eq. (3.47), we leverage the fact

∂

∂θ
b(θ)F(θ)n−1 =

∂b(θ)
∂θ

F(θ)n−1 +b(θ)(n−1)F(θ)n−2 pθ (θ) (3.48)

Taking Eq. (3.47) into Eq. (3.48), we have

∂

∂θ
b(θ)F(θ)n−1 =

θ

λ
(n−1)F(θ)n−2 pθ (θ). (3.49)

Thus

b(θ)F(θ)n−1 =
∫

θ

0

ϑ

λ
(n−1)F(ϑ)n−2 pθ (ϑ)dϑ +C, (3.50)

where C is the constant independent with θ . From Eq. (3.50) we know when θ → 0,

b(θ)F(θ)n−1 → 0, so the constant C = 0. Therefore, we obtain the optimal bidding

function

b(θ) =
1

λF(θ)n−1

∫
θ

0
ϑ(n−1)pθ (ϑ)F(ϑ)n−2dϑ . (3.51)

From Eq. (3.51) we can see that there is a Lagrangian multiplier λ to solve, which

is the difference of our solution from the classic first auction solution with no budget

constraint [114].

To solve λ , we set the Lagrangian derivative to be 0 (also with ϑ = θ ).

∂L (θ ,λ )

∂λ
= 0, (3.52)

which just results in the constraint equation

T
∫

θ

b(θ)F(θ)n−1 pθ (θ)dθ = B. (3.53)
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Taking our bidding function form Eq. (3.51) into Eq. (3.53), we have

∫
θ

1
λ

∫
θ

0
ϑ(n−1)pθ (ϑ)F(ϑ)n−2dϑ · pθ (θ)dθ =

B
T

(3.54)

⇒ λ =
T
B

∫
θ ′

∫
θ ′

0
ϑ(n−1)pθ (ϑ)F(ϑ)n−2dϑ · pθ (θ

′)dθ
′. (3.55)

Here we use the notation θ ′ in the integration to avoid the notation conflict against

the θ in Eq. (3.51). Finally, taking Eq. (3.55) into Eq. (3.51), we obtain the solution of

the optimal budget constrained bidding function in equilibrium of the first price auction:

b(θ) =
B

T F(θ)n−1 ·
∫

θ

0 ϑ(n−1)pθ (ϑ)F(ϑ)n−2dϑ∫
θ ′
∫

θ ′
0 ϑ(n−1)pθ (ϑ)F(ϑ)n−2dϑ · pθ (θ ′)dθ ′

. (3.56)

Analytic Solution with a Special Case. If we assume the uniform distribution of CTR

in [0,1]

pθ (θ) = 1, (3.57)

F(θ) = θ , (3.58)

then we can get the analytic solution of the optimal bidding function from Eq. (3.56) as

b(θ) =
B

T θ n−1 ·
∫

θ

0 ϑ(n−1)ϑ n−2dϑ∫
θ ′
∫

θ ′
0 ϑ(n−1)ϑ n−2dϑdθ ′

(3.59)

=
B

T θ n−1 ·
θ n∫

θ ′ θ
′ndθ ′

(3.60)

=
B(n+1)θ

T
. (3.61)

We can see from Eq. (3.61), with the simple uniform CTR distribution assumption,

the optimal bid has a linear relationship w.r.t. the CTR, the number of competitors

plus 1, and the average budget on each auction. More discussions will be given in

Section 3.8.4.

3.8.3 Equilibrium Bidding Function in the Second Price Auctions

In the second price auction, we first introduce a theorem. Regard θ as a random variable

and b = b(θ) as a dependent random variable. Furthermore, we define Fb(b) as the
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c.d.f. of b, i.e., the probability of performing a bid less than b:

Fb(b) =
∫ b

0
pb(a)da. (3.62)

Note that

Fb(b(θ)) = P(b(θ)> b(θ2)) = P(θ > θ2) = Fθ (θ) (3.63)

because b(θ) monotonously increases w.r.t. θ . Here we add subscripts to the c.d.f.

functions Fb, Fθ and the following Fz to make differences.

Therefore, for the market price variable z, defined as the highest bid across n− 1

competitors, its c.d.f Fz(z) is

Fz(z) = Fb(z)n−1, (3.64)

and thus its p.d.f. is

pz(z) = (n−1)Fb(z)n−2 pb(z). (3.65)

Now we derive the optimal bidding function in an equilibrium with the second

price auction cost function c2(b). Suppose the click value is r and each advertiser wants

to maximise her revenue across T auctions and with campaign budget B.12 Again, if

the bidding is based on a signal ϑ related with the CTR θ , the optimisation framework

is

max
b()

T
∫

θ

rθFθ (ϑ)n−1 pθ (θ)dθ (3.66)

subject to T
∫

θ

∫ b(ϑ)

0
zpz(z)dz · pθ (θ)dθ = B. (3.67)

12Optimising the revenue is equivalent to optimising the click number since the monetary value on
each click are regarded as the same, i.e., r. Here we just want to make the dimensions of objective
and constraint be the same (i.e., price) for readability, and also show different utility functions in our
discussion.
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The Lagrangian L (ϑ ,λ ) is

L (ϑ ,λ ) = T
∫

θ

(
rθFθ (ϑ)n−1−λ

∫ b(ϑ)

0
zpz(z)dz

)
pθ (θ)dθ −λB. (3.68)

We can calculate its gradient w.r.t. ϑ

∂L (ϑ ,λ )

∂ϑ
= T

∫
θ

(
rθ(n−1)Fθ (ϑ)n−2 pθ (ϑ)−λb(ϑ)pz(b(ϑ))

∂b(ϑ)

∂ϑ

)
pθ (θ)dθ .

(3.69)

Similarly to the derivations in first price auctions, the objective should be max-

imised when the signal used for bidding is based on true signal ϑ = θ , thus

∂L (ϑ ,λ )

∂ϑ
= 0
∣∣∣∣
ϑ=θ

(3.70)

⇒ rθ(n−1)Fθ (θ)
n−2 pθ (θ)−λb(θ)pz(b(θ))

∂b(θ)
∂θ

= 0, (3.71)

for all θ .

As b(θ) monotonously increases w.r.t. θ , then their p.d.f.s pθ (θ) and pb(b) have

the following relationship:

pθ (θ) = pb(b(θ))
∂b(θ)

∂θ
. (3.72)

Taking Eqs. (3.65), (3.72) and (3.63) into Eq. (3.71), we have

rθ(n−1)Fθ (θ)
n−2 pθ (θ) = λb(θ)(n−1)Fb(b(θ))n−2 pb(b(θ))

∂b(θ)
∂θ

(3.73)

= λb(θ)(n−1)Fb(b(θ))n−2 pθ (θ) (3.74)

= λb(θ)(n−1)Fθ (θ)
n−2 pθ (θ) (3.75)

⇒ b(θ) =
rθ

λ
. (3.76)

From Eq. (3.76), we can see that the optimal bidding function in equilibrium of

the second price auctions is linear w.r.t. the CTR θ . Similar with the case of the first

price auctions, in the second price auctions the difference between the optimal bidding

function derived in our multi-auction budget constrained scenario and the classic single-
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auction non-budget scenario is the ratio λ .

To solve λ , we set the Lagrangian derivative to be 0, also with ϑ = θ .

∂L (θ ,λ )

∂λ
= 0, (3.77)

which just results in the constraint equation. With Eqs. (3.65), (3.72) and (3.63), we

have

∫
θ

∫ rθ

λ

0
zpz(z)dz · pθ (θ)dθ =

B
T

(3.78)

⇒
∫

θ

∫ rθ

λ

0
z(n−1)Fθ

(zλ

r

)n−2
pθ

(zλ

r

)
λ

r
dz · pθ (θ)dθ =

B
T

(3.79)

⇒
∫

θ

∫
θ

0

rϑ

λ
(n−1)Fθ (ϑ)n−2 pθ (ϑ)dϑ · pθ (θ)dθ =

B
T

(3.80)

⇒ r
λ
=

B

T
∫

θ

∫
θ

0 ϑ(n−1)Fθ (ϑ)n−2 pθ (ϑ)dϑ · pθ (θ)dθ
. (3.81)

Thus we obtain the form of the optimal bidding function

b(θ) =
Bθ

T
∫

θ ′
∫

θ ′
0 ϑ(n−1)Fθ (ϑ)n−2 pθ (ϑ)dϑ · pθ (θ ′)dθ ′

. (3.82)

Analytic Solution with a Special Case. Again, if we assume the uniform distribution

of CTR in [0,1]

pθ (θ) = 1 (3.83)

F(θ) = θ , (3.84)

thus we can get the analytic solution of the optimal bidding function from Eq. (3.82) as

b(θ) =
Bθ

T
· 1∫

θ ′
∫

θ ′
0 ϑ(n−1)ϑ n−2dϑ ·dθ ′

(3.85)

=
Bθ

T
· 1∫

θ ′
n−1

n θ ′n ·dθ ′
(3.86)

=
Bθ

T
· n(n+1)

n−1
. (3.87)

We can see from Eq. (3.87) the optimal bid price has a linear relationship with the

CTR and the average budget per auction. Also it monotonously increases w.r.t. n when
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n≥ 2.

3.8.4 Discussion: Tragedy of the Commons in RTB

We define the advertising performance comparison scheme as: first, comparing the

achieved utilities (e.g., clicks), the higher utility the better; then comparing the cost for

achieving such a utility, if the utility are the same, the lower cost the better.

From Eqs. (3.61) and (3.87) we can see the bid increases w.r.t. the number of

auction competitors. The reason is that each advertiser wants to maximise the objective

(click number or revenue) given the cost not higher than the budget. When there are

n advertisers in an auction, the averaged winning probability of each advertiser is 1/n.

As a result, each advertiser will try to spend out the budget to win higher objective

value. However, such an equilibrium is not efficient. In fact it results in a very low

social welfare situation among advertisers: they exhaust all their budget to win the

same utility, i.e., 1/n impressions and clicks.

A much better situation would be, every advertiser just spends B/k budget and

still gets the same utility. Extremely, when k→+∞, the social welfare (revenue minus

cost) among advertisers are maximised. In such a case, every advertiser will just bid 0

and the winner is randomly selected and pays 0 for each ad impression. However, this

situation is never realistic since the participants of an auction will always compete with

each other instead of cooperating, otherwise such a kind of trading cannot be regarded

as an auction. In such an unstable situation, each advertiser will higher her bid, which is

expected to acquire more utility given the current market situation (i.e., Fz(z)). Finally,

the system will get to the equilibrium of Eqs. (3.61) and (3.87) where every advertiser

spends out the budget.

This is actually the tragedy of the commons [120], which is a reflection of multi-

player cases of prisoner’s dilemma [121] in RTB campaign competition with budget

constraint. The advertisers spend more money to acquire the same advertising utility

that they could acquire when they cooperated, although the RTB mechanism enables

them to effectively reallocate their budget to targeted volume. The publishers (or ad

exchanges) earn the upper bound they can earn as the advertisers have spent out their

budget.

A simple example of tragedy of the commons in RTB display advertising is shown
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Table 3.5: An example of tragedy of the commons in RTB.

all others bid low any of others bid high
bid low (r−blow)/n 0
bid high r−blow (r−bhigh)/nhigh

in Table 3.5. There are n advertisers in an auction and suppose there is only two possible

bid actions, i.e., blow and bhigh, and the impression value is r. Suppose blow < bhigh < r.

The left column shows the actions for an advertiser; the first row shows the possible

situations of other advertisers; the table entries are the corresponding reward (or wel-

fare) for the advertiser corresponding to her action taken in a situation. In the situation

when all others bid blow, if the advertiser bids blow as well, then with 1/n probability

she will win the auction and make r−blow profit; if she bids bhigh, she will surely win

the auction and make r− blow profit. In the situation when any of others bid bhigh, if

the advertiser bids blow, she will lose the auction and earn nothing; if she bids bhigh,

then with 1/nhigh probability she will win the auction and make r−bhigh profit, where

nhigh is the number of advertisers bidding bhigh. Obviously, the bidding-high strategy

dominates the bidding-low strategy. When every advertiser performs the bidding-high

strategy, nhigh = n, which makes (r−bhigh)/nhigh < (r−blow)/n, the system reaches an

equilibrium of low social welfare.

Some possible solutions for advertisers would be (i) to set the cost related objec-

tives, such as ROI; (ii) to set the upper bound of their bid prices. However, the success

of reaching such better solutions still needs all advertisers to cooperate, just like the

cooperation of prisoners to achieve the higher reward for each one.





Chapter 4

Multi-Campaign Statistical Arbitrage

Mining

4.1 Background and Motivations
Real-Time Bidding (RTB) has emerged to be a frontier for Internet advertising [16,

17]. It mimics stock spot exchanges and utilises computers to programmatically buy

display ads in real-time and per impression via an instant auction mechanism between

buyers (advertisers) and sellers (publishers) [14]. Such automation not only improves

efficiency and scales of the buying process across lots of available inventories, but,

most importantly, encourages performance driven advertising based on targeted clicks,

conversions etc., by using real-time audience data, as has been shown in Chapter 3.

As a result, ad impressions become more and more commoditised in the sense that

the effectiveness (quality) of an ad impression does not rely on where it is bought or

whom it belongs to any more, but depends on how much it will benefit the campaign

target (e.g., underlying web users’ satisfactions and their direct responses)1.

According to the Efficient Market Hypothesis (EMH) in finance, in a perfectly

“efficient” market, security (such as stock) prices should fully reflect all available in-

formation at any time [122]. As such, no arbitrage opportunity exists, i.e., one can

neither buy securities which are worth more than the selling price, nor sell securities

worth less than the selling price without making riskier investment [79]. However,

due to the heavily-fragmented, non-transparent ad marketplaces and the existence of

1The discussion in this chapter is limited to performance-driven campaigns and direct responses such
as clicks and conversions only, whereas for the purpose of branding, the quality of publishers still play
an important role in defining the ad inventory quality.
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various ad types, e.g., sponsored search, display ads, affiliated networks, and pricing

schemes, e.g., cost per mille (CPM), cost per click (CPC), cost per action (CPA), the

ad markets are not informationally efficient. In other words, two display opportuni-

ties with similar or identical targeted audiences and visit frequency may sell for quite

different prices. Such a price discrepancy caused by market inefficiency create some

arbitrage opportunities for some intermediaries in the advertising ecosystem: they buy

ad inventories at a relatively low price and sell them at a higher price. For example, if

an advertiser undertakes a campaign to sell travel insurances, investing in few highly

visited web pages might be more costly than consolidating the same quality display

opportunities from a wide range of unpopular personal blogs about travels. In such a

case, if an ad agency sells the advertiser the ad inventories with the high price as from

the popular websites and buys such inventories from many unpopular media at a low

price, it makes arbitrage.

While exploiting such price discrepancies is still debatable in the advertising field,

the following four arbitrage situations exist:

I Inter-exchange arbitrage. Multiple ad exchanges exist. As the supply and de-

mand vary across exchanges for the same user types or targeting rules, there

exist intermediate agencies that act as a buyer with low bid in exchange A and

as a seller with high reserve price in exchange B in order to make profits [123].

The resell of the ad inventories should be accomplished within very short time

(below 50ms).

II Guaranteed delivery and spot market arbitrage. Some DSPs offer advertis-

ers the contracts with guaranteed delivery [31] while buying ad inventories over

an RTB exchange with non-guaranteed spot prices [124]. Conversely, some ad

agencies buy inventories in advance in bulk for fixed “preferential rates” from

private marketplaces, and then charge a client for their campaigns with the spot

prices.

III Publisher volume I/O arbitrage. One can purchase traffic to a particular web

page and subsequently make more from ad revenue than the initial inbound click

cost. An extreme case is a homepage purely dedicated to host ads: the Million
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Dollar Homepage2.

IV Pricing scheme arbitrage. In RTB, different counter-parties prefer different

pricing schemes in order to reduce their risk of deficit [125]. CPM is commonly

used for RTB auctions and preferred by publishers because it is likely to generate

stable income from the site volume. By contrast, advertisers focusing on perfor-

mance are likely to follow CPA and CPC pricing schemes as they are directly

related to return on investment (ROI) [126]. As such, if the CPM cost to yield a

user conversion is less than the CPA payoff for the conversion, an intermediate

agency can earn a positive profit.

Scientifically, this is of great interest as it presents a new type of data mining prob-

lem, which demands a principled mathematical formulation and novel computational

solution to mine and exploit arbitrage opportunities in RTB display advertising. Com-

mercially and socially, principled ad arbitrage algorithms would not only ensure the

business more smooth and risk free (e.g., III & IV), but also make the ad markets more

transparent and informationally more efficient (e.g., I, II & IV) by connecting other-

wise segmented markets to correct the misallocation of risks and prices, and eventually

reach to an “arbitrage free” equilibrium.

In this chapter, we formulate Statistical Arbitrage Mining (SAM) and present a

solution in the context of display advertising. We focus on modelling discrepancies

between CPA-based campaigns and CPM-based ad inventories (IV above), while the

arbitrage models for the remaining cases can be obtained analogically. The studied ar-

bitrage is a stochastic one due to the uncertainty of market supply/demand and users

response behaviour, e.g, clicks and conversions. The probability distribution of the

arbitrage profit from an ad display opportunity is estimated by user response predic-

tors [4] and the bid landscape forecasting models [24], trained on historic large-scale

data. Essentially, the proposed statistical arbitrage miner is a campaign-independent

RTB bidder, which assesses the arbitrage opportunity for an incoming CPM bid re-

quest against a portfolio of CPA campaigns, then selects a campaign and provides a

bid accordingly. Different from Chapter 3 on single-campaign RTB bidding strategies,

this chapter introduces the concept of meta-bidder, which performs the bidding for a

2http://www.milliondollarhomepage.com/

http://www.milliondollarhomepage.com/
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portfolio of ad campaigns, similar to a hedge fund holding a set of valid assets in finan-

cial markets. In the proposed SAM framework, (i) functional optimisation is utilised to

seek for an optimal bidding function to maximise the expected arbitrage profit across

multiple campaigns managed by the meta-bidder, and (ii) a portfolio-based risk man-

agement solution is leveraged to reallocate the bidding volume and the budget across

multiple campaigns to make a trade-off between arbitrage risk and return. We pro-

pose to jointly optimise those two components in an EM fashion with high efficiency

to make meta-bidder successfully catch the transient statistical arbitrage opportunities

in RTB. Experiments on both large-scale datasets and online A/B tests demonstrate the

large improvement of our proposed SAM solutions over the state-of-the-art baselines.

4.2 Problem Definition
Suppose there is an ad agency acting on behalf of advertisers to run their ad campaigns.

To hedge advertisers’ risk, quite often an ad agent gets paid on the basis of the perfor-

mance: receive a payoff each time a placed ad eventually leads to a product purchase

(cost-per-action, CPA)3. Note that it remains active research to determine whether and

how much a purchase action is attributed to the ads previously shown to the user. In

this research, we adopt the last-touch attribution model commonly used in the industry

– the last ad impression before the user’s conversion event is assigned with the full

attribution credit [127].

