PREFACE	V
CHAPTER 1. THE NATURE OF CARBONATE DEPOSITIONAL SYSTEM	AS-
COMPARISON OF CARBONATES AND SILICICLASTICS	
Introduction	1
Consequences of Biological Influences over Carbonate Sediments	
Introduction	
Origin of carbonate sediments	
The reef, a unique depositional environment	
Unique biological control over the texture and fabric of carbonate	2
	3
sediments Carbonate grain composition	
U 1	5
Sedimentary Processes and Depositional Environments Common to	
Both Carbonates and Siliclastics	6
Carbonate Rock Classification	7
Sedimentation Style-The Ubiquitous Carbonate Shoaling Upward Sequence	~
and Cyclicity	9
Carbonate Shelf Evolution-Response to Sea Level	11
The Changing Nature of Carbonate Shelf Margins in Response to Global	
Tectonics	14
Consequences of High Chemical Reactivity of Carbonates Relative	
to Siliclastics	15
Carbonate precipitation in the marine environment	15
Susceptibility of shallow marine carbonates to early diagenetic	
overprint	16
Susceptibility of carbonates to burial diagenesis	17
Summary	18
CHAPTER 2. THE CLASSIFICATION AND NATURE OF CARBONATE	
POROSITY	21
Introduction	21
The Classification of Carbonate Porosity	21
Introduction	21
Fabric selectivity	22

	~ .
Primary porosity	24
Secondary porosity	24
The utilization of the Choquette-Pray porosity classification	26
The Nature of Primary Porosity in Modern Carbonate Sediments	27
Interparticle porosity	27
Intraparticle porosity	28
Depositional porosity of mud-bearing sediments	29
Framework and fenestral porosity	30
Secondary Porosity	33
Introduction	33
Secondary porosity formation by dissolution	33
Secondary porosity associated with dolomitization	35
Secondary porosity associated with breccias	39
Secondary porosity associated with fractures	39
Summary	40
•	
CHAPTER 3. DIAGENETIC ENVIRONMENTS OF POROSITY	
MODIFICATION AND TOOLS FOR THEIR RECOGNITION IN THE	
GEOLOGIC RECORD	43
Introduction	43
The Diagenetic Environments of Porosity Modification	43
Introduction	43
Marine environment	44
Meteoric environment	45
Subsurface environment	45
Tools for the Recognition of Diagenetic Environments of Porosity Modification in	
Geologic Record	46
Introduction	46
Petrography-cement morphology	47
Petrography-cement distributional patterns	51
Petrography-grain-cement relationships relative to compaction	53
Trace element geochemistry of cements and dolomites	56
Stable isotopes	61
Strontium isotopes	68
Fluid inclusions	71
	. –
Summary	73
CHAPTER 4. NORMAL MARINE DIAGENETIC ENVIRONMENTS	75
	75
Introduction	75
Shallow Water Normal Marine Diagenetic Environments	76

Introduction to the shallow marine cementation process	76
Recognition of ancient shallow marine cements	80
Diagenetic setting in the intertidal zone	83
Modern shallow water submarine hardgrounds	87
Recognition and significance of ancient hardgrounds	88
Diagenetic setting in the modern reef environment	89
Recognition of reef-related marine diagenesis in the ancient record	93
Porosity evolution of reef-related Lower-Middle Cretaceous shelf margins:	
the Golden Lane of Mexico and the Stuart City of south Texas	97
Porosity evolution of Middle Devonian reef complexes: Leduc, Rainbow,	
"Presqu'ile", and Swan Hills reefs, Western Canadian Sedimentary Basin	102
Deep Marine Diagenetic Environments	108
Introduction to diagenesis in the deep marine environment	108
Diagenesis within the zone of aragonite dissolution	109
Dolomitization below the calcite compensation depth	112
The thermal convection model of marine water dolomitization	114
Summary	116
CHAPTER 5. EVAPORATIVE MARINE DIAGENETIC ENVIRONMENTS	
Introduction	120
Introduction to diagenesis in evaporative marine environments	120
The Marginal Marine Sabkha Diagenetic Environment	123
Modern marginal marine sabkhas	
Diagenetic patterns associated with ancient marginal marine sabkhas	127
Ordovician Red River marginal marine sabkha reservoirs, Williston	
···· , ···· · · · · · · · · · · · · · ·	130
Mississippian Mission Canyon marginal marine sabkha reservoirs,	
···	134
Ordovician Ellenburger marginal marine sabkha-related dolomite	
reservoirs, west Texas, U.S.A	136
Criteria for the recognition of ancient marginal marine sabkha	
	141
Marginal Marine Evaporative Lagoons and Basins (Reflux Dolomitization)	143
The marginal marine evaporative lagoon as a diagenetic environment	143
	145
The Upper Permian Guadalupian of west Texas, U.S.A.: an ancient	
marginal marine evaporative lagoon complex	
Ferry Lake Anhydrite, central Gulf of Mexico basin, U.S.A.	150
Upper Jurassic Smackover platform dolomitization, east Texas, U.S.A.:	
a reflux dolomitization event	151

