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There is an urgent need to develop effective vulnerability assessments for evaluating the 

conservation status of species in a changing climate1. Several new assessment approaches 

have been proposed for evaluating the vulnerability of species to climate change2–5, based on 

the expectation that established assessments such as the IUCN Red List6 need revising or 

superseding in light of the threat that climate change brings. However, although previous 

studies have identified ecological and life history attributes that characterize declining species 

or those listed as threatened7–9, no study to date has undertaken a quantitative analysis of the 
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attributes that cause species to be at high risk of extinction specifically due to climate change. 

We developed a simulation approach based on generic life history types to show here that 

extinction risk due to climate change can be predicted using a mixture of spatial and 

demographic variables that can be measured in the present-day without the need for complex 

forecasting models. Most of the variables we found to be important for predicting extinction 

risk, including occupied area and population size, are already used in species conservation 

assessments, indicating that current systems may be better able to identify species vulnerable 

to climate change than previously thought. Therefore, although climate change brings many 

new conservation challenges, we find that it may not be fundamentally different from other 

threats in terms of assessing extinction risks. 

 

Attempts to quantify the threat that climate change poses to species’ survival commonly infer 

extinction risk from changes in the area of climatically suitable habitat (the bioclimate envelope)10,11, 

but this approach ignores important aspects of species’ biology such as population dynamics, vital 

rates, and dispersal12–16, leading to high uncertainty1,17. To address this challenge, we coupled 

ecological niche models (ENMs) with demographic models13–15,18–20 and expanded this approach by 

developing a generic life history (GLH) method. The coupled modeling approach estimates extinction 

risk as the probability of abundance falling to zero by the year 2100, rather than as the proportion of 

species committed to extinction due to contraction of bioclimate envelopes10 (Methods). 

 

By matching ENMs for 36 amphibian and reptile species endemic to the US with corresponding 

GLH models (Supplementary Table S1), we estimate mean extinction risk by 2100 to be 28±7% under 

a high CO2 concentration Reference climate scenario21 and 23±7% under a Policy climate scenario 

that assumes substantive intervention22 (Methods). By contrast, extinction risk is estimated by the 

same models to be <1% without climate change, showing that the methods are not biased toward 

predicting high risks. The contrast between predicted extinction risk with and without climate change 

suggests that climate change will cause a dramatic increase in extinction risk for these taxonomic 
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groups over the coming century. Contrary to other studies23, the relatively small difference in extinction 

risk that we predict between Policy and Reference scenarios indicates that conservation actions that 

incorporate climate adaptation24 will be necessary to substantially reduce extinctions due to climate 

change regardless of whether mitigation measures that decrease CO2 emissions are implemented. 

 

We next used sensitivity analysis to test how reliably extinction risk due to climate change can 

be predicted from current information on life history and spatial traits. Our goal was to assess whether 

commonly available variables can be used to effectively estimate extinction risk due to climate change 

without necessitating the application of complex forecasting models that are impractical to run for the 

majority of species. Based on the simulated period 2000-2010, we extracted 21 variables that could, in 

practice, be measured for conservation assessment purposes (Table 1). Application of machine-

learning methods – Random Forests (RF) and Boosted Regression Trees (BRT) – revealed good 

ability to predict extinction risk due to climate change from these variables: AUC=0.80-0.86 based on 

cross validation partitioned by species so as to test using independent data (Methods). 

 

The most important variables driving the predictions comprised a mixture of spatial and 

demographic factors (Fig. 1a). Occupied area was consistently the most important predictor, most 

likely because it provides a comprehensive measure of the breadth of climatic and habitat conditions 

under which a species can persist. Recent trends (calculated for the period 2000-2010), especially in 

occupied area, tend to be more important under the Policy scenario (Supplementary Fig. S1) than the 

Reference scenario (Fig. 1a; though recent trends were important under both scenarios when using 

BRT, Supplementary Figs. S2, S3). The finding that recent trends were less predictive of future trends 

under more severe climate change suggests that previously observed biological impacts of climate 

change25 will become less indicative of the future as climate change accelerates. Univariate plots 

reveal the general nature of the relationships between predictor variables and extinction risk due to 

climate change (Fig. 1b), although it is not always possible to  
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[Table 1: Predictor variables used to test whether extinction risk due to climate change can be 

predicted from present information on life history and spatial traits] 

 

say whether extinction risk increases or decreases in response to a variable because of interactions 

between variables and non-linearity in these relationships. 