To run the campaigns and place the ads, the agency then goes to the RTB spot

market to purchase ad impressions. In RTB, the ad agency pays the cost for each ad

impression displayed (cost-per-mille, CPM) on the basis of ad auctions. In essence,

the ad agency is an arbitrageur, making a profit so long as the payoff by conversions

(CPA) is higher than the ad impression cost (CPM) of acquiring relevant users to mak-

ing the purchase. Potentially, the ad agency could in parallel run a large number of

campaigns from various advertisers to scale up their profit. Note that the ad agen-

cies build their business by taking the risk from the uncertainty of market competitions

and user response behaviours. For the entire ad ecosystem, it is healthy as it protects

both advertisers and publishers by introducing an intermediate layer that exploits (and

3A notable example is mobpartner.com who explicitly offers payoffs (CPA deals) for anyone
who can acquire the needed customers programmatically.

mobpartner.com
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Table 4.1: Notations and descriptions.

Notation Description
xxx The bid request represented by its features.

px(xxx) The probability density function of xxx.
i The ith campaign in the DSP portfolio.

M The number of campaigns in the DSP portfolio.
ri The payoff of campaign i for each conversion.
R The variable of meta-bidder arbitrage profit.
C The variable of meta-bidder arbitrage cost.

θ(xxx, i) The predicted CVR if i wins the auction of xxx. Occasionally θ is used
to refer to a specific CVR.

pi
θ
(θ) The probability density function of CVR θ for campaign i.

B The meta-bidder total budget.
T The estimated number of bid requests during the arbitrage period.

b(θ ,r) The bidding function which returns the bid. b is also used to
refer to a specific bid value.

w(b) The probability of winning a bid request with bid price b.
vi The probability of selecting campaign i. For multiple campaigns, the

campaign selection probability vector is vvv = (v1,v2, . . . ,vM)T .

RTB Ad
Exchange

5. Auction

0. Bid Request

6. Feedback
Conversion CPM Ad

Inventory

4. Bid Response

7. Payo� ri

1. Campaign
Selection

2. CVR
Estimation

3. Arbitrage
Bidding

Campaign i

CVR Ө

Campaign 1, CPA r1

Campaign 2, CPA r2

Campaign M, CPA rM

Meta-bidder

CPA Campaigns
...

CPA r i

CPA r i

Figure 4.1: An ad agency running a meta-bidder (arbitrageur) for statistical arbitrage mining.

ultimately remove) the discrepancies between market segments (in this case, the two

pricing schemes, CPA and CPM).

Traditionally, these arbitrages are accomplished manually. With statistical ap-

proaches, it is possible that the above operations can be automatically done by an in-

telligent meta-bidder across campaigns, where for a certain CPA campaign, the meta-

bidder seeks cost-effective ad impressions with high conversion possibility and low

market competition.

With the notations summarised in Table 4.1 and an illustration how the SAMer

works in Figure 4.1, the research problem is mathematically formulated as below. Sup-

pose there exist M CPA-based campaigns. Each campaign i has set its payoff for a



92 Chapter 4. Multi-Campaign Statistical Arbitrage Mining

conversion as ri. Over period T , the meta-bidder keeps receiving bid requests at time

t ∈ {1, . . . ,T}, where each bid request is represented with high dimension feature vec-

tor xxxt and if won, it is charged based on CPM. For each of the incoming bid requests,

the Statistical Arbitrage Mining (SAM) problem is to select a campaign and specify its

bid such that over the period T the expected total arbitrage profit (accumulated payoff

minus cost) is maximised.

We consider the following process. When a bid request comes, the meta-bidder

samples campaign i with probability vi to participate the RTB auction, where ∑
M
i=1 vi =

1. Once campaign i is selected, the meta-bidder then estimates its conversion rate

(CVR), denoted as θ(xxxt , i), i.e., if the ad is placed in this impression, how likely the

underlying user will see the ad and eventually convert (purchase) [4]. After that, the

meta-bidder generates the bid price via a bidding function b(θ ,ri) depending on the

CVR θ(xxxt , i) and the conversion payoff ri [128].

Given campaign selection probability vvv = (v1,v2, . . . ,vM)T and bidding function

b(θ ,r), the meta-bidder’s total arbitrage profit is given by summation over bid requests

and campaigns:

R(vvv,b(θ ,r)) =
T

∑
t=1

M

∑
i=1

(
θ(xxxt , i)ri−b(θ(xxxt , i),ri)

)
·w(b(θ(xxxt , i),ri))vi, (4.1)

where w(b) is the probability of winning an RTB auction given the bid b. The product

w(b)vi specifies the probability a campaign is selected and wins the auction; (θri−b)

is profit for the winning campaign. And the total cost upper bound is

C(vvv,b(θ ,r)) =
T

∑
t=1

M

∑
i=1

b(θ(xxxt , i),ri)w(b(θ(xxxt , i),ri))vi, (4.2)

where the bid price b is the maximum possible cost for a campaign to be placed no

matter in the first- or second-price auction with hard or soft reserve price [37], which is

regarded as the upper bound of the cost as modelled in Chapter 3.

Next, we need to model how likely we will see an ad impression with feature xxxt

in the future. Assume xxxt ∼ px(xxxt), that is for a relatively short period, the bid request

feature is drawn from an i.i.d. built from historic data. The whole model needs to be

re-trained periodically with the latest data. Detailed empirical study on the re-training
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frequency for dynamic arbitrage will be given in Section 4.6.3. Taking the integration

over xxx gives the expected profit:

E[R(vvv,b(θ ,r))] =T
∫

xxx

M

∑
i=1

(
θ(xxx, i)ri−b(θ(xxx, i),ri)

)
w(b(θ(xxx, i),ri))vi px(xxx)dxxx

=T
M

∑
i=1

vi

∫
xxx

(
θ(xxx, i)ri−b(θ(xxx, i),ri)

)
w(b(θ(xxx, i),ri))px(xxx)dxxx

=T
M

∑
i=1

vi

∫
θ

(
θri−b(θ ,ri)

)
w(b(θ ,ri))pi

θ (θ)dθ , (4.3)

where pi
θ
(θ(xxx, i)) = px(xxx)/||∇θ(xxx, i)|| as there is a deterministic relationship between

xxx and its estimated CVR θ(xxx, i), also given in Section 3.2. Similarly, the upper bound

of the total cost is rewritten as

E[C(vvv,b(θ ,r))] = T
∫

xxx

M

∑
i=1

b(θ(xxx, i),ri)w(b(θ(xxx, i),ri))vi px(xxx)dxxx

= T
M

∑
i=1

vi

∫
xxx

b(θ(xxx, i),ri)w(b(θ(xxx, i),ri))px(xxx)dxxx

= T
M

∑
i=1

vi

∫
θ

b(θ ,ri)w(b(θ ,ri))pi
θ (θ)dθ . (4.4)

Finally, the SAM problem is cast as a constrained optimisation problem: to find

campaign selection probability vvv and bidding function b(θ ,r) to maximise the expected

arbitrage profit with budget and risk constraints:

bSAM(),vvv∗() = argmax
b(),vvv

E[R] (4.5)

s.t. E[C] = B (4.6)

Var[R]≤ h (4.7)

000≤ vvv≤ 111 (4.8)

vvvT 111 = 1, (4.9)

where variance Var[R] is used to measure the risk of the profit and h is a parameter for

an upper tolerable risk. In addition, similar to the cost upper bound constraint setting

in Chapter 3, it is reasonable to assume that the ad auction volume is large enough to

exhaust the meta-bidder budget.
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We propose to solve the problem (Eq. (4.5)) in an EM fashion. In particular, the

campaign selection probability vvv is regarded as the latent factors to infer and the bid-

ding function b(θ ,r) is regarded as the parameter used to maximise the optimisation

target. In E-step, we fix the current estimated bidding function b(θ ,r) and solve the

optimal campaign selection probability vvv with the constraints Eqs. (4.7), (4.8), & (4.9).

In M-step, we fix the campaign selection probability vvv and seek for the optimal bidding

function b(θ ,r) to maximise the target under the budget constraint Eq. (4.6). When the

EM iterations get converged, all the constraints are satisfied and the target is maximised

(at least in a local maxima). The following Section 4.3 will describe the detailed solu-

tion of optimal bidding function (M-step), and Section 4.4 will discuss the solution of

campaign selection probability (E-step).

4.3 Optimal Arbitrage Bidding Function
With the fixed vvv and the budget constraint at Eq. (4.6), we have a functional optimi-

sation problem in M-step to find the optimal bidding function b(θ ,r) to maximise the

profit across the multiple campaigns:

max
b()

T
M

∑
i=1

vi

∫
θ

(
θri−b(θ ,ri)

)
w(b(θ ,ri))pi

θ (θ)dθ (4.10)

s.t. T
M

∑
i=1

vi

∫
θ

b(θ ,ri)w(b(θ ,ri))pi
θ (θ)dθ = B. (4.11)

The Lagrangian is

L (b(θ ,r),λ ) =T
M

∑
i=1

vi

∫
θ

(
θri−b(θ ,ri)

)
w(b(θ ,ri))pi

θ (θ)dθ

−λT
M

∑
i=1

vi

∫
θ

b(θ ,ri)w(b(θ ,ri))pi
θ (θ)dθ +λB (4.12)

=T
M

∑
i=1

vi

∫
θ

(
θri− (1+λ )b(θ ,ri)

)
w(b(θ ,ri))pi

θ (θ)dθ +λB. (4.13)

Taking its functional derivative w.r.t. b(θ ,r), we have

∂L (b(θ ,r),λ )
∂b(θ ,r)

= T
M

∑
i=1

[
(θri− (1+λ )b(θ ,ri))

∂w(b(θ ,ri))

∂b(θ ,ri)
− (1+λ )w(b(θ ,ri))

]
vi pi

θ (θ).

(4.14)
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Figure 4.2: Linear winning function w(b(θ)) and beta CVR pdf pθ (θ).

A sufficient (but not necessary) condition of making this derivative be 0 is

(
θri

1+λ
−b(θ ,ri)

)
∂w(b(θ ,ri))

∂b(θ ,ri)
= w(b(θ ,ri)), (4.15)

for all campaign i. With the specific functional form of winning function w(b) we can

derive the optimal SAM bidding function. Below we show solutions in two special

cases. These derivations follow the similar (but different) thinking as in Chapter 3.

It is necessary to provide the following detailed derivations to make the solution self-

contained and comprehensive.

4.3.1 Uniform Market Price Solution

Here we make a simple example of a linear winning function form (see Figure 4.2(a))

based on the assumption of the uniform market price4 distribution in [0, l]:

w(b(θ ,r)) =
b(θ ,r)

l
, (4.16)

where the function domain is also [0, l]. l is the upper bound of bid price and there is

no need to bid higher than l.

Taking Eq. (4.16) into Eq. (4.15), we have the optimal arbitrage bidding function

4Market price refers to the highest bid price amongst the competitors for each auction [28]. From
a bidder’s perspective, it can win an auction if the its bid price is higher than the market price on this
auction.
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bSAM1 as

bSAM1(θ ,r) =
rθ

2(1+λ )
. (4.17)

To calculate the optimal λ , the Euler-Lagrange condition of λ from Eq. (4.13) is

∂L (b(θ ,r),λ )/∂λ = 0, i.e.,

∫
θ

b(θ ,r)w(b(θ ,r))pθ (θ)dθ =
B
T
. (4.18)

Taking Eqs. (4.16) and (4.17) into Eq. (4.18) gives

∫
θ

( r
2(1+λ )

)2 θ 2

l
pθ (θ)dθ =

B
T

(4.19)

⇒ r2

4(1+λ )2l

∫
θ

θ
2 pθ (θ)dθ =

B
T
. (4.20)

Using a new notation φ ≡
∫

θ
θ 2 pθ (θ)dθ , we have

λ =
r
2

√
T φ

Bl
−1. (4.21)

Substituting Eq. (4.21) into Eq. (4.17) gives the final solution of bidding function

bSAM1(θ ,r) =

√
Bl
T φ

θ , (4.22)

where surprisingly the bidding function does not depend on r. This is because the linear

forms of w(b) in Eq. (4.16) and bSAM1(θ ,r) in Eq. (4.17) make θ factorised out from

r/(1+ λ ) in Eq. (4.20), which then removes the factor of r/(1+ λ ). φ depends on

the probabilistic distribution pθ (θ), e.g., the beta distribution BETA(2,8) as shown in

Figure 4.2(b), and can be calculated with the empirical data.

4.3.2 Long Tail Market Price Solution

Now consider a more practical winning function used in Section 3.3.1, which is based

on a long tail market price distribution pz(z) = l/(z+ l)2 with parameter l. As such,
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the winning function is

w(b(θ ,r)) =
∫ b(θ ,r)

0
pz(z)dz =

b(θ ,r)
b(θ ,r)+ l

. (4.23)

The real-world data analysis on winning prices as shown in Figure 3.5 demon-

strates the feasibility of adopting the winning function in Eq. (4.23) in practice. Taking

Eq. (4.23) into Eq. (4.15) gives the optimal arbitrage bidding function bSAM2 as

bSAM2(θ ,r) =

√
rlθ

1+λ
+ l2− l, (4.24)

which is in a concave form w.r.t. CVR θ .

The Solution of λ . The calculation of the optimal value of λ follows almost the same

routine as in Section 3.3.4 except for multiple campaigns with probabilistic selection

schemes. To make the thesis self-contained, the solution procedures are also provided

here although it would be to-some-extent redundant.

To calculate the optimal λ , the Euler-Lagrange condition of λ is Eq. (4.18). With

Eq. (4.24), we explicitly regard λ as an input of the bidding function b(θ ,r,λ ) and

rewrite Eq. (4.18) as

M

∑
i=1

vi

∫
θ

b(θ ,r,λ )w(b(θ ,r,λ ))pi
θ (θ)dθ =

B
T
. (4.25)

In most situations except some special cases like Section 4.3.1, λ has no analytic

solution. For numeric solution, since Eq. (4.25) can be rewritten as

M

∑
i=1

vi

∫
θ

(
b(θ ,r,λ )w(b(θ ,r,λ ))− B

T

)
pi

θ (θ)dθ = 0, (4.26)

we can obtain a feasible solution of λ by solving the minimisation problem

min
λ

M

∑
i=1

vi

∫
θ

1
2

(
b(θ ,r,λ )w(b(θ ,r,λ ))− B

T

)2
pi

θ (θ)dθ . (4.27)

If we have a sufficient number Ni of observations of θ ’s for each campaign i, we



98 Chapter 4. Multi-Campaign Statistical Arbitrage Mining

can write Eq. (4.27) in a discrete form over the observations

min
λ

M

∑
i=1

vi

Ni

∑
k=1

1
2

(
b(θ i

k,r,λ )w(b(θ
i
k,r,λ ))−

B
T

)2
, (4.28)

where we can use (mini-)batch descent or stochastic gradient descent to solve λ by the

following iteration:

λ ← λ −η

M

∑
i=1

vi

Ni

∑
k=1

(
b(θ i

k,r,λ )w(b(θ
i
k,r,λ ))−

B
T

)
· (4.29)

(
∂b(θ i

k,r,λ )
∂λ

w(b(θ i
k,r,λ ))+b(θ i

k,r,λ )
∂w(b(θ i

k,r,λ ))
∂λ

)
,

until convergence. Usually, as b(θ ,r,λ ) has a monotonic relationship with λ and

w(b(θ ,r,λ )) monotonically increases against b(θ ,r,λ ), b(θ i
k,r,λ )w(b(θ

i
k,r,λ )) has a

monotonic relationship with λ . For example, with the bidding function as Eq. (4.24)

and the winning function as Eq. (4.23), the factor b(θ i
k,r,λ )w(b(θ

i
k,r,λ )) decreases

monotonically against λ , which makes the optimal solution quite easy to find.

4.4 Optimal Campaign Selection

Fixing the resolved optimal arbitrage bidding function b(θ ,r) from previous M-step,

we can optimise the campaign selection probability vvv and check whether it is better to

reallocate the volume for each campaign.

We here introduce the concept of SAM profit margin γ in RTB display advertising.

The profit margin is a measure of ROI; it is the ratio of the profit of the advertising,

either from one campaign or a set of them (meta-bidder), divided by the advertising

cost during the corresponding period:

γ =
R
C

= ROI. (4.30)

With the dynamics of the RTB spot market and user response behaviour, the RTB ad-

vertising performance measured by ROI is stochastic, thus γ is modelled as a random

variable with expectation and variance. By modelling γi for each campaign i, the opti-

mal campaign selection can be solved by portfolio-based risk management methods.
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4.4.1 Single Campaign

With the optimal arbitrage bidding function b(θ ,r) as derived from the condition in

Eq. (4.15), the expectation and variance of the profit margin γi for each campaign i can

be calculated by

µi(b) = E[γi] = E
[Ri(vvvi=1,b)

Ci(vvvi=1,b)

]
, (4.31)

σ
2
i (b) = E

[Ri(vvvi=1,b)2

Ci(vvvi=1,b)2

]
−E
[Ri(vvvi=1,b)

Ci(vvvi=1,b)

]2
, (4.32)

where Ri(vvvi=1,b) and Ci(vvvi=1,b) are as in Eqs. (4.1) and (4.2) with vi = 1 and v j = 0

for all other campaign j. Both µi(b) and σ2
i (b) can be estimated via Monte Carlo

(MC) sampling methods [129]: (i) repeat N times on sampling T bid requests from the

training data and calculate Ri(vvvi=1,b) and Ci(vvvi=1,b), then (ii) calculate the expectation

and variance using these N observations of Ri(vvvi=1,b) and Ci(vvvi=1,b). Sampling-based

methods are a type of important solutions to estimating (posterior) distribution of ran-

dom variables in Bayesian inference [130, 131, 132].

4.4.2 Campaign Portfolio

Suppose there are M campaigns in the meta-bidder with CPA contracts. For each cam-

paign i, as discussed in Section 4.4.1, there is a variable of achieved profit margin γi

given the bidding function b(θ ,r), and its expectation is µi(b) and standard deviation

is σi(b). As such, the vector of expected profit margins for these M campaigns is

µµµ(b) = (µ1(b),µ2(b), . . . ,µM(b))T (4.33)

and the covariance matrix for the profit margins of the M campaigns is

ΣΣΣ(b) =


σ1,1(b) σ1,2(b) · · · σ1,M(b)

σ2,1(b) σ2,2(b) · · · σ2,M(b)
...

... . . . ...

σM,1(b) σM,2(b) · · · σM,M(b)

 , (4.34)
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where each element

σi, j(b) = ψi, jσi(b)σ j(b), (4.35)

where ψi, j ∈ [−1,1] is the profit margin correlation factor between campaign i and

j, which can be calculated by routine given the profit margin time series of the two

campaigns i and j [65].

