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ABSTRACT

A general problem in acoustic scene classification task is the mis-
matched conditions between training and testing data, which sig-
nificantly reduces the performance of the developed methods on
classification accuracy. As a countermeasure, we present the first
method of unsupervised adversarial domain adaptation for acoustic
scene classification. We employ a model pre-trained on data from
one set of conditions and by using data from other set of conditions,
we adapt the model in order that its output cannot be used for classi-
fying the set of conditions that input data belong to. We use a freely
available dataset from the DCASE 2018 challenge Task 1, subtask
B, that contains data from mismatched recording devices. We con-
sider the scenario where the annotations are available for the data
recorded from one device, but not for the rest. Our results show that
with our model agnostic method we can achieve ∼ 10% increase
at the accuracy on an unseen and unlabeled dataset, while keeping
almost the same performance on the labeled dataset.

Index Terms— Adversarial domain adaptation, acoustic scene
classification

1. INTRODUCTION
The task of acoustic scene classification is to assign to a sound seg-
ment the acoustic scene that it belongs to, e.g. office, park, tram, etc.
Recently proposed methods for acoustic scene classification (ASC)
are based on deep neural networks (DNNs)[1, 2]. They usually
employ convolutional neural networks (CNNs) to extract discrim-
inative features from the used data, then using these features as an
input to a classifier for classifying the acoustic scene [3, 4, 5, 6]. In
a realistic scenario, a method for ASC will be used to classify data
emerging from a variety of different domains (i.e. acoustic condi-
tions, acoustic channels) from the data used for optimizing that par-
ticular method. The mismatched domains introduce the dataset bias
(or domain shift) phenomenon [7, 8, 9], which results in a degrada-
tion of the performance of the method.

A typical countermeasure to this phenomenon is the fine tuning
of the method using annotated data from different acoustic condi-
tions. For example, one can retrain a method given a newly col-
lected dataset. But, the annotation of audio data is a tedious pro-
cess and it is more likely for one to have audio data but not having
their annotations. To leverage knowledge from new and unlabeled
data, one can use domain adaptation processes. Domain adapta-
tion is a subspace alignment problem, where the goal is the align-
ment of the latent representations of the data coming from different
domains [8, 10, 11, 12]. The impact of the domain adaptation is
greater when none or few annotations (labels) exist for data from
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the different domains. These processes are referred as unsupervised
and semi-supervised, respectively, domain adaptation.

Before the emergence of adversarial training, different ap-
proaches had been employed to cope with the problem of covariate
shift across domains, e.g. kernel mean matching (KMM) [13, 14]
and autoencoder scheme based approaches [15, 16, 17]. One of the
first works in adversarial domain adaptation with deep neural net-
works is [18] where the classification and the alignment of the latent
representations can occur at the same time. The alignment is per-
formed by using the reverse gradient of the domain classification to
optimize the parameters that produce the latent representation for
the classification. A similar concept has been adopted in many sub-
sequent works, e.g. [19]. Later, an adversarial domain adaptation
approach is presented in [9], where the training procedure of classi-
fication and adaptation are not happening simultaneously. The first
step obtains a non-adapted model and, in a second step, this model
is adapted. This increases the performance of adaptation, compared
to the previous existing methods. Another method used in [20] im-
plements classification and reconstruction by employing three dif-
ferent feature extractors and one shared encoder. One of the feature
extractors is shared between the domains, while the other two are
domain exclusive. The classifier predicts the labels based on the
shared features between domains. In addition, there is an adversar-
ial objective function for shared features to help the adaptation by
increasing the similarity of extracted features across domains. An-
other recent work [21] presents two models for source and target
while regularizing their parameters by sharing a loss between each
layer, targeting to mitigate the existing disparity between source and
target distributions. The above methods evaluate the domain adap-
tation in the context of natural language processing, sentiment clas-
sification, and image classification. There are no previous studies in
the context of acoustic scene classification.