 

Our analysis also revealed that species’ vulnerability to climate change depends on interactions 

between life history traits and spatial characteristics (Fig. 2a). For example, the most important 

interaction under the Reference scenario was between a spatial variable (occupied area) and a 

demographic variable (generation length). The form of the interactions between variables is also 

informative. For example, although extinction risk due to climate change is highest when occupied 

area is small, the risk is lower when small occupied area is combined with long generation times (Fig. 

2b). Relative to predictions from the full RF model (which allows for interactions), a fully additive 

approximation of the RF model (which assumes effects are mutually independent across parameter 

space for these two variables) miscalculated risk status by an average of 1.2% (RMSE) over the two-

dimensional parameter space (Fig. 2a). One measure of the importance of this interaction is that 

extinction risk due to climate change across the generation length spectrum varied only 1.4% for 

species with large occupied area, while the range was 8.2% for those with small occupied area (Fig 

2b). The second most important interaction showed a similar form, wherein the effect of population 

size on extinction risk due to climate change was magnified for species with small occupied areas 

(Fig. 2c). 

 

Some assessment systems already incorporate interactions between variables (for example, 

IUCN Red List criteria B and C include interactions between occupied area and recent trends; 

occupied area and fragmentation; and population size and recent trends6,26) but we found some 

interactions (such as between occupied area and generation length) that are not currently considered 
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by vulnerability assessment systems. Further analyses of extinction risks with the approach used here 

will contribute to the development of guidelines to better account for climate change within 

conservation assessments12,26 and will inform the selection of essential biodiversity variables as part of 

a global observation system27. 

 

The predicted large increases in probability of extinction under climate change forewarn that 

many species may be driven to extinction by climate change unless species-specific conservation 

actions are taken. Our results indicate that conservation actions should focus on species with small 

occupied area, small population  
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[Figure 1: Predictors of extinction risk due to climate change by 2100] 

 

size, spatially correlated dynamics, and declining occupied area, which are symptoms of 

endangerment used in the IUCN Red List criteria6,26 to identify species at risk of extinction. However, 

we caution that in evaluating conservation actions, species-specific coupled niche-demographic 

models should be used whenever data allow such models, especially in cases where the impact of 

climate change depends in part on species interactions28. We also emphasize that these results are 

based on amphibian and reptile species in the contiguous US and, although we present extensive 

sensitivity analyses, some effects of the taxonomic sampling are apparent. In particular, dispersal 

ability is not ranked among the most important predictors of vulnerability to climate change. This is 

because all species assessed in this analysis have similar and limited dispersal capacity, reducing our 

ability to identify this factor as important. Some potentially important factors are also excluded from the 

analyses. For example, we do not incorporate genetic adaptation that may facilitate survival over 

multiple generations but is not well understood in the context of rapid environmental change29,30. Thus, 

we found lower extinction risk when generation length is long (Fig. 1b, 2b), but this is due to the effect 

of long lived species (e.g., box turtles) in our sample of life histories, which are less likely to go extinct 
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within the timeframe of 100 years due to their longevity, and does not reflect the potential for short 

generation times to offer more potential for genetic adaptation (as well as faster demographic 

response to conservation measures) within the timeframe. Yet the approach we present offers great 

potential for application to additional taxonomic groups and in different regions, so that the results can 

be generalized and contribute to the development of effective measures to conserve biodiversity over 

the coming century. 