Such a probabilistic campaign combination is called as campaign portfolio in this

thesis. With the campaign selection probability vvv, the campaign portfolio expected

profit margin and its variance are

µp(vvv,b) = vvvT
µµµ(b), (4.36)

σ
2
p(vvv,b) = vvvT

ΣΣΣ(b)vvv. (4.37)

Generally, the arbitrage profit margin may change w.r.t. the allocated volume: the

more bid request volume, the more statistical arbitrage opportunities, and the higher

margin. For simplicity, we assume that the profit margin distribution does not change

much w.r.t. the auction volume allocated to the campaign during a short period. The

empirical results in Section 4.6.2 will demonstrate the feasibility of the assumption.

4.4.3 Campaign Portfolio Optimisation

The E-step of the original optimisation problem Eq. (4.5), with the fixed bidding func-

tion and constraint Eqs. (4.7), (4.8), & (4.9), can be rewritten by taking the Lagrangian

as

max
vvv

vvvT
µµµ(b)−αvvvT

ΣΣΣ(b)vvv, (4.38)

s.t. vvvT 111 = 1, 000≤ vvv≤ 111,

where the Lagrangian multiplier α acts as a risk-averse parameter to balance the ex-

pected profit margin and its variance. This optimisation framework is widely used as

portfolio selection [65, 68, 72, 27], where maximisation of the objective Eq. (4.38)

is equivalent with the maximisation of the mean vvvT µµµ(b) with constrained variance

vvvT ΣΣΣ(b)vvv.



4.5. Experimental Setup 101

Algorithm 4.1 Statistical Arbitrage Mining for Display Advertising

Require: Meta-bidder winning function w(b)
Require: CTR distribution pi

θ
(θ) for each campaign i

Initialise b(θ ,r) = rθ and vvv = 111/M.
while not converged do

E-step:
Get µµµ(b) and ΣΣΣ(b) by Eq. (4.33) and Eq. (4.35)
Solve optimal vvv by Eq. (4.38)

M-step:
Get the bidding function form by w(b) and Eq. (4.15)
Solve λ by Eq. (4.29)
Update the SAM bidding function b(θ ,r) by Eq. (4.24)

end while
return vvv and b(θ ,r)

When the risk, i.e., the variance of the profit margin, is not considered, α is set

as 0. Then the campaign i with the highest µi(b) will always be selected, i.e., vi = 1,

while v j = 0 for all other campaigns j.

The Overview of SAM Algorithm. Finally, the overall operations to get the optimal

campaign selection probability vvv and the arbitrage bidding function b(θ ,r) are sum-

marised in Algorithm 4.1. In practice, vvv and b(θ ,r) will get converged within 5 EM it-

erations. For E-step, the computationally costly parts are the MCMC methods for eval-

uating the margin of M individual campaign (Eqs. (4.31) and (4.32)), where the time

complexity is O(MNT ), and the campaign correlation calculation (ψi, j in Eq. (4.35)),

which is O(M2NT ). For M-step, the bidding function is derived with closed form; the

calculation of λ by numeric descent methods Eq. (4.29), which depends on the data

values but is normally much efficient O(T ). The performance in Section 4.6.3 will

demonstrate the capability of the proposed solution for highly efficient re-training in

dynamic arbitrage tasks.

4.5 Experimental Setup

4.5.1 Datasets

The experiments5 are conducted based on two real-world large-scale bidding logs col-

lected from two DSP companies.

5To make the experiment repeatable, the project code with the public dataset link has been published
at https://github.com/wnzhang/rtbarbitrage.

https://github.com/wnzhang/rtbarbitrage
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iPinYou RTB dataset was published in 2014 after iPinYou’s global RTB algorithm

competition. This dataset contains the bidding and user feedback log from 9 cam-

paigns during 10 days in 2013, which consists of 64.75M bid records, 19.50M

impressions, 14.79K clicks and 16K CNY expense6. The train/test set spliting

has been given by the data publisher [115], where the last three-day data of each

campaign is split as the test data and the rest as the training data. More statistics

and analysis of the dataset is available in Section 3.4.1 and Table 3.2.

BigTree RTB dataset is a proprietary dataset from BigTree Times Co., a mobile DSP

technology company based in Beijing. This dataset is collected from Nov. 2014

to Feb. 2015 from 3 iOS mobile game campaigns. It consists of 10.85M im-

pressions and 46.38K actions7 with $0.083 CPA. This dataset is used to train the

model and conduct online A/B test on BigTree DSP during Feb. 2015.

Both datasets are in a record-per-line format, where each line consists of three

parts: (i) the features for this auction, e.g., the time, location, IP address, the

URL/domain of the publisher, ad slot size, user interest segments etc.; (ii) the auc-

tion winning price, which is the threshold of the bid to win this auction; (iii) the user

feedback on the ad impression, i.e., click, conversion or not.

4.5.2 Evaluation Protocol

Evaluation Procedure. The evaluation procedure adopted in this experiment is similar

to the previous work on bid optimisation as described in Chapter 3. The difference

from the previous evaluation procedure lies on the campaign sampling process (via

vvv) for each incoming bid request, which is handled by following an offline evaluation

scheme similar to a previous work on evaluating interactive systems [86]. As in the

historic data, the user’s feedback is only associated with the winning campaign of the

auction, there is no corresponding user feedback if a different campaign is sampled. As

such, based on the bid request i.i.d. assumption made before, for each round, the meta-

bidder first samples a campaign i, then passes the next test data record of this campaign

to the bid agent for bidding. If there is no more test data left for this campaign, i.e., the

6Note that this dataset is slightly different from that used in Chapter 3. This is because iPinYou
published a new version of the dataset after the experimental work in Chapter 3 had been completed.

7According to the advertiser’s contract, here the action is defined by users’ successful landing on the
game’s page in the app store.
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bid requests are run out, the test ends.

Budget Constraints. Similar to the budget setting in Section 3.4.4, it is easy to see that

if the meta-bidder’s budget is set as the same as the original total cost in the test log,

then simply bidding as much as possible for each auction will exactly run out the budget

and get all the logged clicks and conversions. In the offline empirical study, to test the

performance against various budget constraints, for each campaign, the evaluation tests

are conducted using 1/2,1/4,1/8, . . . ,1/256 of the original total cost in the test log as

the budget, respectively.

Payoff Setting. To set up various difficulties in arbitrage, for our offline experiments,

we manually set the CPA payoff for each iPinYou campaign. Specifically, for each cam-

paign i, we set a high and a low CPA payoff in order to test the algorithms’ performance

under an easy and a hard arbitrage situation, denoted as reasy
i and rhard

i , respectively:

reasy
i = eCPAi×0.8,

rhard
i = eCPAi×0.2,

where eCPAi is the original average cost for acquiring each conversion of campaign i

in the training data without any arbitrage strategy. In addition, the sufficient conversion

data in iPinYou is unavailable for 7 out of 9 campaigns. To have more tests done, we

thus regard the user clicks as a proxy for the desired actions (page landing) in our offline

experiment.

To complement the offline tests, in our online experiments, we directly adopt the

CPA payoff specified by the real-world advertisers to test the real business case.

4.5.3 Compared Strategies

Both bidding strategies and campaign selection strategies should be compared and in-

vestigated in the empirical study.

4.5.3.1 Bidding Strategies

The following baseline and state-of-the-art bidding strategies are compared in the ex-

periment. Their parameters are tuned on the training data.

Constant bidding (CONST). A constant bid regardless bid requests and campaigns.

Although trivial, it is a simple solution used by many DSPs. The parameter is the
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specific constant bid price.

Random bidding (RAND). Randomly choose a bid value in a given range. The pa-

rameter is the upper bound of the random bidding range.

Truth-telling bidding (TRUTH). If there is no budget constraint, one should bid the

true value for each ad impression, which is CPA×CVR of the impression [4].

Linear bidding (LIN). In [19], the bid value is linearly proportional to the CVR with

the bid scale parameter tuned to maximise the expected conversion number. This

bidding strategy is widely used in industry.

Optimal real-time bidding (ORTB). This an optimal bidding strategy proposed in

Chapter 3 to maximise clicks. Here the bidding strategy ORTB1 as in Eq. (3.16)

is compared.

Statistical arbitrage mining (SAM1, SAM2). These are the two bidding strategies pro-

posed in this chapter: SAM1 is from Eq. (4.17) and SAM2 is from Eq. (4.24),

collectively denoted as SAMX.

SAM with competition modelling (SAM1C, SAM2C). In a real online environment,

the advertisers will tune their bidding strategies according to their campaign per-

formance. If many bidders adopt our SAMX bidding strategies, it is possible that

this may change the market prices. In our offline empirical study, we follow [52]

to adopt the OPT bidding strategy [133] to simulate the market price changes

towards a locally envy-free equilibrium8. Note that this is not for comparing bid-

ding strategies but for comparing auction environment where we would like to

check whether our proposed SAMX algorithms would still make arbitrage profit

when the market changes according to our actions. We only compare the perfor-

mance of SAMX algorithms with those in the corresponding SAMXC settings.

8“Locally envy-free equilibrium” means no player in the game equilibrium would like to exchange
the situation with others. The work [133] is on sponsored search with generalised second price auctions.
By setting the slot number for each keyword auction as 1 and the CTR as 1.0, the OPT bidding strategy
can be used for our display advertising scenario.
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4.5.3.2 Campaign Selection Strategies

For campaign selection strategies, we compare the UNIFORM campaign selection, i.e.,

vvv = 111/M, and the proposed PORTFOLIO-based campaign selection, i.e. the solution

of Eq. (4.38), where PORTFOLIO will be denoted as GREEDY when α in Eq. (4.38) is

set as 0. The conventional campaign selection scheme based on internal auctions [14],

which always selects the campaign with the highest bid value, will be compared in the

online A/B test in Section 4.7.

4.5.4 Evaluation Measures

We use the meta-bidder-level profit as the prime evaluation measure, which is calcu-

lated as

profit= #conversions×payoffCPA−cost. (4.39)

In addition to the profit, we also evaluate the profit margin, i.e., γ as discussed in Sec-

tion 4.4 for each strategy, which is calculated by the profit divided by the cost. In

addition, we report the number of impressions and conversions as well as the cost for

each strategy.

4.6 Offline Empirical Study

4.6.1 Single Campaign Arbitrage

Table 4.2 reports the overall performance on the tested 9 campaigns from the iPinYou

dataset. It can be observed that SAMX bidding strategies outperform all others regarding

to the profit. SAM2 further outperforms SAM1 particularly in the hard payoff settings

because of its more practical winning function. In addition, SAMXC strategies still

make high arbitrage profit with the market competition modelling, which demonstrates

the potential of SAMX strategies in a real market competition environment.

Furthermore, Figure 4.3 presents the performance change on the arbitrage profit

and the margin of each algorithm w.r.t. the budget settings. The value on the x-axis

means the proportion of the original total cost in the test data divided by the test bud-

get. The higher the proportion is, the less the budget is. From Figure 4.3 we can have

the following observations. (i) SAM1 and SAM2 outperform the rest in almost all the
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Table 4.2: Single-campaign statistical arbitrage overall performance.

Easy payoff, 1/16 budget setting
Bid. Profit Margin Bids Imps. Cnvs. Cost

Algo. (CNY) (M) (K) (CNY)

CONST 41.77 0.21 2.68 761.91 297 194.44
RAND 19.65 0.12 2.97 612.90 223 166.60

TRUTH 749.75 3.60 1.89 420.19 1,137 208.33
LIN 845.22 3.83 2.71 531.49 1,161 220.90

ORTB 869.43 4.03 2.87 632.38 1,172 215.78
SAM1 1,141.72 6.02 3.26 471.46 1,504 189.55
SAM2 1,161.24 5.97 3.42 606.97 1,534 194.40

SAM1C 1,118.61 6.10 3.24 389.09 1,473 183.34
SAM2C 1,141.01 5.87 3.41 563.74 1,513 194.38

Hard payoff, 1/16 budget setting
Bid. Profit Margin Bids Imps. Cnvs. Cost

Algo. (CNY) (M) (K) (CNY)

CONST -1.40 -0.25 4.10 81.55 10 5.53
RAND 1.08 10.47 4.10 8.36 4 0.10

TRUTH 214.08 2.13 4.03 373.66 1,430 100.30
LIN 45.63 0.21 2.71 531.49 1,161 220.90

ORTB 55.52 0.26 2.87 632.38 1,172 215.78
SAM1 207.34 2.29 3.89 319.77 1,328 90.59
SAM2 227.76 3.77 4.10 301.99 1,326 60.47

SAM1C 204.73 2.25 3.88 308.44 1,322 90.98
SAM2C 225.95 3.70 4.10 298.51 1,322 61.13

profit and margin comparisons with different budget settings. Such results indicate that

the proposed statistical arbitrage mining bidding strategies are capable of making arbi-

trage profit and outperform all other existing bidding strategies. (ii) Under the higher

budget setting, e.g., 1/2 or 1/4 of the total original spend, TRUTH produces comparable

arbitrage profit as SAMX (Figures 4.3(a) and 4.3(b)). This is because when the budget is

abundant, the tight budget constraint (i.e., the equality condition in Eq. (4.11)) is unnec-

essary to meet in order to maximise the profit. Under such a situation, the bidding prob-

lem will get back to the classic second price auction problem, where the truth-telling

bidding strategy is optimal [10]. However, such abundant budget (win about half of the

ad impressions in the market) is normally impossible even for large DSPs because the

real daily RTB spot market is about billions of dollars. (iii) Under the lower budget

setting, e.g., 1/64, 1/128 and 1/256 of the total original spend, the profit from TRUTH
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Figure 4.3: Single-campaign arbitrage performance against different settings.

drops significantly because of the budget constraint is quite important and the optimal

bidding strategy is never truth-telling. On the contrary, LIN and ORTB act almost the

same as SAMX. This is reasonable because under the lower budget settings, the budget

is always exhausted. With the cost the same as the budget, the more conversions the

more arbitrage profit. (iv) With the market competition modelling, SAMXC has dropped

profit compared with SAMX but the drop is tolerable (less than 10%, Figures 4.3(e) and

4.3(f)). Specifically, when the budget gets lower, the profit drop percentage gets lower.

The reason is that fewer auctions are won with lower budget so that the market does

not change much.
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Figure 4.4: Multi-campaign arbitrage performance comparison and trend against different pa-
rameter and budget settings.

4.6.2 Multiple Campaign Arbitrage

Furthermore, the multi-campaign statistical arbitrage performance is studied. Specifi-

cally, we test 6 campaign portfolios from the iPinYou dataset. Each portfolio contains 4

campaigns with the data from the same period. For each portfolio, after the convergence

of EM iterations, the empirically optimal vvv and bidding function b(θ ,r) are deployed

in the campaign portfolio’s test stage, where the auction volume and the budget are set

as the same as in the training stage. Compared with the previous single campaign part,

this part of experiment focuses more on the campaign portfolio selection, where the

UNIFORM, GREEDY and PORTFOLIO selection methods are compared.

The overall results with 1/32 budget setting are reported in Table 4.3. For the com-

parison among the bidding strategies, SAMX overall outperforms others in both payoff

settings. Figure 4.4 provides more detailed analysis. The profit trend against the budget

setting, as shown in Figures 4.4(a) and 4.4(b), is consistent with the single campaign

setting. The competitor model setting does not significantly drop the arbitrage profit as

shown in Figure 4.4(c). Specifically, when the budget gets lower, the profit drop per-
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Table 4.3: Multi-campaign statistical arbitrage overall performance.

Strategies Easy payoff Hard payoff
Bidding Campaign Profit Margin Profit Margin

algorithm selection (CNY) (CNY)
LIN GREEDY 501.12 6.63 68.59 0.91
LIN PORTFOLIO 925.45 13.11 181.54 2.50
LIN UNIFORM 747.00 9.53 127.14 1.62

ORTB GREEDY 517.02 6.65 70.96 0.91
ORTB PORTFOLIO 802.15 10.32 146.13 1.88
ORTB UNIFORM 765.12 9.89 133.16 1.72
SAM1 GREEDY 966.02 20.81 230.38 11.13
SAM1 PORTFOLIO 1,037.98 15.84 240.63 7.96
SAM1 UNIFORM 768.38 9.78 172.43 7.57
SAM2 GREEDY 961.68 28.73 235.31 24.00
SAM2 PORTFOLIO 983.01 17.21 248.65 13.61
SAM2 UNIFORM 774.09 10.32 168.15 5.16

TRUTH GREEDY 787.10 14.69 227.86 29.05
TRUTH PORTFOLIO 787.10 14.69 242.07 18.34
TRUTH UNIFORM 326.57 4.14 101.12 5.36

centage gets lower. The reason is that fewer auctions are won with lower budget so that

the market does not change much. To compare campaign selection strategies, Table 4.3

shows that PORTFOLIO selection constantly outperforms UNIFORM and GREEDY se-

lection. Compared with UNIFORM, GREEDY allocates all the auction volume and the

budget onto the campaign evaluated as with the highest arbitrage profit margin, which

theoretically maximises the expected profit. However, the result that PORTFOLIO out-

performs GREEDY indicates there exists a risk-return tradeoff point which practically

performs better than the maximum expectation solution. Furthermore, Figure 4.4(d)

shows the change of total profit from the 6 tested campaign portfolios based on SAM2

against the portfolio risk-averse parameter α in Eq. (4.38). Here setting α as a small

enough value is equivalent to the greedy campaign selection. As we can see, as α

increases from 10−3, the profit first gets a rise to the peak value and then drops signifi-

cantly. Among the different budget settings, we can observe a trend from Figure 4.4(d)

that is the more budget, the higher the optimal α is. For 1/256 budget setting, the opti-

mal α is 0.01, while 0.1 is optimal for 1/4 budget setting. This may be due to the fact

that more budget brings more auction volume across a longer period, importing higher

risk, which requires to be carefully hedged.

In addition, we present a case study on a campaign portfolio (3358, 3386, 3427 and
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(a) Efficient frontier (b) vvv allocation w.r.t. risk

Figure 4.5: A case study of a 4-campaign portfolio.

3476 are four campaign IDs). Its risk-return analysis plot is shown in Figure 4.5(a) and

the corresponding campaign selection probability allocation is shown in Figure 4.5(b).

In Figure 4.5(a) the dark blue points stand for the expected profit margin and its stan-

dard deviation for 4 individual campaigns. As we can see, campaign 3358 has the

highest expected margin as well as the highest risk while campaign 3386 is the most

stable one but with the lowest expected margin. The best empirical portfolio selection

is shown as the vertical dashed line in Figure 4.5(b), where 94.9% auction volume is

allocated to campaign 3358 and 4.1% is allocated to campaign 3427. However, if the

meta-bidder is more risk-averse, other two campaigns can be included in order to fur-

ther reduce the standard deviation. The parameter α in Eq. (4.38) provides a flexible

way to adjusting the risk and return trade-off.

