Contents

	Preface	<i>page</i> xi
	List of terminology	xv
PAF	RT I REPRESENTING FINITE BN-PAIRS	1
1	Cuspidality in finite groups	3
1.1	Subquotients and associated restrictions	4
1.2	Cuspidality and induction	6
1.3	Morphisms and an invariance theorem	8
1.4	Endomorphism algebras of induced cuspidal modules	11
1.5	Self-injective endomorphism rings and an equivalence	
	of categories	14
1.6	Structure of induced cuspidal modules and series	17
2	Finite BN-pairs	22
2.1	Coxeter groups and root systems	23
2.2	BN-pairs	27
2.3	Root subgroups	29
2.4	Levi decompositions	32
2.5	Other properties of split BN-pairs	35
3	Modular Hecke algebras for finite BN-pairs	41
3.1	Hecke algebras in transversal characteristics	42
3.2	Quotient root system and a presentation of	
	the Hecke algebra	47
4	The modular duality functor and derived category	55
4.1	Homology	56
4.2	Fixed point coefficient system and cuspidality	59
4.3	The case of finite BN-pairs	63

vi Contents

4.4	Duality functor as a derived equivalence	67
4.5	A theorem of Curtis type	69
5	Local methods for the transversal characteristics	74
5.1	Local methods and two main theorems	
	of Brauer's	75
5.2	A model: blocks of symmetric groups	78
5.3	Principal series and the principal block	82
5.4	Hecke algebras and decomposition matrices	84
5.5	A proof of Brauer's third Main Theorem	86
6	Simple modules in the natural characteristic	88
6.1	Modular Hecke algebra associated with a	
	Sylow <i>p</i> -subgroup	88
6.2	Some modules in characteristic <i>p</i>	93
6.3	Alperin's weight conjecture in characteristic p	95
6.4	The <i>p</i> -blocks	97
DA D	THE DELICATE LUCZTIC VADIETIES DATIONAL	
PAK	T II DELIGNE-LUSZTIG VARIETIES, RATIONAL SERIES, AND MORITA EQUIVALENCES	101
	· · · · · · · · · · · · · · · · · · ·	
7	Finite reductive groups and Deligne-Lusztig varieties	103
7.1	Reductive groups and Lang's theorem	104
7.2	Varieties defined by the Lang map	105
7.3	Deligne-Lusztig varieties	109
7.4	Deligne-Lusztig varieties are quasi-affine	114
8	Characters of finite reductive groups	118
8.1	Reductive groups, isogenies	119
8.2	Some exact sequences and groups in duality	122
8.3	Twisted induction	125
8.4	Lusztig's series	127
9	Blocks of finite reductive groups and rational series	131
9.1	Blocks and characters	132
9.2	Blocks and rational series	133
9.3	Morita equivalence and ordinary characters	136
10	Jordan decomposition as a Morita equivalence:	
	the main reductions	141
10.1	The condition $i^*R j_* \mathcal{F} = 0$	142
10.2	A first reduction	144
10.3	More notation: smooth compactifications	146

Contents	vii

10.4	Ramification and generation	149
10.5	A second reduction	150
11	Jordan decomposition as a Morita equivalence: sheaves	155
11.1	Ramification in Deligne-Lusztig varieties	156
11.2	Coroot lattices associated with intervals	162
11.3	Deligne-Lusztig varieties associated with intervals	165
11.4	Application: some mapping cones	168
12	Jordan decomposition as a Morita equivalence: modules	173
12.1	Generating perfect complexes	174
12.2	The case of modules induced by Deligne-Lusztig varieties	176
12.3	Varieties of minimal dimension inducing a	
	simple module	177
12.4	Disjunction of series	- 181
PAR	T III UNIPOTENT CHARACTERS AND	
	UNIPOTENT BLOCKS	187
13	Levi subgroups and polynomial orders	189
13.1	Polynomial orders of F-stable tori	189
13.2	Good primes	193
13.3	Centralizers of ℓ-subgroups and some Levi	
	subgroups	194
14	Unipotent characters as a basic set	199
	Dual conjugacy classes for ℓ-elements	199
14.2	Basic sets in the case of connected center	201
15	Jordan decomposition of characters	205
15.1	From non-connected center to connected center and	
	dual morphism	206
15.2	Jordan decomposition of characters	209
16	On conjugacy classes in type D	219
16.1	Notation; some power series	220
	Orthogonal groups	221
16.3	Special orthogonal groups and their derived subgroup;	
	Clifford groups	227
	$Spin_{2n}(\mathbf{F})$	235
	Non-semi-simple groups, conformal groups	239
16.6	Group with connected center and derived group	
	Spin ₂ , (F): conjugacy classes	245