Driven by the above, in this paper we present the first approach
for unsupervised domain adaptation for acoustic scene classifica-
tion. We investigate the unsupervised domain adaptation scenario,
i.e. the acoustic scene labels of the new data are not known during
the adaptation part. We use the data from the DCASE 2018 Task 1,
subtask B, which consist of recordings from mismatched recording
devices [22]. We consider the difference in the acoustic channel,
imposed by the different recording devices, as the domains. To mit-
igate this difference, we introduce a model agnostic process where
we encourage the model to match the distributions of the learned
representations of the data coming from the annotated (source do-
main) and the non-annotated (target domain) sets. The contributions
of this paper are the following:

1. We follow a recently proposed general framework for adver-
sarial domain adaptation [9] and we alter it by introducing
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extra learning signals during the adaptation process;
2. We present the first application of deep neural network

based, unsupervised domain adaptation for acoustic scene
classification showing the effect of leveraging unlabeled data
for acoustic scene classification, through unsupervised do-
main adaptation.

The rest of the paper is organized as follows. In Section 2 we ex-
plain the proposed method, and in Section 3 we present the evalu-
ation procedure that we followed, including the presentation of the
dataset used and the models implemented, and the details of the
training and testing procedures. The obtained results are reported
and discussed in Section 4, followed by the conclusions and pro-
posals for future work in Section 5.

2. PROPOSED DOMAIN ADAPTATION METHOD
The data from the source domain are classified according to a spe-
cific set of labeled acoustic scenes. For example, in our study, these
acoustic scenes are airport, bus, airport, metro, metro station, park,
public square, shopping mall, street pedestrian, street traffic, and
tram. The goal is to assign the target domain data to this same set
of labels. The source and target domains data are time-frequency
representation of audio (e.g. log mel-band energies). We follow
the general framework for adversarial domain adaptation in [9] and
choose not to tie the parameters of the source and adapted (target)
models. Our models are neural networks that are used to extract
the discriminative latent representation of the input data. This rep-
resentation is used for the label classification by the classifier. The
source model is the model optimized with the source data and the
target model is the one adapted to the target data. Our presented
method is independent of the architecture of the utilized model and
concerns the adaptation of a model optimized on the source domain,
to the target domain. For this reason, in this section, we present the
method for the domain adaptation, and in Section 3 we present the
specific models employed.

Having annotated (i.e. with reference labels) data from the
source domain, XS = {XS

1 ,X
S
2 , . . . ,X

S
NS
}, and the non-

annotated target domain data, XT = {XT
1 ,X

T
2 , . . . ,X

T
NT
}, the

goal is to regularize a model M to produce feature mappings of the
source domain, M(XS), and of the target domain, M(XT ), that
exhibit the same distribution. Then a classifier, trained on M(XS),
can be used in order to classify M(XT ). For this process, we em-
ploy three steps. At the first step, we pre-train the model M and the
classifier C using dataset XS . Then, at the second step, we use ad-
versarial training (as in generative adversarial network (GAN) [23])
to match the distributions of M(XS) and M(XT ). Finally, at the
third step, we test the performance of the classifier on the M(XT ).
All the three steps of the process are schematically illustrated at
Figure 1.

We differ from the original proposal of the general framework
for adversarial domain adaptation in [9] by utilizing the label classi-
fier C also during the adaptation step. Also, we differ from propos-
als with gradient reversing, e.g. [8], because the classifier C is not
the domain classifier but the label one. We experimentally found
that, for our task, the original setup (i.e. without C in the adaptation
step) cannot work. In this setup, the adapted model was exhibit-
ing worse label classification performance to both the target and the
source domains, compared to the non-adapted one. Observing the
adaptation process, we hypothesized that the learning signals used
in [9] were not able to drive the model M to produce feature map-
pings that can be used for later target domain classification from C.
Thus, we utilize the C in order to provide an additional learning

signal during the adaptation process. This results in more stable do-
main adaptation process and the adapted model exhibits increased
performance at the target domain, compared to the non-adapted one.