4.6.3 Dynamic Multiple Campaign Arbitrage

In practice, as the market competition and the user behaviour change across the time,

the meta-bidder should dynamically change its bidding strategy and campaign selec-

tion. In this part of experiment, we test the capability of our proposed SAM2 bidding

strategy with dynamic campaign portfolio selection over a 72 hour test period. The

arbitrage bidding function and campaign selection probability are updated periodically,

and the interval between two updates is referred as one round. Specifically, at the be-

ginning of each round, the re-training of the arbitrage bidding function and campaign

selection probability using Algorithm 4.1 is performed based on the bidding data col-

lected from previous round. A problem here is that how frequent the update should be?
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Figure 4.6: Dynamic multi-campaign arbitrage profit distribution with different update fre-
quency.

It is apparent that if the round period is too long, it is difficult for the meta-bidder to

catch the transient statistical arbitrage opportunities; if the round period is too short,

the training data could be sparse and the model might overfit the data.

We test the dynamic multiple campaign arbitrage on 5 portfolios, each of which

consists of 4 campaigns with the data logged within the same period. For each test

campaign portfolio, we try the different update frequencies as well as different risk-

averse α’s. The box plots [116] of the arbitrage profit distribution with different update

frequencies under two payoff settings are shown in Figure 4.6. From the results we can

observe that (i) the positive profit values over all cases demonstrate the capability of

SAM2 to make dynamic arbitrages via periodic re-training. (ii) In both payoff settings,

the dynamic SAMs (period no more than 24 hours) yield much better performance than

the static SAM (period equals to 72 hours, i.e., only one update), which indicates the

importance of dynamically re-training the models to catch the latest market situation.

(ii) Among the different frequencies of dynamic updating, updating every 6 hours leads

to the highest arbitrage profit. We believe this is a trade-off point between the abun-

dance and recency of the training data. Note that the optimal update frequency may be

different for other campaigns or different training settings.

In addition, Figure 4.7 presents a case study of the 72 hour dynamic 4-campaign

arbitrage with the model update for every 6 hours. In each round, the calculated cam-

paign selection probability (i.e., volume allocation) from portfolio optimisation, the

estimated profit margin of each campaign, the empirical profit and cost are depicted. It
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Figure 4.7: A case study of dynamic multi-campaign arbitrage performance and the corre-
sponding margin estimation and volume allocation.

can be observed that the estimated margin for each campaign varies over time, which

results in the change of campaign volume allocation across the time. The empirical

profit shows the same trend with the estimated campaign margin, which to-some-extent

highlights the effectiveness of the margin estimation in our model. Moreover, the cost

in each round (i.e., 6 hours) is different, not necessarily be the average budget allocated

for each round. It is possible that if the market is too competitive to make arbitrage

profit, the resulting cost and profit could be both much low.

4.7 Online A/B Test

The proposed SAM algorithm has been deployed and tested in a live environment pro-

vided by BigTree DSP. The model training follows the scheme in Section 4.6.2. Specif-
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Figure 4.8: Online A/B test performance on BigTree DSP.

ically, with Algorithm 4.1, we obtain the empirically optimal SAM2 bidding func-

tion b(θ ,r) and campaign selection probability vvv for the meta-bidder based on the

3-campaign training data described in Section 4.5.1, where the hyperparameter α in

Eq. (4.38) is set as 0.1. As a control baseline, we deploy another meta-bidder with the

basic linear bidding function [19, 4] and the internal auction-based campaign selection

scheme [14]. During the online A/B test, every received bid request from the router

of BigTree DSP will be randomly assigned to either of the two meta-bidders, which

returns the bid response, including the selected campaign ad and the bid price, back to

the ad exchange for auction. The online test was conducted during 23 hours between

13 and 14 Feb. 2015 with $60 budget for each meta-bidder.

Figure 4.8 presents the overall online performance of SAM and the baseline al-

gorithm BASE. The online results on the commercial DSP verify the effectiveness of

our algorithm in a real commercial setting: SAM leads to $30.6 arbitrage profit with

$60 budget, which is a 51.1% margin and a 31.8% improvement over the BASE bid-

der setting. An interesting observation is that in spite of the higher CPM, SAM brings

lower eCPA than BASE, which ultimately leads to higher arbitrage profit. This suggests

that despite the market price and arbitrage margin are different across the campaigns,

the SAM algorithm would be able to successfully identify and target to the cases that

have higher arbitrage margin from those high-cost impressions (reflected by their high

CPM).
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4.8 Summary
In this chapter, we investigated a problem of strategy optimisation over multiple cam-

paigns. Specifically, with a special case of the RTB business between the CPA ad

campaigns and CPM ad inventories, the first study on statistical arbitrage mining in

RTB display advertising has been conducted. We proposed a joint optimisation frame-

work to maximise a multi-campaign meta-bidder’s expected arbitrage profit with bud-

get and risk constraints, which was then solved in an EM fashion. In the E-step the

bid volume was reallocated according to the individual campaign’s estimated risk and

return, while in the M-step the arbitrage bidding function was optimised to maximise

the expected arbitrage profit with the campaign volume allocation. Aside from the the-

oretical insights, the offline and online large-scale experiments with real-world data

demonstrated the effectiveness of the proposed solution in exploiting arbitrage in vari-

ous model settings and market environments. We believe this research would open up

a whole new set of research questions that intersect between financial methods such as

high-frequency trading [82], risk-management [65, 68] and data mining methodologies

for display advertising and beyond.



Chapter 5

Unbiased Learning and Optimisation

on Censored Auction Data

5.1 Background and Motivations
The rise of real-time bidding (RTB) based display advertising and behavioural targeting

provides one of the most significant cases for machine learning applied to big data. The

major supervised learning tasks range from predicting the market price distribution and

volume of a given ad impression type [24], estimating the click-through rate (CTR)

[134] and conversion rate [4], to the optimisation of bidding strategies [19, 128]. These

data driven prediction and optimisation techniques enable ads to be more relevant and

targeted to the underlying audience [128].

A challenging yet largely neglected problem in the aforementioned learning tasks

is that the common supervised learning requires the training and prediction data to fol-

low the same distribution, but in the online display advertising case, the training data is

heavily censored by the ad auction selection, i.e., the process of auction selecting ads

[135]. For advertisers, specifically, the above learning models, e.g., CTR estimation

and bid optimisation, are operated over the full volume bid request stream in order to

evaluate each potential impression and automatically generate the bid [29]. However,

the auction selects the ad with the highest bid and displays it to the user, and only in this

situation the corresponding user feedback, i.e., click and conversion, to this ad impres-

sion, along with the second price (or market price [28]) for this auction, are received by

the advertisers as the labels of this data instance. Thus, as illustrated in Figure 5.1, the

observation of a training instance is heavily influenced by its bid value; data instances
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CTR
Est.
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p(data) p(data)

Figure 5.1: From an advertiser’s perspective, the ad auction selection acts as a dynamic data
filter based on bid value, which leads to distribution discrepancy between the post-
bid training data (red) and pre-bid prediction data (blue).

with higher bid prices (than the expected market price) would generate a higher prob-

ability of winning and thus higher chance to be in the training data. A consequence

is that the learning will be overly focused on the instances with a high winning prob-

ability (high bid), while neglecting the cases where the probability is small. Such a

bias is problematic as intuitively conversions or clicks from those low market-valued

impressions are more crucial than those from high market-valued impressions in order

to obtain a more economic solution. Ultimately advertisers not only need to identify

the impressions that have high chances to be clicks/converted, but also (and equally

importantly) require the cost of winning those impressions to be relatively small. Thus,

we need to have an unbiased learning framework that can take the final optimisation

objective into account.

Typically, the bias problem is a missing data problem, which has been well-studied

in the machine learning literature [90]. A direct solution would be to identify or assume

the missing process and correct the discrepancy (e.g, [91, 92]) during the training.

However, the data missing in RTB display advertising depends on both the advertiser’s

previous bidding strategy and the market competition, neither of them are known as a

priori. There are some indirect solutions of alleviating the data bias such as by adding
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random ad selection probability in the bidding strategy [94], but a better solution would

be to decouple the solution with the previously employed bidding strategy (when ac-

quiring the training data) and build a link to the final optimisation process.

In this chapter, we consider both CTR estimation [134, 4] and bid optimisation

tasks [19, 128] and propose a flexible learning framework that eliminates such an

auction-generated data bias towards a better learning and optimisation performance.

According to the RTB auction mechanism, the labelled training data instance is ob-

served only when the bid is higher than the market price. Inspired by the censored

learning work [28], we explicitly model the auction winning probability with a bid

landscape based on a non-parametric survival model [136], which is then estimated

from the advertiser’s historic bids. By importance sampling with the auction winning

probabilities as propensity scores [137], we naturally incorporate it into the gradient

derivation to produce a Bid-aware Gradient Descent (BGD) training scheme for both

CTR prediction and bid optimisation tasks. Intuitively, our BGD shows that (i) the

higher bid price the impression was won with, the lower valued gradient such data

should generate; (ii) to generate a bid, historic bids will further adjust the gradient

direction and provide a lower average budget for lower-bidden training instance when

learning the bidding function. It is worth noticing that the proposed learning framework

is generally applicable to various supervised learning and optimisation tasks mentioned

above.

Besides the theoretical derivations, we also conduct empirical studies with the

tasks of CTR estimation and bid optimisation on two large-scale real-world datasets.

The results demonstrate large improvements brought from our solution over the start-

of-the-art models. Moreover, the learning framework was also deployed on Yahoo!

DSP in Sep. 2015 and brought 2.97% AUC lift for CTR estimation and 9.30% eCPC

drop for bid optimisation over 9 campaigns in an online A/B test.

5.2 Unbiased Learning and Optimisation Framework
In online RTB display advertising, a bid request can be represented as a high dimen-

sional feature vector [4]. Let us denote the vector as xxx. Without loss of generality,

we regard the bid requests as generated from an i.i.d. xxx ∼ px(xxx) within a short period

[128]. Based on the bid request xxx, the ad agent (or demand-side platform, a.k.a. DSP)
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will then provide a bid bxxx following a bidding strategy. If such a bid wins the auction,

the corresponding labels, i.e., user response y (either click or conversion) and market

price z, are observed. Thus, the probability of a data instance (xxx,y,z) being observed

relies on whether the bid bx would win or not and we denote it as P(win|xxx,bxxx). For-

mally, this generative process of creating each observed instance of the training data

D = {(xxx,y,z)} is summarised as:

qx(xxx)︸ ︷︷ ︸
impression

= P(win|xxx,bxxx)︸ ︷︷ ︸
auction selection

· px(xxx)︸ ︷︷ ︸
bid request

, (5.1)

where the probability qx(xxx) describes how feature vector xxx is distributed within the

training data.1 The above equation indicates the relationship (bias) between the p.d.f.

of the pre-bid full-volume bid request data (prediction) and the post-bid winning im-

pression data (training); in other words, the predictive models would be trained on D,

where xxx∼ qx(xxx), and be finally operated on the prediction data xxx∼ px(xxx). In the follow-

ing sections, we shall focus on the estimation of the winning probability P(win|xxx,bxxx)

and then introduce our solutions of using it for creating bid-aware gradients to solve

CTR estimation and bid optimisation problems.

5.2.1 Auction Winning by Survival Models

The RTB display advertising uses the second price auction [14]. In the auction, the

market price z is defined as the second highest bid from the competitors for an auction.

In other words, it is the lowest bid value one should have in order to win the auction.

Following [28], we take a stochastic approach rather than a game theoretical one, and

assume the market price z is a random variable generated from a fixed yet unknown

p.d.f. pxxx
z (z); then the auction winning probability is the probability when the market

price z is lower than the bid bxxx:

w(bxxx)≡ P(win|xxx,bxxx) =
∫ bxxx

0
pxxx

z (z)dz, (5.2)

where to simplify the solution and reduce the sparsity of the estimation, the market

price distribution is estimated on a campaign level rather than per impression xxx [24].

1The exact formula should be qx(xxx) ∝ P(win|xxx,bxxx)px(xxx). Here we omit the normaliser of qx(xxx) for
formula simplicity.
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Thus for each campaign, there is a pz(z) to estimate, resulting in the simplified winning

function w(bxxx), similar to [28] and Chapters 3 and 4.

If we assume there is no data censorship, i.e., the ad agent wins all the bid requests

and observes all the market prices, the winning probability wo(bxxx) can directly come

from the observation counts:

wo(bxxx) =
∑(xxx′,y,z)∈D δ (z < bxxx)

|D|
, (5.3)

where z is the historic market price of the bid request xxx′, the indicator function δ (z <

bxxx) = 1 if z < bxxx and 0 otherwise. We use it as a baseline of w(bxxx) modelling.

However, the above treatment is rather problematic as it does not take into account

that in practice there are always a large portion of the auctions the advertiser loses

(z ≥ bxxx), in which the market price is not observed in the training data2. Thus, the

observations of the market price are right-censored: when we lose, we only know that

the market price is higher than our bid, but do not know its exact value. In fact, wo(bxxx)

is a biased model and over-estimates the winning probability. One way to look at

this is that it ignores the counts for lost auctions where the historic bid price is higher

than bxxx (in this situation, the market price should have been higher than the historic

bid price and thus higher than bxxx) in the denominator of Eq. (5.3). As we will show

in our experiment, this estimator will consistently over-estimate the actual winning

probability.

In this chapter, we use survival models [138] to handle the biased auction data.

Survival models were originally proposed to predict patients’ survival rate for given a

time after certain treatment. As some patients might leave the investigation, researchers

do not know their exact final survival period but only know the period is longer than

the investigation period. Thus the data is right-censored. The auction scenario is quite

similar, where the integer market price3 is regarded as the patient’s underlying survival

period from low to high and the bid price as the investigation period from low to high.

If the bid b wins the auction, the market price z is observed, which is analogous to the

2In the iPinYou dataset [29] we tested, the overall auction winning rate of 9 campaigns is 23.8%,
which is already a very high rate. In practice, a common auction winning rate for a DSP is lower than
10%.

3The mainstream ad exchange auctions require integer bid prices. Without a fractional component, it
is reasonable to analogise bid price to survival days.
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observation of the patient’s death on day z. If the bid b loses the auction, one only

knows the market price z is higher than b, which is analogous to the patient’s left from

the investigation on day b.

Specifically, we follow [28] by leveraging the non-parametric Kaplan-Meier

Product-Limit method [136] to estimate the market price distribution pz(z) based on

the observed impressions and the lost bid requests.

Suppose there is a campaign that has participated in N RTB display ad auctions.

Its bidding log is a list of N tuples 〈bi,wi,zi〉i=1...N , where bi is the bid price of this

campaign in the auction i, wi is the boolean value of whether this campaign won the

auction i, and zi is the corresponding market price if wi = 1. The problem is to model

the probability of winning an ad auction w(bxxx) with the bid price bxxx.

If we transform our data into the form of 〈b j,d j,n j〉 j=1...M, where the bid price

b j < b j+1. d j denotes the number of ad auction winning cases with the market price

exactly valued b j− 1 (in analogy to patients die on day b j). n j is the number of ad

auction cases which cannot be won with bid price b j−1 (in analogy to patients survive

to day b j), i.e., the number of winning cases with the observed market price no lower

than b j−14 plus the number of lost cases when the bid is no lower than b j−1. Then

with bid price bxxx, the probability of losing an ad auction is

l(bxxx) = ∏
b j<bxxx

n j−d j

n j
, (5.4)

which just corresponds to the probability a patient survives from day 1 to day bxxx. Thus

the winning probability will be

w(bxxx) = 1− ∏
b j<bxxx

n j−d j

n j
. (5.5)

Table 5.1 gives an example of transforming the historic 〈bi,wi,zi〉 data into the

survival model data 〈b j,d j,n j〉 and the corresponding winning probabilities calculated

by Eqs. (5.5) and (5.3). We see that the Kaplan-Meier Product-Limit model, which

is a non-parametric maximum likelihood estimator of the data [139], makes use of all

winning and losing data to estimate the winning probability of each bid, whereas the

4We assume that if there is tie in the auction, the campaign will not win the auction.
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Table 5.1: An example of data transformation of 8 instances with the bid price between 1 and
4. Left: tuples of bid, win and cost 〈bi,wi,zi〉i=1...8. Right: the transformed survival
model tuples 〈b j,d j,n j〉 j=1...4 and the calculated winning probabilities. Here we
also provide a calculation example of n3 = 4 shown as blue in the right table. The
counted cases of n3 in the left table are 2 winning cases with z≥ 3−1 and the 2 lost
cases with b≥ 3, shown highlighted in blue color.

bi wi zi

2 win 1
3 win 2
2 lose ×
3 win 1
3 lose ×
4 lose ×
4 win 3
1 lose ×

b j n j d j
n j−d j

n j
w(b j) wo(b j)

1 8 0 1 1−1 = 0 0

2 7 2 5
7 1− 5

7 = 2
7

2
4

3 4 1 3
4 1− 5

7
3
4 = 13

28
3
4

4 2 1 1
2 1− 5

7
3
4

1
2 = 41

56
4
4

observation-only counting model wo(bxxx) does not. As we can see in the table wo(bxxx) is

consistently higher than w(bxxx). Later in experiment, we will further demonstrate such

comparisons with real-world data in Figure 5.5.

5.2.2 Task 1: CTR Estimation

Generally, given a training dataset D = {(xxx,y,z)}, where the data instance xxx follows the

training data distribution qx(xxx), (the red data distribution in Figure 5.1), an unbiased

supervised learning problem can be formalised into a loss-minimisation problem on

prediction data distribution px(xxx) (the blue data distribution in Figure 5.1):

min
βββ

Exxx∼px(xxx)[L (y, fβββ (xxx))]+λΦ(βββ ), (5.6)

where fβββ (xxx) is βββ -parametrised prediction model to be learned; L (y, fβββ (xxx)) is the loss

function based on the ground truth y and the prediction fβββ (xxx); Φ(βββ ) is the regulari-

sation term that penalises the model complexity; λ is the regularisation weight. With

Eqs. (5.1) and (5.2), one can use importance sampling to reduce the bias of the training

data:

Exxx∼px(xxx)
[
L (y, fβββ (xxx))

]
=
∫

xxx
px(xxx)L (y, fβββ (xxx))dxxx =

∫
xxx

qx(xxx)
L (y, fβββ (xxx))

w(bxxx)
dxxx (5.7)

=Exxx∼qx(xxx)

[
L (y, fβββ (xxx))

w(bxxx)

]
=

1
|D| ∑

(xxx,y,z)∈D

L (y, fβββ (xxx))
w(bxxx)

=
1
|D| ∑

(xxx,y,z)∈D

L (y, fβββ (xxx))

1−∏b j<bxxx

n j−d j
n j

.
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Based on this framework, if we obtain the auction winning probability w(bxxx),

e.g., Eq. (5.5), we can eliminate the bias for each observed training data instance. Let

us look at the case of CTR estimation with logistic regression [1]. With the logistic

loss between the binary click label {−1,+1} and the predicted probability and L2

regularisation, the framework of Eq. (5.7) is written as

min
βββ

1
|D| ∑

(xxx,y,z)∈D

log(1+ e−yβββ
T xxx)

w(bxxx)
+

λ

2
||βββ ||22, (5.8)

where the winning probability w(bxxx) is estimated for each observation instance, which

is independent from the CTR estimation parameter βββ ; the update rule of βββ is routine

using stochastic gradient descent. With the learning rate η , the derived Bid-aware

Gradient Descent (BGD) calculation of Eq. (5.8) is

βββ ← (1−η ·λ )βββ +
η · y · e−yβββ

T xxx · xxx
(1+ e−yβββ

T xxx)(1−∏b j<bxxx

n j−d j
n j

)
. (5.9)

Discussion. From the equation above, we observe that with a lower winning bid bxxx, the

probability 1−∏b j<bxxx

n j−d j
n j

of observing the instance in the training set is lower, and

the corresponding gradient from the data instance is higher and vice versa as it is in the

denominator.