viii Contents

16.7	Group with connected center and derived group $Spin_{2n}$ (F);	
	Jordan decomposition of characters	248
16.8	Last computation, y_1, y_2, y_4	250
17	Standard isomorphisms for unipotent blocks	259
17.1	The set of unipotent blocks	260
17.2	ℓ-series and non-connected center	261
17.3	A ring isomorphism	264
PAR	T IV DECOMPOSITION NUMBERS AND q-SCHUR	
	ALGEBRAS	269
18	Some integral Hecke algebras	271
18.1	Hecke algebras and sign ideals	272
18.2	Hecke algebras of type A	275
18.3	Hecke algebras of type BC, Hoefsmit's matrices and	
	Jucys-Murphy elements	279
18.4	Hecke algebras of type BC: some computations	281
18.5	Hecke algebras of type BC: a Morita equivalence	285
18.6	Cyclic Clifford theory and decomposition numbers	288
19	Decomposition numbers and q -Schur algebras: general	205
	linear groups	297
	Hom functors and decomposition numbers	298
	Cuspidal simple modules and Gelfand-Graev lattices	301
19.3	Simple modules and decomposition matrices for unipotent	204
	blocks	305
19.4	Modular Harish-Chandra series	309
20	Decomposition numbers and q -Schur algebras:	
	linear primes	318
	Finite classical groups and linear primes	319
	Hecke algebras	322
	Type BC	326
20.4	Type D	328
PAR	T V UNIPOTENT BLOCKS AND TWISTED INDUCTION	33
21	Local methods; twisted induction for blocks	333
21.1	"Connected" subpairs in finite reductive groups	333
21.2	Twisted induction for blocks	334
21.3	A had prime	34

Contents ix

22	Unipotent blocks and generalized Harish-Chandra theory	345
	Local subgroups in finite reductive groups, ℓ-elements and tori	346
22.2	The theorem	350
22.3	Self-centralizing subpairs	352
22.4	The defect groups	354
23	Local structure and ring structure of unipotent blocks	360
23.1	Non-unipotent characters in unipotent blocks	361
23.2	Control subgroups	363
23.3	(q-1)-blocks and abelian defect conjecture	366
APPI	ENDICES	373
Appe	ndix 1 Derived categories and derived functors	374
A1.1	Abelian categories	374
A1.2	2 Complexes and standard constructions	375
A1.3	3 The mapping cone	375
A1.4	4 Homology	376
A1.5	The homotopic category	376
A1.6	5 Derived categories	377
A1.7	7 Cones and distinguished triangles	378
A1.8	B Derived functors	379
A1.9	•	379
A1.10	D Exact sequences of functors	380
A1.1	1 Bi-functors	380
A1.12	2 Module categories	381
A1.13	, -	382
A1.14	4 Locally constant sheaves and the fundamental group	384
A1.13	5 Derived operations on sheaves	385
Appe	endix 2 Varieties and schemes	389
A2.	1 Affine F-varieties	389
A2.:	2 Locally ringed spaces and F-varieties	390
A2.	3 Tangent sheaf, smoothness	392
A2.		393
A2.	5 Rational structures on affine varieties	395
A2.	6 Morphisms and quotients	395
A2.	7 Schemes	397
A2.	8 Coherent sheaves	399
A2.	9 Vector bundles	400
A2.1	O A criterion of quasi-affinity	401

x Contents

Appen	dix 3 Etale cohomology	404
A3.1	The étale topology	404
A3.2	Sheaves for the étale topology	405
A3.3	Basic operations on sheaves	406
A3.4	Homology and derived functors	407
A3.5	Base change for a proper morphism	408
A3.6	Homology and direct images with compact support	408
A3.7	Finiteness of cohomology	409
A3.8	Coefficients	409
A3.9	The "open-closed" situation	410
A3.10	Higher direct images and stalks	411
A3.11	Projection and Künneth formulae	411
A3.12	Poincaré-Verdier duality and twisted inverse images	412
A3.13	Purity	413
A3.14	Finite group actions and constant sheaves	414
A3.15	Finite group actions and projectivity	414
A3.16	Locally constant sheaves and the fundamental group	415
A3.17	Tame ramification along a divisor with	
	normal crossings	417
A3.18	Tame ramification and direct images	418
	References	422
	Index	431