
Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

ACOUSTIC SCENE CLASSIFICATION USING A CONVOLUTIONAL NEURAL NETWORK
ENSEMBLE AND NEAREST NEIGHBOR FILTERS

Truc Nguyen∗, Franz Pernkopf†

Graz University of Technology,
Signal Processing and Speech Communication Lab.,

Inffeldgasse 16c, A-8010 Graz, Austria/Europe,
{t.k.nguyen, pernkopf}@tugraz.at

ABSTRACT
This paper proposes Convolutional Neural Network (CNN) ensem-
bles for acoustic scene classification of tasks 1A and 1B of the
DCASE 2018 challenge. We introduce a nearest neighbor filter ap-
plied on spectrograms, which allows to emphasize and smooth sim-
ilar patterns of sound events in a scene. We also propose a variety
of CNN models for single-input (SI) and multi-input (MI) channels
and three different methods for building a network ensemble. The
experimental results show that for task 1A the combination of the
MI-CNN structures using both of log-mel features and their near-
est neighbor filtering is slightly more effective than the single-input
channel CNN models using log-mel features only. This statement
is opposite for task 1B. In addition, the ensemble methods improve
the accuracy of the system significantly, the best ensemble method
is ensemble selection, which achieves 69.3% for task 1A and 63.6%
for task 1B. This improves the baseline system by 8.9% and 14.4%
for task 1A and 1B, respectively.

Index Terms— DCASE 2018, acoustic scene classification,
convolution neural network, nearest neighbor filter.

1. INTRODUCTION

Acoustic scene classification (ASC) is defined as recognition of the
environment based on the acoustic scene which is assumed to be a
valid characterization of a location or situation. Furthermore, it is
assumed to be distinguishable from other scenes based on its acous-
tic properties [1]. Sound events are introduced as important descrip-
tors for an acoustic scene [2], however,the sound events are complex
and can have a high degree of overlap. In real environments, sounds
are unstructured and often unpredictable in its occurrence [3] caus-
ing more challenges for ASC compared to speech and music signal
processing. However, the motivation for recent research on ASC is
in designing a system that is able to capture and exploit the specific
properties of a given audio scene. These algorithms are embedded
in commercial smart devices with microphones to recognize acous-
tic contextual information.

Up to now, the basic framework of ASC includes feature extrac-
tion and classification that have been the crucial stages contributing
to the effectiveness of an ASC algorithm. The most popular fea-
tures applied in the ASC are representations of mel-frequency scales
such as mel-frequency cepstral coefficients (MFCCs) and log-mel
energies [4], [5]. According to [6], the main reason for their suc-
cess is that they provide a reasonably good representation of the
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spectral properties of the signal. Furthermore, a reasonably high
inter-class variability allows for class discrimination. Beside that,
these features can be used as basis for higher level features. For
example, Recurrent Quantification Analysis (RQA) and I-vectors
are features obtained from MFCCs by applying recurrent quantifi-
cation analysis [7] and joint factor analysis (JFA) [4]; Histogram
of Gradient (HOG), Linear Binary Pattern (LBP) are well-known
image processing techniques that were also used for feature extrac-
tion based on various types of spectrograms and MFCCs [8], [9],
[10]. Moreover, in order to better cover the characteristics of envi-
ronmental sounds, low level features such as zero-crossing, spectral
centroid, bandwidth, energy have been combined with high level
features such as Label Tree Embeding (LTE) [11], [12].

For classification, conventional classifiers such as Gaussian
Markov Models (GMMs), Hidden Markov Models (HMMs), Sup-
port Vector Machines (SVMs) and Neural Networks (NNs) were
applied in almost all submitted reports in DCASE 2013, where no
algorithms involving Deep Neural Networks (DNNs) had been used
[6]. In DCASE 2016, beside conventional classification methods,
many participants applied DNNs such as Convolution Neural Net-
works (CNNs), Recurrent Neural Networks (RNNs) or combina-
tions of DNNs and GMMs, and HMMs [13], [14] or combinations
of CNNs and RNNs [15]. In DCASE 2017 and recent works, deep
learning has been even more effective [16], [17], e.g. Generative
Adversarial Networks (GANs) have been the most successful sys-
tem for ASC in DCASE 2017. They have been combined with
SVMs for classification [5].