This is intuitively correct as when a data instance xxx is observed with low proba-

bility, e.g., 10%, we can infer there are 9 more such a kind of data instances missed

because of auction losing. Thus the training weight of xxx should be multiplied by 10

in order to recover statistics from the full-volume data. By contrast, if the winning bid

is extremely high, which leads to 100% auction winning probability, then such data is

observed from the true data distribution. Thus there will be no gradient reweighting

on this data. Such a nonlinear relationship has been well captured in our model in the

gradient updates, as illustrated in Figure 5.2.

5.2.3 Task 2: Bid Optimisation

Another important problem in online advertising is bid optimisation, i.e. to find the op-

timal bidding strategy to maximise a campaign KPI, restricted by the campaign budget.

Essentially, the bidding function is abstracted as a function mapping from the estimated
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Figure 5.2: Winning probability and reweighting term in Eq. (5.9) against historic bid price.

CTR f (xxx) to the bid price b( f (xxx)).5 According to Chapter 3, it is a functional optimi-

sation problem:

argmax
b()

T
∫

xxx
f (xxx)w(b( f (xxx)))px(xxx)dxxx (5.10)

subject to T
∫

xxx
b( f (xxx))w(b( f (xxx)))px(xxx)dxxx = B.

With the auction selection, the observed data distribution is actually qx(xxx). By

Eq. (5.1), Eq. (5.10) is written as

argmax
b()

T
∫

xxx
f (xxx)w(b( f (xxx)))

qx(xxx)
w(bxxx)

dxxx (5.11)

subject to T
∫

xxx
b( f (xxx))w(b( f (xxx)))

qx(xxx)
w(bxxx)

dxxx = B.

Note that w(bxxx) is different from w(b( f (xxx))), where bxxx is the historic bid price for

the bid request xxx while b( f (xxx)) is the bid price we want to optimise.

The Lagrangian is

L (b( f ),λ ) =T
∫

xxx
f (xxx)w(b( f (xxx)))

qx(xxx)
w(bxxx)

dxxx (5.12)

−λT
∫

xxx
b( f (xxx))w(b( f (xxx)))

qx(xxx)
w(bxxx)

dxxx+λB,

According to the derivation in Chapter 3, the Euler-Lagrangian condition of

5We drop the CTR estimation parameter βββ here as it is not the parameter to optimise in this task.
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Eq. (5.11) is

f (xxx)
qx(xxx)
w(bxxx)

∂w(b( f (xxx)))
∂b( f (xxx))

−λ
qx(xxx)
w(bxxx)

[
w(b( f (xxx)))+b( f (xxx))

∂w(b( f (xxx)))
∂b( f (xxx))

]
= 0 (5.13)

⇒ λw(b( f (xxx))) =
[

f (xxx)−λb( f (xxx))
]

∂w(b( f (xxx)))
∂b( f (xxx))

, (5.14)

where we see that the optimal bidding function b( f (xxx)) depends on the winning func-

tion w(b). For example, if

w(b( f (xxx))) =
b( f (xxx))

c+b( f (xxx))
, (5.15)

where c is a constant, then the corresponding optimal bidding function is

bORTB( f (xxx)) =
√

c
λ

f (xxx)+ c2− c. (5.16)

For the solution of λ , the Euler-Lagrangian condition w.r.t. λ is

∂L (b( f (xxx)),λ )
∂λ

= 0 (5.17)

⇒
∫

xxx
b( f (xxx),λ )w(b( f (xxx),λ ))

qx(xxx)
w(bxxx)

dxxx =
B
T

(5.18)

⇒ 1
|D| ∑

(xxx,y,z)∈D
b( f (xxx),λ )

w(b( f (xxx),λ ))
w(bxxx)

=
B
|D|

. (5.19)

The numeric solution of λ is highly efficient. A feasible solution of Eq. (5.19) is to

minimise the squared distance between the cost of each data instance and the averaged

budget:

min
λ

∑
(xxx,y,z)∈D

1
2

(b( f (xxx),λ )w(b( f (xxx),λ ))

1−∏b j<bxxx

n j−d j
n j

− B
|D|

)2
. (5.20)

As b( f (xxx),λ ) always monotonically decreases w.r.t. λ and w(bxxx) monotonically

increases w.r.t. b( f (xxx),λ ), the objective of Eq. (5.20) is convex w.r.t. λ , which makes
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Figure 5.3: The gradient direction term in Eq. (5.21) against historic bid price bxxx with two new
bids b( f (xxx),λ ).

the solution of λ easy to obtain. The BGD to solve λ is via updating

λ ←λ −η

instance reweighting︷ ︸︸ ︷
1

1−∏b j<bxxx

n j−d j
n j

( gradient direction︷ ︸︸ ︷
b( f (xxx),λ )w(b( f (xxx),λ ))

1−∏b j<bxxx

n j−d j
n j

− B
|D|

)
·

(
∂b( f (xxx),λ )

∂λ
w(b( f (xxx),λ ))+b( f (xxx),λ )

∂w(b( f (xxx),λ ))
∂λ︸ ︷︷ ︸

bidding function gradient

)
. (5.21)

Discussion. Highlighted in Eq. (5.21), there are two factors related with the historic bid

for updating λ . (i) The instance reweighting, similar with Eq. (5.9): a small historic bid

bxxx would generate a large weight, amplifying the importance of the training instance.

(ii) The historic bid of the training instance also has an impact on the gradient direction,

evidenced by the second factor of the update in Eq. (5.21).

The parameter λ converges when the second factor becomes zero. The ratio B/|D|

would ensure the budget to be allocated evenly across the new bids. The ratio be-

tween the winning rate of the new bid price w(b( f (xxx),λ )) and that of the historic bid

1−∏b j<bxxx(1− d j/n j) would adjust the discrepancy of the probability of seeing the

impression in the training and that in the prediction.

To further understand this, Figure 5.3 illustrates the second factor (the gradient

direction term) in Eq. (5.21) against historic bid price bxxx on two sample campaigns

with two new bids (b( f (xxx),λ ) = 50 and 100). We observe that when the historic bid

is small, the gradient direction is more likely to stay positive and higher λ value in

order to decrease the bid (as the bidding function gradient term in Eq. (5.21) is always
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negative). For example, for a data instance with the a low historic bid bxxx, the probability

of observing the data instance is low, which means that there are more similar or the

same data instances that are missing in the training. Thus the bid should be lower

to avoid overspending on such instances when running full-volume data. In addition,

if the new bid price b( f (xxx),λ ) is high, then the optimal bid price b( f (xxx),λ ) should

be lower to avoid budget overspending in full-volume data, which is reflected on the

positive value of the gradient direction factor to make λ higher and b( f (xxx),λ ) lower.

Note that with the pre-calculated reweighting factor 1/w(bxxx) = 1/(1 −

∏b j<bxxx

n j−d j
n j

), it is highly efficient to calculate the above BGD updating and solve

λ .

5.3 Experimental Setup

5.3.1 Datasets

Two real-world datasets are used in our repeatable offline empirical study6: iPinYou

and TukMob.

iPinYou runs the largest DSP in China. The publicly available7 iPinYou dataset con-

sists of 64.75M bid records, 19.50M impressions, 14.79K clicks and 16K CNY

expense on 9 conventional display ad campaigns from different advertisers dur-

ing 10 days in 2013. According to iPinYou [115], the last 3-day data for each

campaign is set as test data while the rest is training data.

TukMob is a major DSP focusing on mobile game and video display ads in China.

TukMob dataset is our proprietary dataset which consists of 3.00M impressions,

96.45K clicks and 2.51K CNY expense on 63 campaigns in a video display ad

market from Feb. to Aug. 2015. The first 5/6 data in the time sequence is set as

training data while the rest is test data.

Each data instance of both datasets can be represented as a triple (xxx,y,z), where

y is the user click binary feedback, z is the historic winning price of the auction, and

xxx is the bid request and ad features of that auction. The auction features contain the

6The repeatable experiment code has been published at https://github.com/wnzhang/
rtb-unbiased-learning.

7Dataset link: http://data.computational-advertising.org.

https://github.com/wnzhang/rtb-unbiased-learning
https://github.com/wnzhang/rtb-unbiased-learning
http://data.computational-advertising.org
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Figure 5.4: Experiment flow chart.

information of the user (e.g. the user interest segments, IP address, browser, operation

system, location), advertiser (e.g. the creative format and size), publisher (e.g. the

auction reserve price, ad slot size, page domain and URL).

We mainly report the experimental results on the iPinYou dataset for experiment

reproducibility while the study on TukMob serves as an auxiliary part particularly for

the high-CTR video ad marketplace to make our experiment more comprehensive.

The online A/B testing experiment is conducted based on Yahoo! DSP, a main-

stream DSP in the United States ad market. The training dataset comes from its ad log

in Aug. and Sep. 2015 while the online A/B testing is performed on 9 campaigns dur-

ing 7 days of Sep. 2015, which involves 117.1M impressions, 95.4K clicks and 68.6K

USD expense.

5.3.2 Experiment Flow

The experiment flow chart is shown in Figure 5.4. The original impression log data

is reasonably assumed as full-volume bid request data in our experiment8. A truth-

telling bidding strategy [4] is performed to simulate the historic bidding process and

produce the winning (labelled but biased) impression data and lost (unlabelled) bid re-

8This assumption is reasonable as this dataset is collected with fixed large bid to reduce the auction-
selection bias [115].
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quest data. Based on these two datasets, the bid landscape forecasting module as in

Eq. (5.5) estimates the market price distribution which acts as the winning function in

Eq. (5.1). Thus the observation bias of each data instance from the impression log is es-

timated. With Eq. (5.8), the unbiased CTR estimation is performed. Furthermore, with

the unbiased CTR estimator and the winning function, the unbiased bid optimisation is

performed via Eq. (5.11) to get the new bidding function, which is in turn operated in

the next prediction stage.

5.3.3 Compared Settings

CTR estimation and bid optimisation are the two tasks we investigate in this work. For

each of these tasks, we compare the following four training schemes:

Traditional Biased Training (BIAS). The CTR estimation and bid optimisation are

performed based on the impression data without considering any data bias, i.e.,

all w(bxxx) in Eqs. (5.8) and (5.11) are equal to 1. This is the routine training

procedure used in most previous work [4, 19, 128].

Training using Observed Market Prices (UOMP). The bias of each training data in-

stance is estimated by the bid landscape forecastor purely based on the observed

market prices from impression log, without using the lost bid request data, i.e.,

all w(bxxx) in Eqs. (5.8) and (5.11) are estimated by Eq. (5.3).

Training via Kaplan-Meier Market Prices (KMMP). The bias of each training data

instance is estimated by the bid landscape forecastor based on both observed mar-

ket prices from impression log and the lost bid request data using Kaplan-Meier

estimation, i.e., all w(bxxx) in Eqs. (5.8) and (5.11) are estimated by Eq. (5.5).

Training with Full-Volume Data (FULL). A progressive bidding strategy is per-

formed to win all the bid requests via bidding extremely high. In such a case the

full-volume bid requests are collected with labels to train the CTR estimator and

optimise the bidding strategy. In such a setting, the data has no bias and is of

full volume, and thus it is regarded as the (unrealistic) upper bound setting of the

training.
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Figure 5.5: Winning probability against bid price (iPinYou).

5.4 Offline Empirical Study

5.4.1 Winning Probability Estimation

Before evaluating the practical CTR estimation and bid optimisation tasks, let us first

take an analysis of the compared models’ performance on winning probability estima-

tion, i.e., w(bxxx) in Eq. (5.2).

First, Table 5.2 demonstrates the statistics of the full-volume data and the win-

ning impression data by the ‘historic’ truth-telling bidding strategy as described in Sec-

tion 5.3.2. As can be observed, for both datasets the winning impression data which is

fed into BIAS, UOMP and KMMP training schemes is much smaller than the full-volume
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Table 5.2: Winning data statistics: the full-volume data is used in FULL training scheme, while
the winning data is used in BIAS, UOMP and KMMP training schemes (both datasets).

iPinYou Camp. Full Volume Win Volume Win Rate
1458 2,055,371 257,077 12.51%
2259 557,038 239,328 42.96%
2261 458,412 213,930 46.67%
2821 881,708 305,134 34.61%
2997 208,292 60,556 29.07%
3358 1,161,403 336,769 29.00%
3386 1,898,535 332,223 17.50%
3427 1,729,177 563,592 32.59%
3476 1,313,574 303,341 23.09%
all 10,263,506 3,973,989 38.72%

TukMob Camp. Full Volume Win Volume Win Rate
all 2,500,000 962,690 38.51%

Table 5.3: Winning probability estimation performance comparison (iPinYou).

Pearson Correlation KL-Divergence
Camp. UOMP KMMP FULL UOMP KMMP FULL

1458 0.9067 0.9903 0.9995 0.4053 0.1204 0.0407
2259 0.7811 0.9959 0.9980 0.7163 0.1870 0.0713
2261 0.9018 0.9947 0.9972 0.3483 0.1057 0.0346
2821 0.8234 0.9947 0.9931 0.5659 0.1421 0.0697
2997 0.8535 0.9285 0.9955 0.3862 0.1761 0.0210
3358 0.9269 0.9772 0.9926 0.5243 0.2652 0.1521
3386 0.9116 0.9821 0.9995 0.3232 0.1391 0.0444
3427 0.9743 0.9977 0.9996 0.1838 0.0762 0.0525
3476 0.9303 0.9979 0.9993 0.3807 0.1147 0.0451

all 0.9795 0.9958 0.9988 0.0893 0.0385 0.0237

data which is fed into FULL training scheme.

Figure 5.5 shows the curves of the winning probability w.r.t. the bid price with

three compared settings, i.e., UOMP, KMMP and FULL, on iPinYou dataset. As ex-

pected, all the curves start from 0 given the bid 0 and then increase as the bid price

increases and finally converge to 1 when the bid price surpasses a threshold (300 for

iPinYou dataset). The TRUTH curve is built from all the market price observations

from the full-volume prediction data, regarded as the ground truth here. We observe

that FULL curve is the closest one to TRUTH curve since FULL makes use of the full-

volume training data and is naturally unbiased. The only reason of the slight difference

between FULL and TRUTH is the data distribution shift between the training and pre-

diction periods. UOMP always over-estimates the winning probability, as pointed out

in Section 5.2.1. Compared to UOMP, KMMP curve is much closer to TRUTH, which
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Table 5.4: CTR performance on iPinYou dataset.

AUC (%) Cross Entropy (‰)
Camp. BIAS UOMP KMMP FULL BIAS UOMP KMMP FULL

1458 98.26 98.56 99.13 98.57 2.42 2.39 2.39 2.32
2259 60.27 60.94 62.00 67.37 4.04 4.03 4.02 4.00
2261 57.49 58.86 59.05 60.91 3.75 3.74 3.74 3.72
2821 59.25 59.69 60.28 62.36 7.07 7.06 7.04 6.92
2997 59.35 60.50 60.79 59.28 32.89 32.84 32.81 32.38
3358 96.59 96.78 97.01 97.32 4.48 4.47 4.38 4.36
3386 73.74 74.01 74.16 78.23 8.84 8.83 8.83 8.64
3427 96.04 96.42 96.78 97.02 3.37 3.37 3.33 3.31
3476 93.66 93.55 92.19 95.93 4.35 4.34 4.34 4.08

all 71.76 73.84 74.80 78.38 7.71 7.61 7.55 7.31

Table 5.5: CTR performance on TukMob dataset.

AUC (%)
Camp. BIAS UOMP KMMP FULL

all 60.49 60.51 60.67 60.96

shows its advantage of making use of the lost bid request data to improve the winning

probability estimation.

Table 5.3 presents the detailed Pearson correlation and KL-divergence between

each of the three compared settings and TRUTH on iPinYou dataset. We observe that

for all investigated campaigns, KMMP provides a much better estimation, i.e., higher

Pearson correlation and lower KL-divergence, than UOMP, and it is even highly com-

parable with FULL on Pearson correlation. These results demonstrate the surprisingly

large improvement that the lost and free bid request data brings to the estimation of

winning probability (market price distribution).

5.4.2 CTR Estimation Results

With different biased or unbiased settings, we train the logistic regression model and

evaluate its performance. Table 5.4 presents the detailed AUC and cross entropy per-

formance of these 4 compared training schemes for each campaign in iPinYou dataset.

Table 5.5 presents the AUC performance comparison on TukMob dataset. We can

observe that (i) the proposed unbiased training schemes UOMP and KMMP always out-

perform the biased but widely adopted BIAS training scheme on all the test campaigns

(except for 3476). Specifically, KMMP yields a 3.04% AUC improvement over BIAS

on the whole iPinYou dataset, which is a large AUC improvement in ad CTR estima-
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Figure 5.6: CTR performance training convergence (iPinYou).

tion tasks. Such outperformance shows the effectiveness of our models in eliminating

the training data instance bias which makes the prediction model generalise better on

prediction data. (ii) Comparing the unbiased settings UOMP and KMMP and the upper

bound oracle setting FULL, we can see KMMP outperforms UOMP for all the campaigns

(except for 3476). For some campaigns, e.g., 1458 and 2997, KMMP even slightly out-

performs FULL9 which again shows the advantages of making use of the lost auction

information for better estimating the instance bias.

Figure 5.6 shows the AUC and the cross entropy on prediction data of all iPinYou

campaigns for each training round. We can observe the unbiased UOMP and KMMP

models learn stably and consistently outperform BIAS. FULL substantially outperforms

other compared training schemes, which is not surprising as FULL obtains much more

training data instances (as shown in Table 5.2) and the data distribution is unbiased.

5.4.3 Bid Optimisation Results

For bid optimisation experiment, we mainly focus on the click performance improve-

ment from bidding strategy parameter optimisation via Eqs. (5.16) and (5.19) instead

of the difference of CTR estimation. Thus in our training/prediction environment, the
9This is mainly caused by the local data distribution, which is not significant.
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Table 5.6: Bid optimisation click performance (iPinYou).