We start by having the data from the source domain, XS , and
their corresponding one-hot-encoded labels for the acoustic scene,
YS = {yS

1 ,y
S
2 , . . . ,y

S
NS
}. The first goal is to obtain a model and

a classifier that are able to classify the source data (i.e. label and
not domain classification). To this end, we utilize the XS and yS to
train our source domain model, MS , and pretrain the classifier C,
by minimizing the loss

LS = −
NS∑
n=1

yS
n log(C(MS(X

S
n))), (1)

At the second step, we target to obtain a model that can pro-
duce mappings of the data from the source and target domains, that
they are as close as possible in terms of their distribution. Since
we do not have the labels of the target domain, we can only lever-
age knowledge from the source data and their labels, and from the
data of the target domain. Adopting the approach in [9], we use
the adversarial training to match the distributions of M(XS) and
M(XT ). Specifically, we use an additional, target domain model,
MT , having the same architecture and amount of parameters as MS .
We do not use any constraints between MS and MT (e.g. param-
eters sharing/coupling between MS and MT ), but we initialize the
parameters of MT with the ones from MS . Additionally, we use
a domain discriminator D that will be optimized to identify if its
input is coming from the distribution of the source or the target do-
main (hence, its output is an indication if its input was or not from
the source domain).

We jointly optimize the MT and D in order to enforce the distri-
bution of the MT (X

T ) to be as close as possible to the distribution
of the MS(X

S). In the GAN terminology, one can think the MT

as the generator, the MS as the real examples, and the D as the
discriminator. The output of the generator and real examples are
given as an input to the discriminator, and the latter is optimized to
identify which is real and which is coming from the generator. At
the same time, the generator is optimized to fool the discriminator
in believing that the output of the generator is also a real example.
In our method, MS(X

S) (real examples) and MT (X
T ) (generator

output) are given as an input to the discriminator D. The latter is
optimized to identify if its input is MS(X

S) or MT (X
T ). At the

same time, we optimize MT in order to fool D that MT (X
T ) is

MS(XS). We minimize the losses

LD =−
NS∑
n=1

(logD(MS(X
S
n) + log(1−D(MT (X

T
n ))) and

(2)

LMT =−
NS∑
n=1

(logD(MT (X
T
n ) + ySn log(C(MT (X

S
n))). (3)

LD is minimized w.r.t D and the LMT w.r.t. MT . In the case where
NT < NS or NT > NS , then XT will be either oversampled or
undersampled, respectively. The minimization of LD and LMT can
be performed jointly or in an alternating way, e.g. do an update of
D towards minimizing LD , then update MT towards minimizing
LMT , and repeat until some criterion is met. The total loss, e.g.
LD + LMT , is a typical minimax objective for adversarial train-
ing as it has been used in [9, 12].The actual implementation of the
minimization process is tied to the employed models of MS , MT ,
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Figure 1: Illustration of the three steps of the domain adaptation method: pre-training; adversarial domain adaptation; and testing. Solid lines
indicate the models that are optimized in the corresponding steps, and dashed lines indicate the models that are not optimized.

D, and C, and the dynamics of the training process. Our followed
procedure is presented in Section 3. Finally, we use MT with C in
order to classify the XT .