•

The Elk Point Basin of Canada	155
Michigan Basin, U.S.A.	
Criteria for recognition of ancient reflux dolomites	
Summary	
CHAPTER 6. INTRODUCTION TO DIAGENESIS IN THE METEORIC	
ENVIRONMENT	161
Introduction	161
Chemical and Mineralogical Considerations	161
Geochemistry of meteoric pore fluids and precipitates	161
Isotopic composition of meteoric waters and carbonates precipitated	
from meteoric waters	
Mineralogic drive of diagenesis within the meteoric environment	167
Implications of the kinetics of the CaCO ₃ -H ₂ O-CO ₂ system to grain	
stabilization and to porosity evolution in meteoric diagenetic	
environments	
Hydrologic setting of the meteoric diagenetic environment	
Summary	175
CHAPTER 7. METEORIC DIAGENETIC ENVIRONMENTS	177
Introduction	177
The Vadose Diagenetic Environment as Developed in Metastable Carbonate	
Sequences	177
Introduction	177
Upper vadose soil or caliche zone	177
Lower vadose zone	179
Petrography of vadose cements	
Trace element composition of vadose cements	180
Isotope composition of vadose cements	180
Porosity development in the vadose diagenetic environment	181
The Meteoric Phreatic Diagenetic Environment as Developed in Metastable	
Carbonate Sequences	181
Introduction	181
Local floating meteoric water lens	182
Petrography of meteoric phreatic cements	183
Trace element composition of meteoric phreatic cements from	
a local meteoric lens	184
Stable isotopic composition of meteoric phreatic cements from	
a local meteoric lens	184
Porosity development in a local meteoric lens	
· –	

Х

Local island model of diagensis	185
The local island model through time	186
The Walker Creek field: a Jurassic example of the local island model?	187
	193
Regional meteoric aquifer diagenetic model	194
Porosity development and predictability in regional meteoric aquifer	
environments	196
Geochemical trends characteristic of a regional meteoric aquifer system	196
The Jurassic Smackover Formation, U.S.Gulf of Mexico: a case history	
	199
Mississippian grainstones of southwestern New Mexico, U.S.A.:	
a case history of porosity destruction in a regional meteoric	
1	204
The Meteoric Diagenetic Environment in Mature, Mineralogically Stable	
Systems	209
	209
Karst processes and products	210
Solution, cementation, and porosity evolution in a diagenetically mature	
	211
Karst-related porosity in the Permian San Andres Formation at the	
Yates field, west Texas, Central basin platform, U.S.A.	
Summary	216
	200
CHAPTER 8. DOLOMITIZATION ASSOCIATED WITH METEORIC AND MIX	
	219 219
	219
	219
Concerns relative to the validity of the Dorag, or mixing model of	220
	220
Mississippian North Bridgeport field, Illinois basin, U.S.A.: mixed water	775
	225
Dolomitization by continental waters, Coorong Lagoon, south Australia	
Summary	234
CHAPTER 9. BURIAL DIAGENETIC ENVIRONMENT	737
Introduction	
The Burial Setting	
Introduction	
Pressure	
Temperature	
romporature	2 4 0

Deep burial pore fluids	241
Hydrology of subsurface fluids	243
Compaction	
Introduction	
Mechanical compaction and dewatering	244
Chemical compaction	247
Factors affecting the efficiency of chemical compaction	251
The North Sea Ekofisk field: a case history of porosity preservation	
in chalks	254
Burial Cementation	260
The problem of source of CaCO ₃ for burial cements	260
Petrography of burial cements	
Geochemistry of burial cements	262
Impact of late subsurface cementation on reservoir porosity	266
Subsurface Dissolution	267
Subsurface Dolomitization	268
Introduction	268
Petrography and geochemistry	269
Impact of burial dolomitization on reservoir porosity	270
Upper Devonian dolomitized sequences of Alberta, Canada: a case	
history of burial dolomitization	271
The Role of Early, Surficial Depositional and Diagenetic Processes Versus	
Burial Processes in Shaping Ultimate Porosity Evolution	277
Predicting Changes in Porosity with Depth	279
Summary	283
REFERENCES	285
INDEX	317