1/64 budget setting 1/4 budget setting
Camp. BIAS UOMP KMMP FULL BIAS UOMP KMMP FULL

1458 363 400 460 468 469 470 471 482
2259 5 5 5 7 49 51 51 50
2261 5 5 7 7 35 36 35 45
2821 18 18 23 27 65 91 106 134
2997 37 39 42 44 156 188 222 226
3358 86 117 137 140 183 198 220 221
3386 9 9 22 38 69 78 144 165
3427 103 119 154 169 242 262 286 314
3476 6 8 11 13 59 99 108 106

all 268 372 462 521 1,584 1,740 1,871 2,087

Table 5.7: Bid optimisation click performance (TukMob).

Budget Click Number eCPC
Setting BIAS UOMP KMMP FULL BIAS UOMP KMMP FULL

1/32 846 848 866 871 9.25 9.23 9.04 8.99
1/16 1,829 1,831 1,863 1,838 8.56 8.55 8.40 8.52
1/8 3,721 3,721 3,774 3,775 8.42 8.42 8.30 8.29
1/4 7,181 7,178 7,226 7,257 8.72 8.72 8.67 8.63
1/2 13,127 13,132 13,163 13,019 9.54 9.54 9.52 9.62

logistic regression CTR estimator is trained based on a separate unbiased training data

and is shared in all 4 compared training schemes of bid optimisation. For each train-

ing scheme, we train the optimal parameter λ in Eq. (5.19) via the biased or unbiased

training data, then apply the corresponding bidding strategy Eq. (5.16) on prediction

data to observe its performance.

We follow Chapters 3 and 4 to set the budget proportions to perform offline bid

optimisation, where the train/test budget is set as 1/64, 1/32, 1/16, 1/8, 1/4 and 1/2 of

the total expense of the train/test dataset. We cannot set the proportion as 1 because in

such a case one may simply bid infinity to win all the impressions and clicks in the data

and just spend all the budget.

Table 5.6 shows the click performance of the 4 compared training schemes with

1/64 and 1/4 budget settings respectively for each iPinYou campaign. Table 5.7 shows

the overall click and eCPC performance comparison against different budget settings

on TukMob dataset. We can observe that the unbiased UOMP and KMMP consistently

outperform the traditional BIAS which were used in the most of the previous bid opti-
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Figure 5.7: Improvement over BIAS w.r.t. budget proportions.

misation work [36, 19, 128]. This shows the great potential of our proposed unbiased

training schemes in bid optimisation. Furthermore, KMMP outperforms UOMP and it is

very close to the theoretic upper bound from FULL, in 17 out of 20 test cases, suggest-

ing it is generally much better to leverage the winning probability obtained from the

censored observations of both winning impressions and lost bid requests.

Figure 5.7 further provides the click, impression improvement percentages and

eCPC drop percentage of the unbiased training schemes against BIAS with different

budget settings. The improvements for clicks and impressions are positive for all budget

settings and the eCPC drops are negative for all budget settings (except FULL on 1/2),

which show the robustness of the unbiased training schemes. Also we can observe that

KMMP dominates UOMP and heavily approaches the upper bound FULL.

5.5 Online A/B Test
We have deployed the unbiased KMMP training scheme on Yahoo! DSP in the United

States ad market and performed the online A/B testing for 9 campaigns during 7 days
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Table 5.8: Online A/B testing of CTR estimation (Yahoo!).

Camp. BIAS AUC KMMP AUC AUC Lift
C1 63.78% 64.12% 0.34%
C2 87.45% 88.58% 1.13%
C3 69.73% 75.52% 5.79%
C4 88.82% 89.55% 0.73%
C5 69.71% 72.29% 2.58%
C6 89.33% 90.70% 1.37%
C7 77.76% 78.92% 1.16%
C8 74.57% 76.98% 2.41%
C9 71.04% 73.12% 2.08%
all 73.48% 76.45% 2.97%

in Sep. 2015. For each campaign, we create two experiment buckets: control and

treatment. Each is allocated 50% of the bid request traffic (based on user ID to avoid

attribution conflicts), and 50% of the campaign’s budget. The control bucket uses gradi-

ent boosting decision tree click predictor [140] trained with BIAS, while the click model

used in the treatment bucket is trained with KMMP. The deployed bidding strategy is

the conventional truth-telling bidding [4].

In order to perform an unbiased evaluation of the CTR estimation, we deployed a

bidding agent performing very high constant bidding in Sep. 2015 to collect an ad im-

pression dataset which can be regarded as full-volume unbiased test data. The training

data is still the traditional biased ad impression dataset collected during Aug. and early

Sep. 2015. Table 5.8 provides the detailed CTR estimation performance for each cam-

paign and the overall performance. As can be observed, KMMP provides a consistent

AUC improvement over BIAS across all investigated campaigns. The overall AUC is

73.48% for BIAS and 76.45% for KMMP, i.e. a 2.97% AUC lift, which is a very large

improvement for CTR estimation task in practice.

Table 5.9 further presents the detailed performance of A/B testing of bid optimi-

sation on the 9 campaigns. Figure 5.8 depicts the relative difference comparing the

performance of KMMP against BIAS. We found that with the same campaign budget

the KMMP-trained model acquires more clicks (most of the time) but fewer impressions

than the BIAS-trained one, which makes its CTR much higher than BIAS. The reason is

that there is less over-prediction on many cheap cases. In the biased training data, the

over-predicted CTR and cheap cases are more likely to be sampled because the historic
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Table 5.9: Online A/B testing of bid optimisation (Yahoo!).

Impressions (M) Clicks (K) CTR (%) eCPC ($/click)
Camp. BIAS KMMP BIAS KMMP BIAS KMMP BIAS KMMP

C1 1.07 0.89 0.62 0.67 0.06 0.08 4.54 4.16
C2 7.73 6.02 0.94 1.19 0.01 0.02 7.49 5.89
C3 22.18 16.96 27.18 30.06 0.12 0.18 0.26 0.23
C4 0.37 0.12 0.61 0.61 0.16 0.49 2.46 2.48
C5 9.57 7.51 6.42 6.93 0.07 0.09 0.45 0.42
C6 0.32 0.22 0.46 0.46 0.14 0.21 2.17 2.18
C7 10.13 7.31 2.99 3.28 0.03 0.04 0.37 0.34
C8 1.04 0.52 1.04 1.13 0.10 0.22 1.92 1.78
C9 13.67 11.46 5.12 5.71 0.04 0.05 1.76 1.58
all 66.07 51.01 45.37 50.03 0.07 0.10 0.76 0.69

bidding strategy over bade on these cheap cases, vice versa on less-prediction over ex-

pensive cases. With the KMMP training scheme, the bidding strategy to-some-extent

gets rid of such a bias to avoid over-prediction on cheap cases, which provides fewer

impressions but more clicks.

Overall, with the same budget, the bidding strategy trained with KMMP achieves

much better eCPC (9.30% drop) and CTR (42.8% rise) than the conventional one

trained with BIAS. The KMMP-trained click model effectively alleviates over-prediction

especially in the low-CTR region and thus becomes more efficient in acquiring clicks.

Therefore, with the bidding strategy with unbiased KMMP-trained click model, cam-

paigns could acquire clicks in a more cost-effective way.

5.6 Summary
In this chapter, we have studied the data observation bias problem in display advertis-

ing generated from the auction selection that would hurt the performance of various

supervised learning models. To address this problem, we proposed a model-free learn-

ing framework that eliminates the model bias generated from censored auction data.

The derived Bid-aware Gradient Descent (BGD) learning scheme naturally incorpo-

rates the historic auction and bid information. We found that the historic bid for each

instance could influence both BGD learning weight and update direction. Comprehen-

sive empirical study based on iPinYou and TukMob datasets demonstrated the large

improvement of our learning framework over strong baselines in both CTR estimation

and bid optimisation tasks. With light engineering work, the learning framework was
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Figure 5.8: Relative performance difference between KMMP and BIAS in Yahoo! online A/B
testing: (KMMP-BIAS)/BIAS.

deployed on Yahoo! DSP and brought 2.97% AUC lift in CTR estimation and 9.30%

eCPC drop in bid optimisation over 9 campaigns.

It is important to point out that such a learning framework is flexible with other

supervised learning tasks than the investigated ones in this work, such as budget pac-

ing and frequency capping in online advertising as well as other data science prob-

lems, such as interactive recommender systems [141], off-policy reinforcement learn-

ing [142], which are our planned future work.





Chapter 6

Feedback Control Mechanism

6.1 Background and Motivations
As has been pointed out in Figure 1.9 and in Chapters 3 and 4, despite the ability of

delivering performance-driven advertising, RTB, unfortunately, results in high volatil-

ities, measured by major Key Performance Indicators (KPIs), such as CPM (cost per

mille), AWR (auction winning ratio), eCPC (effective cost per click) and CTR (click-

through rate). Such instability causes advertisers ample difficulty in optimising and

controlling the KPIs against their cost.

In this chapter, we propose to employ feedback control theory [96] to solve the in-

stability problem in RTB. Feedback controllers are widely used in various applications

for maintaining dynamically changing variables at the predefined reference values. The

application scenarios range from the plane direction control [143] to the robot artificial

intelligence [144]. In our RTB scenario, the specific KPI value, depending on the re-

quirements from the advertisers, is regarded as the variable we want to control with a

pre-specified reference value. Our study focuses on two use cases. (i) For performance-

driven advertising, we are concerned with the feedback control of the average cost on

acquiring a click, measured by effective cost per click (eCPC). (ii) For branding based

advertising, to ensure a certain high exposure of a campaign, we focus on the control

of the ratio of winning the auctions for the targeted impressions, measured by auction

winning ratio (AWR). More specifically, we take each of them as the control input sig-

nal and consider the gain (the adjustment value) of bid price as the control output signal

for each incoming ad display opportunity (the bid request). We develop two controllers

to test: the widely used proportional-integral-derivative (PID) controller [145] and the
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waterlevel-based (WL) controller [146]. We conduct large-scale experiments to test the

feedback control performance with different settings of reference value and reference

dynamics. Through the empirical study, we find that PID and WL controllers are capa-

ble of controlling eCPC and AWR, while PID further provides a better control accuracy

and robustness than WL.

Furthermore, we investigate whether the proposed feedback control can be em-

ployed for controllable bid optimisation. It is common that the performance of an

ad campaign (e.g., eCPC) varies from different channels (e.g., ad exchanges, user

geographic regions and PC/mobile devices) [29]. If one can reallocate some budget

from less cost-effective channels to more cost-effective ones, the campaign-level per-

formance would improve [52]. In this chapter, we formulate the multi-channel bid

optimisation problem and propose a model to calculate the optimal reference eCPC for

each channel. Our experiments show that the campaign-level click number and eCPC

achieve significant improvements with the same budget.

Moreover, the proposed feedback control mechanism has been implemented and

integrated in a commercial DSP. The conducted live test shows that in a real and noisy

setting the proposed feedback mechanism has the ability to produce controllable adver-

tising performance.

To sum up, the contributions of this chapter are as follows. (i) We study the insta-

bility problem in RTB and investigate its solution by leveraging the feedback control

mechanism. (ii) Extensive offline and online experiments show that PID controller is

better than other alternatives and finds the optimal way to settle the variable in almost

all studied cases. (iii) We further discover that feedback controllers are of great po-

tential to perform bid optimisation through settling the eCPC at the reference value

calculated by our proposed mathematical click maximisation framework.

6.2 RTB Feedback Control System
Figure 6.1 presents the diagram of the proposed RTB feedback control system. The

traditional bidding strategy is represented as the bid calculator module in the DSP

bidding agent. As studied in Chapter 3, the bid decision depends on two factors for

each ad impression: the utility (e.g., CTR, expected revenue) and cost (i.e., expected

charged price) [128]. In a widely adopted bidding strategy [19], the utility is evaluated
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Figure 6.1: Feedback controller integrated in the RTB system.

by CTR estimation while the base bid price is tuned based on the bid landscape [24]

for the cost evaluation. The generalised bidding strategy in [19] is

b(t) = b0
θt

θ0
, (6.1)

where θt is the estimated CTR for the bid request at moment t; θ0 is the average CTR

under a target condition (e.g., a user interest segment); and b0 is the tuned base bid

price for the target condition. In this work, to make the work with more generality, we

adopt this widely used bidding strategy with a logistic CTR estimator [1].

The controller plays as a role which adjusts the bid price from the bid calculator.

Specifically, the monitor receives the auction win notice from the ad exchange and

the user click feedback from the ad tracking system, which as a whole we regard as

the dynamic system. Then the current KPI values, such as AWR and eCPC can be

calculated. If the task is to control the eCPC with the reference value, the error factor

between the reference eCPC and the measured eCPC is calculated then sent into the

control function. The output control signal is sent to the actuator, which uses the

control signal to adjust the original bid price from the bid calculator. The adjusted bid

price is packaged with the qualified ad into the bid response and sent back to the ad

exchange for auction.

6.2.1 Actuator

For the bid request at the moment t, the actuator takes into the current control signal

φ(t) to adjust the bid price from b(t) (Eq. (6.1)) to a new value ba(t). In our model, the
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control signal, which will be mathematically defined in the next subsections, is a gain

on the bid price. Generally, when the control signal φ(t) is zero, there should be no bid

adjustment. There could be different actuator models, and in our work we choose to

use

ba(t) = b(t)exp{φ(t)}, (6.2)

where the model satisfies ba(t) = b(t) when φ(t) = 0. Other models such as the linear

model ba(t) ≡ b(t)(1+φ(t)) are also investigated in our study but it performs poorly

in the situations when a big negative control signal is sent to the actuator, where the

linear actuator will usually respond a negative or a zero bid, which is meaningless in

our scenario. By contrast, the exponential model is a suitable solution to addressing

the above drawback because it naturally avoids generating a negative bid. In the later

empirical study we mainly report the analysis based on the exponential-form actuator

model.

6.2.2 PID Controller

The first controller we investigate is the classic PID controller [145]. As its name

implies, a PID controller produces the control signal from a linear combination of the

proportional factor, the integral factor and the derivative factor based on the error factor:

e(tk) = xr− x(tk), (6.3)

φ(tk+1)← λP e(tk)︸︷︷︸
proportional

+λI

k

∑
j=1

e(t j)4t j︸ ︷︷ ︸
integral

+λD
4e(tk)
4tk︸ ︷︷ ︸

derivative

, (6.4)

where the error factor e(tk) is the reference value xr minus the current controlled vari-

able value x(tk), the update time interval is given as 4t j = t j − t j−1, the change of

error factors is 4e(tk) = e(tk)− e(tk−1), and λP, λI , λD are the weight parameters for

each control factor. Note that here the control factors are all in discrete time (t1, t2, . . .)

because bidding events are discrete and it is practical to periodically update the con-

trol factors. All control factors (φ(t),e(tk),λP,λI,λD) remain the same between two

updates. Thus for all time t between tk and tk+1, the control signal φ(t) in Eq. (6.2)

equals φ(tk).We see that P factor tends to push the current variable value to the refer-
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Figure 6.2: Different eCPCs across different ad exchanges. Dataset: iPinYou.

ence value; I factor reduces the accumulative error from the beginning to the current

time; D factor controls the fluctuation of the variable.

6.2.3 Waterlevel-based Controller

The Waterlevel-based (WL) controller is another feedback control model which was

originally used for switching devices controlled by water level [146]:

φ(tk+1)← φ(tk)+ γ(xr− x(tk)), (6.5)

where γ is the step size parameter for φ(tk) update in exponential scale.

Compared to PID, the WL controller only takes the difference between the variable

value and the reference value into consideration. Moreover, it provides a sequential

control signal. That is, the next control signal is an adjustment based on the previous

one.

6.2.4 Setting References for Click Maximisation

In this subsection, we investigate how the proposed feedback control mechanism can

be used for controllable bid optimisation. In addition to adopting specific models of

bidding strategies [19, 128] or budget allocation [36], we demonstrate that the feedback

control mechanism can be leveraged as a model-free click maximisation framework

embedded with any bidding strategies and performs automatic budget allocation across

different channels1 via setting smart reference values.

When an advertiser specifies the targeted audience (usually also combined with

ad impression contextual categories) for their specific campaign, the impressions that

fit the target rules may come from separate channels such as different ad exchanges,

1A game theoretic analysis of bidders’ selection among channels (exchanges) are discussed in [147],
but this is out of the scope of this thesis.
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user regions, users’ PC/mobile devices etc. It is common that the DSP integrates with

several ad exchanges and delivers the required ad impressions from all those ad ex-

changes (as long as the impressions fit the target rule), although the market prices [28]

may be significantly different. Figure 6.2 illustrates that, for the same campaign, there

is a difference in terms of eCPC across different ad exchanges. As pointed out in [29],

the differences are also found in other channels such as user regions and devices.

The cost differences provide advertisers a further opportunity to optimise their

campaign performance based on eCPCs. To see this, suppose a DSP is integrated to

two ad exchanges A and B. For a campaign in this DSP, if its eCPC from exchange

A is higher than that from exchange B, which means the inventories from exchange B

are more cost effective than those from exchange A, then by reallocating some budget

from exchange A to B will potentially reduce the overall eCPC of this campaign. Prac-

tically the budget reallocation can be done by reducing the bids for exchange A while

increasing the bids for exchange B. Here we formally propose a model of calculating

the equilibrium eCPC of each ad exchange, which will be used as the optimal reference

eCPC for the feedback control that leads to a maximum number of clicks given the

budget constraint.

Mathematically, suppose for a given ad campaign, there are n ad exchanges (could

be other channels), i.e., 1,2, . . . ,n, that have the ad volume for a target rule. In our

formulation we focus on optimising clicks, while the formulation of conversions can

be obtained similarly. Let ξi be the eCPC on ad exchange i, and ci(ξi) be the click

number that the campaign acquires in the campaign’s lifetime if we tune the bid price

to make its eCPC be ξi for ad exchange i. For advertisers, they want to maximise the

campaign-level click number given the campaign budget B [128]:

max
ξ1,...,ξn

∑
i

ci(ξi) (6.6)

s.t. ∑
i

ci(ξi)ξi = B. (6.7)

Its Lagrangian is

L (ξ1, . . . ,ξn,α) = ∑
i

ci(ξi)−α(∑
i

ci(ξi)ξi−B), (6.8)
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Figure 6.3: #Clicks against eCPC on different ad exchanges.

where α is the Lagrangian multiplier. Then we take its gradient on ξi and let it be 0:

∂L (ξ1, . . . ,ξn,α)

∂ξi
= c′i(ξi)−α(c′i(ξi)ξi + ci(ξi)) = 0, (6.9)

1
α

=
c′i(ξi)ξi + ci(ξi)

c′i(ξi)
= ξi +

ci(ξi)

c′i(ξi)
, (6.10)

where the equation holds for each ad exchange i. As such, we can use α to bridge the

equations for any two ad exchanges i and j:

1
α

= ξi +
ci(ξi)

c′i(ξi)
= ξ j +

c j(ξ j)

c′j(ξ j)
. (6.11)

So the optimal solution condition is given as follows:

1
α

= ξ1 +
c1(ξ1)

c′1(ξ1)
= ξ2 +

c2(ξ2)

c′2(ξ2)
= · · ·= ξn +

cn(ξn)

c′n(ξn)
, (6.12)

∑
i

ci(ξi)ξi = B. (6.13)

With sufficient data instances, we find that ci(ξi) is always a concave and smooth

function. Some examples are given in Figure 6.3. Based on the observation, it is

reasonable to define a general polynomial form of the ci(ξi) functions:

ci(ξi) = c∗i ai

(
ξi

ξ ∗i

)bi
, (6.14)

where ξ ∗i is the campaign’s historic average eCPC on the ad inventories from ad ex-

change i during the training data period, and c∗i is the corresponding click number.
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These two factors are directly obtained from the training data. Parameters ai and bi are

to be tuned to fit the training data (e.g., in Figure 6.3).