 

 

 

Methods 

We used an ensemble of five atmosphere-ocean general circulation models (GCMs) to generate an 

annual time series of climate anomalies to 2100 based on two strongly contrasting greenhouse gas 

emission scenarios: a Reference scenario with CO2 concentration of 750 ppm (WRE750)21 and a 

Policy scenario with CO2 stabilization at 450 ppm (MiniCAM LEV1)22. Climate anomalies were 

downscaled to an ecologically relevant spatial resolution (~800m x 800m) and nineteen bioclimate 

variables were generated, from which seven variables were selected based on reasoning as to the 

physiological and life-history requirements of the study species and analysis of correlations between 

variables. 

 

We then combined the seven climate variables with other environmental variables (including 

land cover, hydrography and land surface form) and species’ occurrence records to generate annual 

maps of suitable habitat using ecological niche models (ENMs). Occurrence data were obtained from 

NatureServe and we used the maximum entropy ENM method (Maxent). Maxent regularization was 

set for each species individually so as to avoid over-fitting, and the most relevant land cover, 

hydrography, and land surface form variables were selected for each species to avoid fitting models 

with an unnecessarily large number of variables (Supplementary Table S2). The extent of the study 

region for ENM calibration was selected for each species based on occupied ecoregions, and for each 
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species the final ENM was a consensus from 50 replicates so as to account for uncertainty in the 

species’ occurrence data. 

 

The dynamic spatial structures generated by ENMs were then combined with generic life history 

(GLH) models, which incorporate demographic structure, density dependence and stochasticity, to 

create metapopulation models (i.e., spatially structured models of multiple populations, with partially 

correlated dynamics, that may exchange individuals through dispersal). We constructed age- and 

stage-structured, density-dependent, stochastic models for 6 life history types: small salamanders, 

large salamanders, turtles, tortoises, snakes, and lizards. From these GLH models we created 9,720 

population models (3,240 for each climate scenario) by sampling a standard set of life history 

parameters between upper and lower bounds. Using a generic approach for modeling demographic 

processes prevents us from making species-specific projections or ranking these 36 species in terms 

their vulnerability to climate change. But it also avoids the need to obtain species-specific parameters, 

which are rarely known, and extends our scope of inference beyond a limited set of extant species to 

all possible trait combinations that may increase risk of extinction due to climate change. To estimate 

the risk of extinction we ran each of the 9,720 population models for 1,000 replicates, and each 

replicate with annual time steps to 2100. We also estimated extinction risk without climate change and 

we did not model non-climatic threats, such as habitat destruction or exploitation, enabling us to 

isolate the degree to which climate change increases extinction risk. 

 

We then used machine-learning methods, RF and BRT, to identify important variables and 

interactions for predicting extinction risk due to climate change. We assessed RF and BRT model 

predictive ability using leave-one-out cross validation in which each of the 36 species was treated in 

turn as an  
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[Figure 2: Role of interactions between variables in predicting extinction risk due to climate change] 
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independent validation data set. By using species as a data partition instead of random sampling 

methods (e.g., standard 10-fold cross-validation), we were able to challenge the modeling algorithm 

against truly independent data. Thus, the predictive performance metrics we calculated (AUC=0.86 for 

RF under Reference scenario; for other results, see Supplementary Methods) could be expected to 

hold for predictions of climate-related risk to additional North American species not included in this 

study. For RF, importance of each predictor variable was determined by computing the prediction error 

of each tree for the out-of-bag sample (i.e., set of observations set aside for validation and not used in 

constructing the trees) and assessing the degree to which out-of-bag prediction error increases when 

the values of that predictor variable are randomly shuffled. Univariate relationships between variables 

and extinction risk due to climate change (Fig. 1b) were derived post-hoc by predicting across the 

parameter space for each variable while holding all other variables constant at mean values. Two-way 

interaction strengths were computed post hoc following three steps: 1. For each variable pair, 

predictions were made across the full two dimensional slice of parameter space (holding all other 

predictor variables constant at mean values); 2. Predictions from step 1 were modeled assuming 

additivity (but the relationship is not constrained to be linear and could take any shape); and 3. The 

root mean squared residual error under the additive model from step 2 (multiplied by 100 to convert to 

percent risk) was calculated as an index of the strength of interaction. For BRT, importance of each 

predictor variable was computed as the total reduction in deviance associated with that variable for the 

full model.  