This paper introduces an ASC system which is applied for task
1A and task 1B of the DCASE 2018 challenge. In order to extract
more information of the acoustic scene, we use 128 log-mel en-
ergies of the spectrogram and additionally apply nearest neighbor
filtering (NNF)[18]. Both types of features are considered in the
CNNs. All features are preprocessed by splitting the acoustic scene
into chunks of 1s. Finally, ensemble methods are applied to com-
bine several features and CNN settings to provide a vote for the 10s
data chunks.

The remainder of this paper is organized as follows. Section
2 explains details of the proposed system. Section 3 discuss the
experiments and results. Finally, conclusion is provided in Section
4.

2. PROPOSED SYSTEM

The proposed system is illustrated in Fig.1. The system is composed
of 3 stages. First, the audio signal is converted to various time-
frequency representations in 1s chunks. These features are then fed
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Figure 1: Proposed System

to the CNNs for training the models. Finally, probability outputs of
10 1s chunks of the CNN ensembles are used to produce the scene
labels.

2.1. Audio Preprocessing

First, 128 bin mel-energies of the audio input are extracted. Ac-
cording to [16], it is important to keep a sufficient number of bins
for representing the spectral characteristics while greatly reducing
the feature dimensions. Window size for short-time Fourier trans-
form is selected as 40ms and 20ms for hop size. We keep the sam-
pling rating 48kHz for task 1A and 44.1 kHz for task 1B. In order to
generate additional features for MI-CNNs, the mel-spectrogram is
processed by a nearest neighbor filter [18]. Both the energies of the
spectrogram and the filtered spectrogram are converted into loga-
rithmic scale and are normalized by subtracting the mean value and
dividing by the standard deviation. The normalization step is deter-
mined feature-wise on the training set and parameters obtained are
used to scale both training set and test set. The 10s audio files are
processed in 1s audio chunks without overlap and fed to the CNN
model as samples.

2.2. Nearest Neighbor Filter

Environmental sounds are often unstructured, neither predictable
repetitions nor harmonic sounds [3] that are compounded by sound
events and by overlapping of sound events. These sound events
could be periodic or randomly repeating sounds such as sounds of a
siren, horn of vehicles, sounds of opening and closing metro doors
at metro stations etc. Therefore, it is useful for an ASC system to
generate features which emphasize the appearance of similar pat-
terns of a sound event in an acoustic scene.

In our ASC system, we use nearest neighbor filters based on Re-
peating Pattern Extraction Technique (REPET) [18] for cases where
repetitions happen intermittently or without a fixed period. The fea-
tures are processed from spectrograms as follows:

1. Compute a similarity matrix from the frames of spectrogram
using a similarity measure such as cosine, euclidean, L1, L2
or manhattan distance.

2. Identify the most similar frames in the spectrogram by using
the similarity matrix.

3. Assign the median value of the identified frames for each
frequency band to generate the filtered spectrogram.

Empirically, we observed that the euclidean distance is better
than cosine distance and the number of nearest-neighbors for each
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Figure 2: MI-CNN with single and double convolutional blocks

sample is set to 5.1

2.3. Multi-input Convolution Neural Network

MI-CNNs have been used for ASC with different input features or
structures of each branch of the CNN architecture. For example, in
[20], authors used their CNN model as a “parallel” CNN architec-
ture with different filter sizes and max-pooling sizes. In [15], they
used a combination of Long Short Term Memories (LSTMs) and
CNNs as a feature extraction step for each branch of their model. In
addition, according to [16], their CNN model used left-right (LR),
L+R and L-R (MS), or harmonic-percussive source separation pairs
as different input sources.