Substituting Eq. (6.14) into Eq. (6.12) gives

1
α

= ξi +
ci(ξi)

c′i(ξi)
= ξi +

c∗i ai

ξ ∗i
bi

ξ
bi
i

c∗i ai

ξ ∗i
bi

biξ
bi−1
i

=
(

1+
1
bi

)
ξi. (6.15)

We can then rewrite Eq. (6.12) as

1
α

=
(

1+
1
b1

)
ξ1 =

(
1+

1
b2

)
ξ2 = · · ·=

(
1+

1
bn

)
ξn. (6.16)

Thus ξi =
bi

α(bi +1)
. (6.17)

Interestingly, from Eq. (6.17) we find that the equilibrium is not in the state that

the eCPCs from the exchanges are the same. Instead, it is when any amount of budget

reallocated among the exchanges does not make more total clicks; for instance, in a

two-exchange case, the equilibrium is reached when the increase of the clicks from

one exchange equals the decrease from the other (Eq. (6.9)). More specifically, from

Eq. (6.17) we observe that for ad exchange i, if its click function ci(ξi) is quite flat, i.e.,

the click number increases more slowly as its eCPC increases in a certain area, then

its learned bi should be small. This means the factor bi
bi+1 is small as well; then from

Eq. (6.17) we can see the optimal eCPC in ad exchange i should be relatively small.

Substituting Eqs. (6.14) and (6.17) into Eq. (6.7) gives

∑
i

c∗i ai

ξ ∗i
bi

( bi

bi +1

)bi+1( 1
α

)bi+1
= B, (6.18)

where for simplicity, we denote for each ad exchange i, its parameter c∗i ai

ξ ∗i
bi

(
bi

bi+1

)bi+1

as δi. This give us a simpler form as:

∑
i

δi

( 1
α

)bi+1
= B. (6.19)

In most settings of bi values, there is no closed form to solve Eq. (6.19) for α .

However, as bi is non-negative and ∑i δi(
1
α
)bi+1 monotonically increases against 1

α
, one
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can easily obtain the solution for α by using a numeric solution such as the stochas-

tic gradient decent or the Newton method [148]. Finally, based on the solved α , we

can find the optimal eCPC ξi for each ad exchange i using Eq. (6.17). In fact, these

eCPCs are the reference value we want the campaign to achieve for the corresponding

ad exchanges. By setting xr in Eq. (6.3) as ξi for each ad exchange i, we can use PID

controllers to achieve these reference eCPCs so as to achieve the maximum number of

clicks on the campaign level.

As a special case, if we regard the whole volume of the campaign as one channel,

this method can be directly used as a general bid optimisation tool. It makes use of the

campaign’s historic data to decide the optimal eCPC and then the click optimisation is

performed by controlling the eCPC to settle at the optimal eCPC as reference. Note that

this multi-channel click maximisation framework is flexible to incorporate any bidding

strategies.

6.3 Experimental Setup
We conduct comprehensive experiments to study the proposed RTB feedback control

mechanism. Our focus in this section is on offline evaluation using a publicly-available

real-world dataset. To make our experiment repeatable, we have published the experi-

ment code2. The online deployment and test on a commercial DSP will be reported in

Section 6.5.

6.3.1 Dataset

In consistency with previous chapters, we test our system on the publicly available

dataset collected from iPinYou DSP [115], where 9 campaigns from this datasets are

investigated. More statistics and analysis of the dataset is available in Section 3.4.1.

Note that for each campaign, there are normally 10-day ad log from the dataset, and

according to the data publisher [115], the last three-day data of each campaign is split

as the test data and the rest as the training data.

6.3.2 Evaluation Protocol

We follow the evaluation protocol from previous chapters on bid optimisation and an

RTB contest [115] to run our experiment. Specifically, for each data record, we pass

2https://github.com/wnzhang/rtbcontrol

https://github.com/wnzhang/rtbcontrol
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the feature information to our bidding agent. In our bidding agent, the bid calculator

generates a new bid based on the CTR prediction and other parameters in Eq. (6.1), and

then the actuator adjusts the bid based on the control signal as in Eq. (6.2). We then

compare the adjusted bid with the logged actual auction winning price. If the bid is

higher than the auction winning price, we know the bidding agent has won this auction,

paid the winning price, and obtained the ad impression. If from the ad impression

record there is a click, then the placement has generated a positive outcome (one click)

with a cost equal to the winning price. If there is no click, the placement has resulted in

a negative outcome and wasted the money. The control parameters are updated every 2

hours (as one round).

Again, it is worth mentioning that historical user feedback has been widely used

for evaluating information retrieval systems [149] and recommender systems [150]. All

of them used historic clicks as a proxy for relevancy to train the prediction model as

well as to form the ground truth. Similarly, our evaluation protocol keeps the user con-

texts, displayed ads (creatives etc.), bid requests, and auction environment unchanged.

We intend to answer that under the same context if the advertiser were given a different

or better bidding strategy or employed a feedback loop, whether they would be able to

get more clicks with the budget limitation. The click would stay the same as nothing

has been changed for the users. This methodology works well for evaluating bid op-

timisation [28] (Chapters 3, 4 and 5) and has been adopted in the display advertising

industry [115].

6.3.3 Evaluation Measures

We adopt several commonly used measures in feedback control systems [95]. We de-

fine the error band as the ±10% interval around the reference value. If the controlled

variable settles within this area, we consider that the variable is successfully controlled.

The speed of convergence (to the reference value) is also important. Specifically, we

evaluate the rise time to check how fast the controlled variable will get into the error

band. We also use the settling time to evaluate how fast the controlled variable will be

successfully restricted into the error band. However, the fast convergence may cause the

problem of inaccurate control. Thus, two control accuracy measures are introduced.

We use the overshoot to measure the percentage of value that the controlled variable
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passes over the reference value. After the settling (called the steady state), we use the

RMSE-SS to evaluate the root mean square error between the controlled variable value

and the reference value. At last, we measure the control stability by calculating the

standard deviation of the variable value after settling, named as SD-SS.

For bid optimisation performance, we use the campaign’s total achieved click

number and eCPC as the prime evaluation measures. We also monitor the impression

related performance such as impression number, AWR and CPM.

6.4 Offline Empirical Study
Our empirical study consists of five parts with the focus on controlling two KPIs: eCPC

and AWR. (i) In Section 6.4.1, we answer whether the proposed feedback control sys-

tems are practically capable of controlling the KPIs. (ii) In Section 6.4.2, we study

the control difficulty with different reference value settings. (iii) In Section 6.4.3, we

focus on the PID controller and investigate its attributes on settling the target variable.

(iv) In Section 6.4.4, we leverage the PID controllers as a bid optimisation tool and

study their performance on optimising the campaign’s clicks and eCPC across multiple

ad exchanges. (v) Finally, more discussions about PID parameter tuning and online

updating will be given in Section 6.4.5.

6.4.1 Control Capability

For each campaign, we check the performance of the two controllers on two KPIs.

We first tune the control parameters on the training data to minimise the settling time.

Then we adopt the controllers over the test data and observe the performance. The

detailed control performance on each campaign is provided in Table 6.1 for eCPC3 and

Table 6.2 for AWR. Figure 6.4 shows the controlled KPI curves against the timesteps

(i.e., round). The dashed horizontal line represents the reference.

We see from the results that (i) all the PID controllers can settle both KPIs within

the error band (with the settling time less than 40 rounds), which indicates that the

PID control is capable of settling both KPIs at the given reference value. (ii) The WL

controller on eCPC does not work that well on test data, even though we could find

good parameters on training data. This is due to the fact that WL controller tries to

3“-” cells mean invalid because of the failure to rise or settle.
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Table 6.1: Overall control performance on eCPC.

Campaign Controller Rise Settling Overshoot RMSE-SS SD-SS

1458
PID 1 5 7.73 0.0325 0.0313
WL 6 36 0 0.0845 0.0103

2259
PID 7 7 8.03 0.0449 0.0411
WL 6 - 0 - -

2261
PID 3 23 17.66 0.0299 0.0294
WL 5 - 0 - -

2821
PID 17 22 14.47 0.0242 0.0216
WL - - 0 - -

2997
PID 17 17 0.75 0.0361 0.026
WL - - 0 - -

3358
PID 3 7 23.89 0.0337 0.0287
WL - - 0 - -

3386
PID 9 13 7.90 0.0341 0.0341
WL - - 0 - -

3427
PID 1 12 29.03 0.0396 0.0332
WL - - 0 - -

3476
PID 1 5 7.64 0.0327 0.031
WL 1 - 17.11 - -

Table 6.2: Overall control performance on AWR.

Campaign Controller Rise Settling Overshoot RMSE-SS SD-SS

1458
PID 4 10 16.86 0.0153 0.0093
WL 3 7 0.00 0.0448 0.0231

2259
PID 4 6 17.08 0.0076 0.0072
WL 1 13 3.91 0.0833 0.0113

2261
PID 1 4 16.39 0.0205 0.0203
WL 1 - 2.02 - -

2821
PID 6 8 16.44 0.0086 0.0086
WL 1 3 5.77 0.0501 0.0332

2997
PID 1 8 13.68 0.0151 0.0151
WL 1 - 0.00 - -

3358
PID 2 8 22.08 0.0250 0.0213
WL 1 7 0.13 0.0332 0.0211

3386
PID 4 8 18.85 0.0133 0.0118
WL 1 5 2.95 0.0300 0.0291

3427
PID 2 6 26.63 0.0200 0.0179
WL 3 13 0.24 0.0482 0.0257

3476
PID 2 6 27.15 0.0175 0.0161
WL 1 7 1.49 0.0308 0.0271

affect the average system behaviour through transient performance feedbacks while

facing the huge dynamics of RTB. (iii) We can also observe that for WL on AWR, most

campaigns are controllable while there are still two campaigns that fail to settle at the

reference value. (iv) Compared to PID on AWR, WL always results in higher RMSE-
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Figure 6.4: Control performance on AWR and eCPC.

SS and SD-SS values but lower percentage overshoot. Those control settings with a

fairly short rise time usually face a higher overshoot.

According to above results, PID controller outperforms the WL controller in the

tested RTB cases. We believe this is due to the fact that the integral factor in PID

controller helps reduce the accumulative error (i.e., RMSE-SS) and the derivative fac-

tor helps reduce the variable fluctuation (i.e., SD-SS). And it is easier to settle the

AWR than the eCPC. This is mainly because AWR only depends on the market price

distribution while eCPC additionally involves the user feedback, i.e., CTR, where the

prediction is associated with significant uncertainty.

6.4.2 Control Difficulty

In this section, we extend our control capability experiments further by adding higher

and lower reference values in comparison. Our goal is to investigate the impact of

different levels of reference values on control difficulty. We follow the same scheme to

train and test the controllers as Section 6.4.1. However, instead of showing the exact

performance value, our focus here is on the performance comparison with different

reference settings.

The distribution of achieved settling time, RMSE-SS and SD-SS, with the setting

of three reference levels, i.e., low, middle and high, are shown in the form of box plot
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Figure 6.5: Control difficulty comparison with PID.
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Figure 6.6: Control performance for campaign 3386 on AWR and eCPC with different refer-
ence values.

[116] in Figures 6.5(a) and 6.5(b) for the eCPC and AWR control with PID. We observe

that the average settling time, RMSE-SS and SD-SS, are reduced as the reference values

get higher. This shows that generally the control tasks with higher reference eCPC and
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AWR are easier to achieve because one can simply bid higher to win more and spend

more. Also as the higher reference is closer to the initial performance value, the control

signal does not bring serious bias or volatility, which leads to the lower RMSE-SS and

SD-SS.

Figure 6.6 gives the specific control curves of the two controllers with three ref-

erence levels on a sample campaign 3386. We find that the reference value which is

farthest away from the initial value of the controlled variable brings the largest diffi-

culty for settling, both on eCPC and AWR. This suggests that advertisers setting an

ambitious control target will introduce the risk of unsettling or large volatility. The

advertisers should try to find a best trade-off between the target value and the practical

control performance.

6.4.3 PID Settling: Static vs. Dynamic References

The combination of proportional, integral and derivative factors enables the PID feed-

back to automatically adjust the settling progress during the control lifetime with high

efficiency [151]. Alternatively, one can empirically adjust the reference value in order

to achieve the desired reference value. For the example of eCPC control, if the cam-

paign’s achieved eCPC is higher than the initial reference value right after exhausting

the first half budget, the advertiser might want to lower the reference value in order

to accelerate the downward adjustment and finally reach its initial eCPC target before

running out of the budget. The PID feedback controller implicitly handles such a prob-

lem via its integration factor [151, 152]. In this section, we investigate with our RTB

feedback control mechanism whether it is still necessary for advertisers to intentionally

adjust the reference value according to the campaign’s real-time performance.

Dynamic Reference Adjustment Model. To simulate the advertisers’ strategies to

adaptively change the reference value of eCPC and AWR under the budget constraint,

we propose a dynamic reference adjustment model to calculate the new reference

xr(tk+1) after tk:

xr(tk+1) =
(B− s(tk))xrx(tk)
Bx(tk)− s(tk)xr

, (6.20)

where xr is the initial reference value, x(tk) is the achieved KPI (eCPC or AWR) at
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Figure 6.7: Dynamic reference control with PID.

timestep tk, B is the campaign budget, s(tk) is the cost so far. We can see from Eq. (6.20)

that when x(tk) = xr, xr(tk+1) will be set the same as xr; when x(tk)> xr, xr(tk+1) will

be set lower than xr and vice versa. For readability, we leave the detailed derivation

in Section 6.7. Using Eq. (6.20) we calculate the new reference eCPC/AWR xr(tk+1)

and use it to substitute xr in Eq. (6.3) to calculated the error factor so as to make the

dynamic-reference control.

Results and Discussions. Figure 6.7 shows the PID control performance with dynamic

reference calculated based on Eq. (6.20). The campaign performance gets stopped at

the point where the budget is exhausted. From the figure, we see that for both eCPC

and AWR control, the dynamic reference takes an aggressive approach and pushes the

eCPC or AWR across the original reference value (dashed line). This actually simulates

some advertisers’ strategy: when the performance is lower than the reference, then

higher the dynamic reference to push the total performance to the initial reference more

quickly, vice versa. Furthermore, for AWR control, we can see the dynamic reference

fluctuates seriously when the budget is to be exhausted soon. This is because when

there is insufficient budget left, the reference value will be set much high or low by

Eq. (6.20) in order to push the performance back to the initial target. Apparently this is

an ineffective solution.
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Figure 6.8: Dynamic vs. static reference with PID.

Furthermore, we directly compare the quantitative control performance between

dynamic-reference controllers (DYN) with the standard static-reference ones (ST) using

PID. Besides the settling time, we also compare the settling cost, which is the spent

budget before settling. The overall performance across all the campaigns is shown in

Figure 6.8(a) for eCPC control and Figure 6.8(b) for AWR control, respectively. The

results show that (i) for eCPC control, the dynamic-reference controllers do not per-

form better than the static-reference ones; (ii) for AWR control, the dynamic-reference

controllers could reduce the settling time and cost, but the accuracy (RMSE-SS) and

stability (SD-SS) is much worse than the static-reference controllers. This is because

the dynamic reference itself brings volatility (see Figure 6.7). These results demon-

strate that PID controller does perform a good enough way to setting the variable to-

wards the pre-specified reference without the need of dynamically adjust the reference

to accelerate using our methods. Other dynamic reference models might be somewhat

effective but this is not the focus of this research.
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Table 6.3: Control performance on multi-exchanges with the reference eCPC set for click max-
imisation.

Campaign Ad Exchange Rise Settling Campaign Ad Exchange Rise Settling

1458
1 13 26

3358
1 9 20

2 15 18 2 14 39
3 13 13 3 26 26

2259
1 10 38

3386
1 6 18

2 3 14 2 12 12
3 3 29 3 1 1

2261
1 3 30

3427
1 16 16

2 7 38 2 35 35
3 0 35 3 23 23

2821

1 6 17

3476

1 18 29
2 3 10 2 22 28
3 15 15 3 19 22
4 4 38

6.4.4 Reference Setting for Click Maximisation

We now study how the proposed feedback control could be used for click optimisation

purpose. As we have discussed in Section 6.2.4, bid requests usually come from differ-

ent ad exchanges where the market competitions and thus the CPM prices are disparate.

We have shown that given a budget constraint, the number of clicks is maximised if one

can control the eCPC in each ad exchange by settling it at an optimal eCPC reference

for each of them respectively.

In this experiment, we build a PID feedback controller for each of its integrated

ad exchanges, where their reference eCPCs are calculated via Eqs. (6.17) and (6.19).

We train the PID parameters on the training data of each campaign, and then test the

bidding performance on the test data. As shown in Table 6.3, the eCPC on all the ad

exchanges for all tested campaigns get settled at the reference values4 (settling time less

than 40). We denote our multi-exchange eCPC feedback control method as MULTIPLE.

Besides MULTIPLE, we also test a baseline method which assigns a single optimal

uniform eCPC reference across all the ad exchanges, denoted as UNIFORM. We also

use the linear bidding strategy without feedback control [19] as a baseline, denoted as

NONE5.

The comparisons over various evaluation measures are reported in Figure 6.9. We

4Campaign 2997 is only integrated with one ad exchange, thus not compared here.
5Other bidding strategies ([36] and ORTB in Chapter 3) are also investigated. Producing similar

results, they are omitted here for clarity.
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Figure 6.9: Bid optimisation performance.

observe that (i) the feedback-control-enabled bidding strategies UNIFORM and MULTI-

PLE significantly outperform the non-controlled bidding strategy NONE in terms of the

number of achieved clicks and eCPC. This suggests that properly controlling eCPCs

would lead to an optimal solution for maximising clicks. (ii) By reallocating the bud-

get via setting different reference eCPCs on different ad exchanges, MULTIPLE further

outperforms UNIFORM on 7 out of 8 tested campaigns. (iii) On the impression related

measures, the feedback-control-enabled bidding strategies earn more impressions than

the non-controlled bidding strategy by actively lowering their bids (CPM) and thus

AWR, but achieving more bid volumes. This suggests that by allocating more bud-

get to the lower valued impressions, one could potentially generate more clicks. As a

byproduct, this confirms the theoretical finding reported in Chapter 3.
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Figure 6.10: Settlement of multi-exchange feedback control.