3. EVALUATION

To assess the performance of our method we focus on the task of
acoustic scene classification. We employ a freely available dataset
that provides audio data recorded with mismatched recording de-
vices. For model M , we employ two different models; one that
achieved the first place in an acoustic scene classification contest1

and a second that is the published baseline model for the Task 1,
subtask B, of the DCASE challenge 2018 [22]. For the rest of the
paper, we will refer to the former model as the Kaggle model and
to the latter as the DCASE model. All hyper-parameters reported
in this section are the same as in the proposed models. All mod-
els are implemented using the freely available PyTorch framework2

and our code can be found online.3

3.1. Dataset and data preprocessing
The dataset used for the development and evaluation of our method
is the one provided as the development dataset of Task 1, subtask B,
of the DCASE 2018 challenge [22]. The dataset is collected with
three different recording devices. The main recording device which
is referred to as device A consists of a binaural microphone and
a recorder using 48 kHz sampling rate and 24 bit resolution. The
data from this device were re-sampled and averaged into a single
channel to match the characteristic of data recorded by device B and
C. The rest of data have been recorded using customer devices such
as smart phones and cameras which are referred to as device B and
C. This dataset contains a total of 28 hours of audio out of which 24
hours are from device A, 2 hours from device B, and 2 hours from
device C. The proposed evaluation setup by the organizers of the
DCASE 2018 challenge, 30% of audio files of device A, and 25%
of device B and C are dedicated to the validation set.

During the development of our method, the annotations of eval-
uation/test data of the Task 1, subtask B, were not publicly available.
Therefore, we use the original (i.e. proposed by the evaluation setup
of the DCASE Task 1, subtask B) validation data as our test data (re-
ferred to as test data for the rest of this paper), a randomly selected
10% of the original training data as our validation (referred to as
validation data from now on), and the rest of the original training
data as our actually training data (referred to as training data from
now on). This means that we use 5510 files from device A, 486
files from device B, and 486 files from device C as training data.
612, 54, and 54 files from device A, B, and C, respectively, are used
as our validation set. We test our method on 2518, 180, and 180

1https://www.kaggle.com/c/acoustic-scene-2018
2https://pytorch.org/
3https://github.com/shayangharib/AUDASC

files, from devices A, B, and C respectively which is equivalent to
original validation set of the Task 1, subtask B.

From the available files, we extracted 64 log Mel-band energies,
using a 2048 samples (∼ 46 ms) Hamming window and 50% over-
lap. The extracted features from the data recorded from device A is
our source domain data. The rest (B and C) are our target domain
data. We use the Librosa package for feature extraction.4 Since the
amount of data for the target domain (i.e. the data from the B and
C devices) are less than the source domain data (i.e. the data from
device A), we oversampled the data from target domain to have the
same amount of training data as the number of samples from device
A, approximately 5.6 times more than the original size.

3.2. Models used
Since our proposed method is independent of the employed model,
we evaluate it on two different and published models. The first is the
Kaggle model and the second is DCASE baseline model. The Kag-
gle model is mainly a convolutional neural network (CNN) which
has 5 convolutional layers, with kernel sizes of {(11, 11), (5, 5),
(3, 3), (3, 3), (3,3)} and amount of channels/filters of {48, 128, 192,
192, 128}. The first two convolutional layers use strides of (2,3) and
the rest (1,1). The first two convolutional layers together with the
last one are followed by rectified linear unit (ReLU) non-linearity,
max pooling layer, and batch normalization. The rest convolutional
layers are followed only by the ReLU non-linearity. DCASE model
consists of two convolutional layers with 32 and 64 filters, respec-
tively. Both layers have a (7, 7) kernel size followed by batch nor-
malization, ReLU non-linearity, and a max pooling operation. The
kernels of the pooling operations are {(5, 5), (4, 100)}.

We use 64 log mel-band energies, but for the development of
the DCASE model, 40 mel band energies were used. Therefore, we
had to slightly alter the DCASE model in order to utilize our data.
Specifically, we altered the kernel of the first pooling operation and
the padding of the second convolutional layer. That is, we used
kernel size of (8,4) for the pooling operation and we specified the
padding for the second convolutional layer at (3,0). Because the
Kaggle and the DCASE models had a different dimensionality of
their outputs, we used two different discriminators.