Our MI-CNN is inspired by these works. We feed 128 log-mel
energies to one input branch of the CNN and their nearest neighbor
filtered version to another one with the same CNN structure. Sub-
sequently, we concatenate both branches before the fully-connected
layer. Because the size of each sample is small i.e. 128 bins x 50
frames, 1x1 zero-padding is added to each convolution step in order
to ensure that the whole data is processed. We proposed to use either
a single convolutional block or a double convolutional blocks. A
convolutional block consists of zero-padding, batch normalization
and convolution layers, in which Rectifier Linear Units (ReLUs)
are used as activation function. The single/ double convolutional
block is followed by a max-pooling layer and a dropout layer for
the purpose of reducing dimensionality of the convolutional output
and to ease the computation for upper layers as well as to reduce
over-fitting in the training phase. Specifically, the last convolution
blocks of the input branches are followed by global average pooling
(GAP) instead of max-pooling and dropout.

CNNs have been considered as an extractor of high-level fea-
tures and different structures of CNNs learn different high-level fea-
tures. In this research, we create a diversity of CNN structures by
adjusting the depth of the CNNs as well as the structure of convolu-
tional blocks through various number of single convolutional blocks
and double convolutional blocks. Beside that, the diversity of CNN
structures is enriched by using single-input channel (SI) CNNs, i.e.,
using only one input branch. The structures of the MI-CNN using
single and double convolutional blocks are shown in Fig. 2.

1The processing is done by using Librosa toolbox https://
librosa.github.io/librosa
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Figure 3: Architecture of CNN ensemble.

Empirically, we select the number of filters of the convolutional
layers for the CNNs including 2, 3 and 4 single or double convolu-
tional blocks at 32 - 256, 32 - 64 - 256 and 32 - 64 - 128 - 256, re-
spectively. Both convolutional layers of each double convolutional
block have the same number of filters. The number of parameters of
the proposed CNN models are shown in Table 1 and they are same
for both tasks.2

2.4. Convolutional Neural Network Ensemble

Ensembles of CNNs combine the output probabilities of CNNs in
order to improve performance [21]. The CNNs in the ensemble are
trained individually and then their outputs are combined by majority
voting, averaging, weighed averaging or model selection with and
without replacement [22].

We compared performance of three ensemble methods named
average ensemble (AE), weighted averaging ensemble (WE) and
ensemble selection with replacement (ES). Basically, the similarity
of these ensemble methods is that the output probabilities from all
CNNs are averaged before making predictions. However, they are
different in determining the contribution levels of each model to the
ensemble using weights. Fig.3 shows the general architecture of the
ensemble. Average ensemble is a simple ensemble where the out-
put probabilities from all CNNs are equally weighted and averaged.
The constraint of the weights is to be equal for all CNNs and sum
to one. Weighted averaging ensemble and ensemble selection are
more complex. Weighted averaging ensemble determines the opti-
mal weights by minimization of the cross-entropy loss of ground-
truth labels and estimated labels with constraints of the weights to
sum to one. Ensemble selection with replacement [22] is an itera-
tive method that allows models to be added to an ensemble multiple
times such that the performance of the combination is maximized.
The model weights are equivalent to the number of times of the
model has been selected divided by the total number of models in
the ensemble.

We use the test data to determine the optimal weights for WE
and ES. Sequential Least Squares Programming (SLSQP) is used
for optimization of WE. For ES, we start with the best model among
12 candidate models in the ensemble before greedy step-wise selec-
tion of 200 iterations is performed. The number of selections of
each model in the proposed ensemble ES is listed in Table 1 for
task 1A and task 1B. There is a significant difference between the
weight values of WE and ES. These weights are used for evaluation.

2The CNNs are implemented on Keras https://github.com/
keras-team/keras

Table 1: Number of parameters of the proposed models and number
of times the models have been selected by ensemble selection in
task 1A and 1B.