As a case study, Figure 6.10 plots the settling performance of the three methods

on campaign 1458. The three dashed horizontal lines are the reference eCPCs on three

ad exchanges. We see that the eCPCs on the three ad exchanges successfully settle at

the reference eCPCs. At the same time, the campaign-level eCPC (MULTIPLE) settles

at a lower value than UNIFORM and NONE.

6.4.5 PID Parameter Tuning

In this subsection, we share some lessons learned about PID controller parameter tuning

and online updating.

Parameter Search. Empirically, λD does not change the control performance signif-

icantly. Just a small valued λD, e.g., 1× 10−5, will reduce the overshoot and slightly

shorten the settling time. Thus the parameter search is focused on λP and λI . Instead

of using the computationally expensive grid search, we perform an adaptive coordinate

search. For every update, we fix one parameter and shoot another one to seek for the

optimal value leading shortest settling time, and the line searching step length shrinks

exponentially for each shooting. Normally after 3 or 4 iterations, the local optima

is reached and we find such a solution is highly comparable with the expensive grid

search.

Setting φ(t) Bounds. We also find that setting up upper/lower bounds of control sig-

nal φ(t) is important to make KPIs controllable. Due to the dynamics in RTB, it is

common that user CTR drops during a period, which makes eCPC much higher. The
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Figure 6.11: Control with online/offline parameter updating.

corresponding feedback would probably result in a large negative gain on the bids,

leading extremely low bid prices and thus no win, no click and no additional cost at all

for remaining rounds. In such a case, a proper lower bound (-2) of φ(t) aims to elim-

inate above extreme effects by preventing from a seriously negative control signal. In

addition, an upper bound (5) is used in order to avoid excessive variable growth beyond

the reference value.

Online Parameter Updating. As the DSP running with feedback control, the collected

data can be immediately utilised for training a new PID controller and updating the

older one. We investigate the possibility of the online updating of PID parameters with

the recent data. Specifically, after initialising the PID parameters using training data,

we re-train the controller for every 10 rounds (i.e., before round 10, 20 and 30) in the

test stage using all previous data with the same parameter searching method as in the

training stage. The parameter searching in re-training takes about 10 minutes for each

controller, which is far shorter than the round period (2 hours). Figure 6.11 shows

the control performance with PID parameters tuned online and offline respectively. As

we can see after the 10th round (i.e., the first online tuning point), the online-tuned

PIDs manage to control the eCPC around the reference value more effectively than the

offline-tuned one, resulting shorter settling time and lower overshoot. In addition, no

obvious disturbance or instability occurs when we switch parameters. With the online

parameter updating, we can start to train the controllers based on several-hour training

data and adaptively update the parameters from the new data to improve the control

performance.
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6.5 Online A/B Test
The proposed RTB feedback control system has been deployed and tested in live on

BigTree DSP6, a performance-driven mobile advertising DSP in China. BigTree DSP

focuses on the programmatic buying for optimal advertising performance on mobile

devices, which makes it an ideal place to test our proposed solution.

The deployment environment is based on Aliyun elastic cloud computing servers.

A three-node cluster is deployed for the DSP bidding agent, where each node is in

Ubuntu 12.04, with 8 core Intel Xeon CPU E5-2630 (2.30GHz) and 8GB RAM. The

controller module is implemented in Python with uWSGI and Nginx.

For BigTree DSP controller module, we deploy the PID control function and tune

its parameters. Specifically, we use the last 6-week bidding log data in 2014 as the

training data for tuning PID parameters. A three-fold validation process is performed

to evaluate the generalisation of the PID control performance, where the previous week

data is used as the training data while the later week data is used for validation. The

control factors (φ(t),e(tk) in Eq. (6.4)) are updated for every 90 minutes. After ac-

quiring a set of robust and effective PID parameters, we launch the controller module,

including the monitor and actuator submodules, on BigTree DSP.

Figure 6.12 shows the online eCPC control performance on one of the iOS mobile

game campaigns during 84 hours from 7 Jan. 2015 to 10 Jan. 2015. The reference

eCPC is set as 28 CNF (0.28 CNY) by the advertiser, which is about 0.8 times the

average eCPC value of the previous week where there was no control. Following the

6http://www.bigtree.mobi/

http://www.bigtree.mobi/
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Figure 6.13: Relative performance for online test.

same training process described in the previous section, we update the online control

factors for every 90 minutes. From the result we can see the eCPC value dropped from

the beginning 79 CNF to 30 CNF during the first day and then settled closed to the

reference afterwards.

In the meantime, A/B testing is used to compare with the non-controlled bidding

agent (with the same sampling rate but disjoint bid requests). Figure 6.13 shows the

corresponding advertising performance comparison between a non-controlled bidding

agent and the PID-control bidding agent during the test period with the same bud-

get. As we can see, by settling the eCPC value around the lower reference eCPC,

the PID-control bidding agent acquires more bid volume and win more (higher-CTR)

impressions and clicks, which demonstrates its ability of optimising the performance.

Compared with the offline empirical study, the online running is more challenging:

(i) all pipeline steps including the update of the CTR estimator, the KPI monitor linked

to the database and the PID controller should operate smoothly against the market tur-

bulence; (ii) the real market competition is highly dynamic during the new year period

when we launched our test; (iii) other competitors might tune their bidding strategies

independently or according to any changes of their performance after we employ the

controlled bidding strategy. In sum, the successful eCPC control on an online commer-

cial DSP demonstrates the effectiveness of our proposed feedback control RTB system.

6.6 Summary
In this chapter, we have proposed a feedback control mechanism for RTB display ad-

vertising, with the aim of improving its robustness of achieving the advertiser’s KPI

target. We mainly studied PID and WL controllers for controlling the eCPC and AWR

KPIs. Through our comprehensive empirical study, we have the following discover-
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ies. (i) Despite the high dynamics in RTB, the KPI variables are controllable using

our feedback control mechanism. (ii) Different reference values bring different control

difficulties, which are reflected in the metrics of control speed, accuracy and stability.

(iii) The PID controller naturally finds its best way to settle the variable, and there is

no necessity to adjust the reference value for accelerating the PID settling. (iv) By set-

tling the eCPCs to the optimised reference values, the feedback controller is capable of

making bid optimisation. Deployed on a commercial DSP, the online test demonstrates

the effectiveness of the feedback control mechanism in generating controllable adver-

tising performance. In the future work, we will further study the applications based on

feedback controllers in RTB, such as budget pacing and retargeting frequency capping.

6.7 Chapter Appendix: Reference Adjust Models

Here we provide the detailed derivation of the proposed dynamic-reference model

Eq. (6.20) in Section 6.4.3.

Reference eCPC Adjustment. Let ξr be the initial eCPC target, ξ (tk) be the achieved

eCPC before the moment tk, s(tk) be the total cost so far, and B be the campaign budget.

In such a setting, the current achieved click number is s(tk)/ξ (tk) and the target click

number is B/ξr. In order to achieve the overall eCPC to ξr, i.e., to achieve the total click

number B/ξr with the budget B, the reference eCPC for the remaining time ξr(tk+1)

should satisfy

s(tk)
ξ (tk)

+
B− s(tk)
ξr(tk+1)

=
B
ξr
. (6.21)

Solving the equation we have

ξr(tk+1) =
(B− s(tk))ξrξ (tk)
Bξ (tk)− s(tk)ξr

. (6.22)

Reference AWR Adjustment. Let ρr be the initial AWR target, ρ(tk) be the achieved

AWR before the moment tk, n(tk) be the participated auction number so far. If we know

the expected total auction volume N during the campaign’s lifetime7, the reference

7Typically the expected total auction volume during the campaign’s lifetime can be estimated, which
is a calculation part for bid landscape forecasting problem. See [24] for details.
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AWR for the remaining time period ρr(tk+1) should satisfy

n(tk)ρ(tk)+(N−n(tk))ρr(tk+1) = Nρr. (6.23)

However, in our scenario the auction volume is sufficient to run out the campaign

budget, which means changing the bid price will directly influence the auction vol-

ume that the campaign participates. In such a setting, we consider the budget B and

current expense s(tk). Let w(z) be the expected auction winning ratio for a certain

campaign with the bid price z. Here z can also be regarded as the market price, which

is the highest bid distribution for the campaign’s participated auctions. It is clear that

w(z) monotonically increases w.r.t. z. If we want to achieve a winning ratio ρ on the

campaign, the expected cost for each impression is w−1(ρ). Furthermore, the achieve

impression volume with the expense s is s/w−1(ρ). Then Eq. (6.23) will be rewritten

as

s(tk)
w−1(ρ(tk))

+
B− s(tk)

w−1(ρr(tk+1))
=

B
w−1(ρr)

. (6.24)

Different campaigns could have different winning functions w(z), which can be

modelled according to their auction data. In Chapter 3, we proposed a concise winning

function form w(z) = z/(z+ ε), where ε is the tuning parameter used to fit the data.

In such a case, the inverse winning function is w−1(ρ) = ρε/(1− ρ). Substituting

w−1(ρ) into Eq. (6.24), the solution of ρr(tk+1) is

ρr(tk+1) =
(B− s(tk))ρrρ(tk)
Bρ(tk)− s(tk)ρr

, (6.25)

which happens to be the same form as eCPC update Eq. (6.22). Using x as a general

notation for eCPC and AWR variables leads to Eq. (6.20) in Section 6.4.3.





Chapter 7

Conclusions and Future Work

In this thesis, we have studied the essential research problems of bidding strategy opti-

misation from the perspective of an advertiser or a DSP in RTB display advertising.

For the fundamental single-campaign bidding function optimisation problem, we

have proposed a novel functional optimisation framework which maximises the spe-

cific target KPI with constraints of the campaign’s lifetime auction volume and budget.

This framework is flexible to take in various settings of market environment and user

behaviour to derive the corresponding optimal bidding functions, including the widely

used linear bidding functions and some novel non-linear bidding functions.

Furthermore, for the advanced multi-campaign statistical arbitrage mining prob-

lem, we have proposed a joint optimisation framework to maximise the overall expected

arbitrage profit with budget and risk constraints, which is then solved in an EM fashion.

In the E-step the auction volume is reallocated according to the individual campaign’s

estimated risk and return, while in the M-step the arbitrage bidding function is opti-

mised to maximise the expected arbitrage profit with the campaign volume allocation.

On the other hand, to address the problems of biased model learning and optimisa-

tion on censored labelled data generated from the auction selection, we have proposed

a model-free learning framework which explicitly estimates the probability of observ-

ing each training data instance and incorporates such a probability into the learning or

optimisation stage. The derived bid-aware gradient descent learning scheme is capable

of helping eliminate model bias and yield improved performance in various supervised

learning and optimisation tasks.

Last but not least, to deal with the KPI instability problem caused by dynamic

RTB ad market competition and user behaviour, we have designed a feedback control
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mechanism embedded into the bidding agent to dynamically adjust the bid price so as

to control the target KPI variable close to a predefined reference value to achieve the

robust and controllable advertising performance.

Besides the scientific innovations, extensive repeatable experiments on large-scale

real-world datasets have been performed to verify the effectiveness of the proposed

bidding strategy optimisation solutions, unbiased learning schemes and feedback con-

trollers. More importantly, these optimised solutions are quite flexible to any estimation

models of the bid request utility and cost, which makes them of light engineering cost

to be deployed in production. All the proposed solutions have been (once) deployed

in commercial DSP systems1 and received significant performance improvement in the

online A/B tests. In sum, the scientific and empirical contributions of this research are

significant in terms of moving towards optimal RTB display advertising performance.

We have also figured out some promising future work. First, it is valuable to fur-

ther formulate a learning to bid problem, which takes the user response prediction,

bid landscape modelling and bid optimisation as a single learning system. Each data

instance fed into the system is a request-bid-feedback event loop, containing the bid

request features, the historic bid price, the auction result and the corresponding user

feedback if winning. Second, the value of exploring the uncertainty of user behaviour,

market competition and bidding is rare in the existing literature. However, the risk of

deficit for performance-driven RTB ad campaigns is a key problem for advertisers and

their DSPs. By building Bayesian models of user response rates and bidding func-

tions, risk management can be performed on impression-level bidding process to yield

risk-return balance for performance-driven RTB ad campaigns. Moreover, the action

of bidding based on bid request features and the later observed auction results and user

feedback can be naturally modelled as a reinforcement learning problem. Unlike the

keyword-level bidding in sponsored search [28], the bid decision in RTB environment

is made based on the real-time bid request features, the associated historic user infor-

mation and campaign parameters, which make the bidding policy learning unique and

challenging.

1The optimal RTB strategy (from Chapter 3) was deployed on iPinYou Optimus DSP in Dec. 2013.
The statistical arbitrage strategy (from Chapter 4) was deployed in Feb. 2015 on BigTree Mobile DSP.
Unbiased learning and optimisation techqinues (from Chapter 5) was deployed in Sep. 2015 on Yahoo!
DSP. The feedback control mechanism (from Chapter 6) was deployed in Dec. 2014 on BigTree Mobile
DSP.
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Appendix B

Glossary of Technical Terms

Here is a summary of the explanations of the mentioned technique terms in the thesis.

Ad Exchange A marketplace which connects the media sellers (publishers) and buyers

(advertisers) via network message parsing with a predefined protocol, and select

the buyers for each sold media inventory (ad impression) by auctions.

Ad Inventory A notion of the advertising volume regarded as the virtual assets owned

by the publisher. The unit of ad inventory is an ad display opportunity, i.e., an ad

impression.

Ad Slot A region of the page to place the ad creative.

AWR, Auction Winning Ratio From the micro perspective, AWR means the proba-

bility of winning a specific ad auction with a specific bid value; from the macro

perspective, AWR means the impression number divided by the participated auc-

tion number from a certain volume during a certain period.

Bid, Bid Value, Bid Price The amount of the money the advertiser wants to pay for

the ad display opportunity being auctioned.

Bid Optimisation The designing of the bidding function such that the consequent ad-

vertising performance, measured by some KPIs, is optimised as mush as possible.

Bidding Agent A functional module of performing bid calculation for each received

bid request and a qualified ad in DSP.

Bidding Function The function abstracted from the bidding strategy inputs a bid re-

quest and possibly some environment information and outputs the bid price.
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Bidding Strategy The bidding logic which inputs a bid request and possibly some

environment information and outputs the bid price.

Budget The total amount of money available for advertising cost during a campaign

lifetime.

Campaign A series of ads sharing the same advertising target and making up an inte-

grated marketing communication.

Click A click on the ad creative from a page, which directs the user to the landing page

of the ad.

CNF, Chinese Fen The unit of Chinese currency, which is 0.01 CNY. On 3 Mar 2016,

653CNF=1USD.

CNY, Chinese Yuan The unit of Chinese currency. On 3 Mar 2016, 6.53CNY=1USD.

Conversion An event showing a user has become a customer of the advertiser. The

conversion event can be defined by various of actions, such as a successful page

landing, a registration on the advertiser’s website, an email subscription, making

a deposit, a product purchase etc.

CPA, Cost per Action or Cost per Acquisition A predefined amount of money the

advertiser pays the ad agent (DSP in RTB display advertiser, search engine in

sponsored search) when a specified action has been observed on the delivered ad

impression. The action can be defined by various of actions, such as a successful

page landing, a registration on the advertiser’s website, an email subscription,

making a deposit, a product purchase etc.

CPC, Cost per Click A predefined amount of money the advertiser pays the ad agent

(DSP in RTB display advertiser, search engine in sponsored search) when a user

click has been observed on the delivered ad impression.

CPM, Cost per Mille A predefined amount of money the advertiser pays the ad agent

(DSP in RTB display advertiser, search engine in sponsored search) for each

delivered ad impression, often counted by one thousand of the same cases of ad

impressions.
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CPS, Cost per Sale A predefined amount of money the advertiser pays the ad agent

(DSP in RTB display advertiser, search engine in sponsored search) when a spec-

ified sale has been made after the user sees the ad impression.

Creative The content of a specific ad, often in the format of images for display adver-

tising and text for sponsored search. Javascript based creatives are also allowed in

some ad exchanges to enable interactive creatives. The hyperlink on the creative

points to the landing page that the advertiser wants the user to browse.

CTR, Click-Through Rate From the micro perspective, CTR means the probability

of a specific user in a specific context clicking a specific ad; from the macro

perspective, CTR means the click number divided by the impression number

from a certain volume during a certain period.

CVR, Conversion Rate From the micro perspective, CVR means the probability of

the user conversion is observed after showing the ad impression; from the macro

perspective, CVR means the conversion number divided by the impression num-

ber from a certain volume during a certain period.

DMP, Data Management Platform The platform which collects, analyses and trades

user behaviour information. DSPs are its major clients.

DSP, Demand-Side Platform The platform which serves advertisers to manage their

campaigns and submits real-time bidding responses for each bid request to the ad

exchange via computer algorithms.

eCPA, Effective Cost per Action (or Acquisition) The average cost for acquiring an

action, also called efficient cost per action or expected cost per action in some

references.

eCPC, Effective Cost per Click The average cost for acquiring a click, also called

efficient cost per click or expected cost per click in some references.

First-Price Auction The auction where the winner, i.e., the participator with the high-

est bid value, pays her bid value.

Impression An ad display in front of the user.
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KPI, Key Performance Indicator A certain quantitative measurement of advertising

performance, such as impression number, click number, conversion number,

CPM, eCPC, eCPA, AWR, CTR etc.

Market Price A different name of winning price, defined on a specific bid request,

which means the lowest bid value to win the auction of this bid request, i.e., the

highest bid value from other competitors of this auction.

ROI, Return on Investment The ratio of the profit (revenue minus cost) gained from

advertising over the advertising cost.

RTB, Real-Time Bidding A display ads trading mechanism where the ad inventory is

traded on impression level via an instant ad auction with the bid values returned

from the advertisers calculated in real time, e.g., less than 100ms.

Second-Price Auction The auction where the winner, i.e., the participant with the

highest bid value, pays the second highest bid.

SSP, Supply-Side Platform The platform which serves publishers to manage the ad

inventory of the sites. Upon each page loading, the SSP sends the ad request for

each of the RTB ad slot to the ad exchange. Once the ad exchange returned the

ID or code of the winning ad, SSP calls the corresponding ad server for the ad

creative.

User Segmentation The subsets of users divided by users’ demographical informa-

tion, e.g., age, gender, location and occupation, or interest categories or tags.

Normally, user segmentation is provided by DMP or ad exchange to help adver-

tisers perform demographical or behavioural targeting. The bidding strategy can

also highly leverage such information to perform effective bidding.

Winning Price A different name of market price, defined on a specific bid request,

which means the lowest bid value to win the auction of this bid request.
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