 

Supplementary Fig. S4 presents a flowchart detailing processing steps and data inputs/outputs. 

Further explanation and justification of data and methods is provided in Supplementary Methods. 
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Figure Legends 

Figure 1. Predictors of extinction risk due to climate change by 2100. Results are for Random 

Forest models under the Reference climate change scenario. (a) Importance of each predictor 

variable, computed as the relative loss in predictive performance after shuffling (i.e., randomly 

reordering) the values of that predictor variable (Supplementary Methods). Demographic and spatial 

variables were estimated for the year 2000; recent trend variables were estimated from the simulated 

period 2000 to 2010. (b) Univariate relationships between extinction risk due to climate change and 

the four most important predictor variables. Y-axes are scaled so that 0.0 is the mean value of the 

response. 

 

Figure 2. Role of interactions between variables in predicting extinction risk due to climate 

change. (a) Strength of two-way interactions between determinants of extinction risk due to climate 

change (Reference scenario). The six strongest two-way interactions are shown. (b) and (c) Three-

dimensional visualization of the first and second ranked interactions, respectively. Results are based 

on Random Forest models. 
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Table 1. Predictor variables used to test whether extinction risk due to climate change can be 
predicted from current information on life history and spatial traits. 
 

Variable Explanation  

Population size Number of individuals in all populations, log-transformed 

Generation length Generation length in years; measures the rate of demographic turnover or speed 
of life history 

Growth rate Average rate of population growth at low population sizes (Rmax) 

Vital rate variability Coefficient of variation of vital rates (survival rates and fecundities for each age 
class or stage), averaged over all non-zero rates; measures the tendency of the 
population to fluctuate in response to stochastic environmental change 

Spatial correlation Degree to which environmental variability is correlated across the landscape; 
coefficient of correlation at the average distance among occupied populations 

Number of 
subpopulations  

Number of extant subpopulations (i.e., patches with at least 1 individual) 

Occupied area Total area of all occupied patches (log-transformed); corresponds to area of 
occupancy (AOO) used in IUCN Red List criteria

26
, measured at <1 km scale. 

Fractal dimension A measure of habitat fragmentation, calculated as 2·ln(0.25·E)/ln(A), where E is 
the total edge length of all patches (in units of cell length), and A is the total area of 
all patches (in number of cells) 

Largest patch 
fraction 

Area of the largest patch as a fraction of total metapopulation area 

Connectivity A measure of dispersal between neighboring populations, calculated as the 
dispersal rate at the distance to nearest neighbor (averaged over all extant 
subpopulations) using the dispersal function 

Fragmentation Degree of demographic fragmentation, measured as the proportion of all 
individuals that are in small and isolated populations. Values >0.5 correspond to 
"severely fragmented" as defined in ref. 

26
 

Dispersal ability Intrinsic dispersal ability: Distance above which only 1% of individuals are likely to 
disperse; likely maximum dispersal distance for 99% of individuals in a given year. 

Niche breadth: 
temperature 

Range of average annual temperatures in the current range 

Niche breadth: 
precipitation 

Range of average annual precipitation in the current range 

Trend in occupied 
area 

Ten-year trend (2000-2010) in occupied area 

Trend in population 
size 

Ten-year trend (2000-2010) in total abundance 

Trend in number of 
subpopulations 

Ten-year trend (2000-2010) in the number of subpopulations 

Trend in fractal 
dimension 

Ten-year trend (2000-2010) in fractal dimension 

Trend in 
connectivity 

Ten-year trend (2000-2010) in connectivity 

Trend in 
fragmentation 

Ten-year trend (2000-2010) in fragmentation index 

Trend in largest 
patch fraction 

Ten-year trend (2000-2010) in the proportion of total metapopulation area that is in 
the largest patch 

 