Algorithms Parameters Task1A Task 1B
SI s 2cnn D 211718 1 14
SI s 3cnn D 304010 8 9
SI s 4cnn D 525350 1 21
SI db 2cnn D 811770 33 51
SI db 3cnn D 941074 3 45
SI db 4cnn D 1310042 4 13
MI s 2cnn D 417794 48 21
MI s 3cnn D 602378 0 4
MI s 4cnn D 1045058 3 10
MI db 2cnn D 1617898 28 3
MI db 3cnn D 1876506 6 10
MI db 4cnn D 2614442 66 0
Sum 12278040 201 201

In addition, we try majority voting (MV) in which the output
probabilities of every 1s chunk is binarized to “0” and “1” with the
global threshold at 0.5. Majority voting determines the class which
occurs most often among 10 1s chunks of an audio file. For average
voting (AV) we use the argmax on the mean of the probabilities
over 10 s. The experimental results show that AV nearly always
outperforms MV.

3. EXPERIMENTS

3.1. Data

The audio dataset for the ASC task of DCASE 2018 includes two
different versions, TUT Urban Acoustic Scene 2018 and TUT Ur-
ban Acoustic Scene 2018 Mobile recorded in six European cities
for 10 scenes. The former dataset is used for task 1A where the
development and evaluation data are recorded by the same device.
While the later one is used for task 1B in which the development
set is comprised of task 1A dataset resampled and averaged into a
single channel and a small amount of data is recorded by other de-
vices. The original recordings were split into 10-second segments
that are provided in the individual files.

The task 1A dataset includes 8640 segments with 6122 seg-
ments for training and 2518 segments for testing. The task 1B train-
ing subset contains 6122 segments from device A, 540 segments
from device B, and 540 segments from device C. The test subset
contains 2518 segments from device A, 180 segments from device
B, and 180 segments from device C.

3.2. Setup

The validation set accounts for approximately 30% of the original
training data. We use a balancing mode for separation such that
there are no segments from the same location and city in both train-
ing and validation data sets. Acoustic features are log mel-band
energies of 128 frequency bands and their nearest neighbor filtered
version with 40 ms analysis frame and 50% hop size. The network
training is carried out by optimizing the categorical cross-entropy
and the Adam optimizer at learning rate of 0.001 is used. We use
Glorot uniform data to initialize the network weights. The number
of epochs and batch size was 500 and 16, respectively, and data is



Detection and Classification of Acoustic Scenes and Events 2018 19-20 November 2018, Surrey, UK

Table 2: Accuracy of the proposed models and of the ensemble
methods using majority voting and average voting with and without
dropout.

Algorithms 1A MV 1A AV 1B MV 1B AV
Baseline 59.7± 0.7 - 45.6± 3.6 -
SI s 2cnn NoD 61.1 62.3 54.2 56.1
SI s 3cnn NoD 64.3 65.0 56.9 57.5
SI s 4cnn NoD 63.9 64.7 53.1 54.4
SI db 2cnn NoD 63.6 64.4 57.5 58.9
SI db 3cnn NoD 63.0 64.1 59.2 60.6
SI db 4cnn NoD 64.3 65.3 51.4 53.6
MI s 2cnn NoD 61.0 62.1 51.1 52.2
MI s 3cnn NoD 64.5 64.4 54.2 55.3
MI s 4cnn NoD 62.7 63.4 54.2 54.7
MI db 2cnn NoD 66.3 66.8 53.6 55.6
MI db 3cnn NoD 63.6 64.0 57.5 56.4
MI db 4cnn NoD 63.1 63.2 52.8 52.5
AE NoD 62.7 66.8 54.4 62.2
WE NoD 63.4 66.9 54.2 62.5
ES NoD 63.8 68.5 52.5 63.1
SI s 2cnn D 62.7 63.5 57.8 57.8
SI s 3cnn D 65.4 65.6 58.1 58.3
SI s 4cnn D 63.1 62.9 54.7 55.8
SI db 2cnn D 64.3 64.5 60.3 62.2
SI db 3cnn D 64.9 65.2 54.4 55.8
SI db 4cnn D 64.3 64.6 53.1 54.4
MI s 2cnn D 63.8 64.4 54.2 56.9
MI s 3cnn D 63.9 64.4 52.8 53.9
MI s 4cnn D 61.9 62.6 56.7 56.4
MI db 2cnn D 63.5 64.0 55.0 54.4
MI db 3cnn D 64.3 64.3 55.3 56.1
MI db 4cnn D 65.2 65.8 52.5 53.1
AE D 63.5 67.4 53.9 61.4
WE D 65.3 68.3 54.2 61.7
ES D 65.5 69.3 56.7 63.6

shuffled between epochs. Model performance is evaluated on the
validation set after each epoch and the selected model is the best
performing one on the validation set.3

3.3. Performance on the test set

Table 2 presents the accuracy of task 1A and task 1B for the dif-
ferent SI-CNNs (SI ) and MI-CNNs (MI ) using majority voting
( MV) and average voting ( AV). The CNNs consists of various
numbers of single convolutional blocks ( s) or double convolutional
blocks ( db) as well as dropout layers ( D) and no dropout layers
( NoD). The performances of different ensemble methods of the 12
models are also presented. For determining the weights of ES and
WE the labels of the test set are used.

According to the results of Table 2, we can see that systems us-
ing the average voting method almost always performs better com-
pared to majority voting. Results of average ensemble (AE ) and
weighted average ensemble (WE ) are nearly the same and lower
than of ensemble selection (ES ). Furthermore, dropout slightly

3Thanks to the DCASE organizers for providing the baseline system
source code and the DCASE-UTIL toolbox https://github.com/
DCASE-REPO

Table 3: Class-wise accuracy of submissions on the test set for task
1A and 1B.

Algorithms 1A ES D 1B ES D
Airport 75.8 58.3
Bus 73.1 80.6
Metro 57.9 41.7
Metro station 76.1 61.1
Park 83.9 91.7
Public square 58.3 55.6
Shopping mall 41.9 75.0
Street pedestrian 57.5 50.0
Street traffic 88.6 83.3
Tram 80.1 38.9
Average 69.3 63.6

improves the performances.
CNN models using double convolutional blocks ( db) are not

always better than CNNs using single convolutional blocks ( s).
Most of the ( db) CNN models get higher accuracy compared to
the ( s) CNN models for task 1B while most of performances of the
( s) CNN models are better than that of the ( db) CNN models for
task 1A.

Moreover, Table 2 shows that NNF features are not really helpul
for individual MI CNN models since most of individual MI CNNs
get lower accuracy than individual SI CNN models for both tasks.
However, they are useful for our ensemble system. Particularly,
we can see from Table 1, MI CNNs using NNF features contribute
about three quater among all model components to build the ensem-
ble (ES ) for task 1A but they accupy approximately one quater of
the model components of the ensemble (ES ) for task 1B. Feature
characteristics that are extracted from different devices’ recording
files of task 1B dataset are more complex than that of task 1A. So
complicated models i.e., the (MI db) CNNs tend to overfit for task
1B.

The differrent submissions for task 1A and task 1B are
1A ES D and 1B ES D that use average voting of ensemble selec-
tions with dropout . Class-wise accuracy of both are represented in
table 2.

4. CONCLUSION

In this paper, we proposed ensembles of 12 CNN structures in order
to enhance the classification accuracy for task 1A and task 1B of
DCASE 2018 challenge. We also introduce nearest neighbor filter-
ing for MI-CNN structures, which emphasizes the sound events in
a scene. Although the new features are not really strong for indi-
vidual MI-CNNs, our proposed ensemble system significantly im-
proves over the baseline system for all datasets and achieved 69.3%
and 69.0% for task 1A and 1B on the evaluation set, respectively.
The proposed system was ranked first for task 1B of the DCASE
2018 challenge.
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