As the discriminator D, when employing the Kaggle model, we
use three convolutional layers all with a kernel size of (3,3) and {64,
32, 16} as the number of channels/filters. All layers are followed by
the ReLU non-linearity and batch normalization. The output of the
third convolutional layer is flattened and given as an input to a linear
layer, which outputs the prediction for samples as source or target.
As a discriminator for the DCASE model we used one linear layer.
The input to our label classifier C is the output of the last layer of
the model M which is turned to a vector (i.e. flattened) and is given
as an input to three for the Kaggle and two for the DCASE model
linear layers followed by 25%, for the Kaggle model, and 30%, for

4https://librosa.github.io/librosa/
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(a) Confusion matrix for the non-adapted Kaggle model (b) Confusion matrix for the adapted Kaggle model

Figure 2: Confusion matrix of the non-adapted, (a), and adapted, (b), Kaggle model for the target domain. The values are normalized
according to the amount of examples in each class. Brighter color indicates higher value.

the DCASE model, dropout. The non-linearity of all except the last
layer of the classifier is the ReLU. Lastly, the output of our classifier
is followed by a softmax non-linearity.

3.3. Training and testing procedure
For the pre-training step, we use a minibatch size of 38 samples,
all selected from source domain. During the domain adaptation
process we used a minibatch size of 16 samples, out of which 10
were selected from the source domain and 6 from the target domain
(more specifically 3 from device B and 3 from device C). For the
pre-training and the domain adaptation process, Adam was selected
as the optimizer with learning rate of 1e−4 and other values accord-
ing to the ones presented in the original paper [24]. We updated the
parameters of the MS and MT after each iteration but (according
to experimental observations) we updated the parameters of the dis-
criminator D after 10 iterations. We stopped the optimization pro-
cedure in pre-training and domain adaptation processes after 350
and 300 epochs respectively.

4. RESULTS AND DISCUSSION
We report the obtained accuracy of the label classification when us-
ing the non-adapted models (i.e. in the pre-training step) and when
using the models after the domain adaptation process (i.e. adapted
models), using the data from source and target domains. Table 1
presents the obtained accuracy on the source and target domains
when using the Kaggle model and when using the DCASE model,
respectively. Additionally, we present the confusion matrices of

Table 1: Obtained accuracy for the non-adapted and adapted Kaggle
and DCASE models.

Kaggle model DCASE model
Non adapted Adapted Non adapted Adapted

Source 65.25% 65.37% 61.71% 61.23%
Target 20.28% 31.67% 19.17% 25.28%

the label classification for the target domain of the non-adapted
and adapted Kaggle model in Figure 2, where can be seen that the
adapted model manages to increase significantly the correctly clas-
sified examples from all labels. This is easily visualized by the di-
agonal of the confusion matrices, where in Figures 2a and 2b there
is a considerable difference. Additionally, our proposed method

manages to increase the performance of the classification for differ-
ent models. That is, no matter the architecture of the model M , by
following our proposed method there is an increase on the target do-
main without significant decrease in the performance for the source
domain. In fact, we managed to increase also the performance on
the source domain for the adapted model. This is apparent in Ta-
ble 1, where the obtained accuracy for the adapted models and the
target domain is greater, compared to the non-adapted. Further-
more, from the same table can be seen that the reduction in the ac-
curacy at the source domain is around 0.5% for the DCASE model.
The accuracy is marginally (i.e. ∼ 0.1%) greater for the source
domain and the adapted Kaggle model (i.e. 65.25% to 65.37%).
We attribute this small increase to the usage of the label classifier C
during the domain adaptation process.

5. CONCLUSIONS AND FUTURE WORK
We presented the first unsupervised adversarial domain adaptation
for acoustic scene classification, which is also independent of the
actual models used. The goal of our method is the adaptation of a
pre-trained model on a source dataset, to a new and unseen target
dataset. In a GAN-like setting, the adapting model tries to fool a
discriminator that its output comes from the source dataset, while
the non-adapted model informs the discriminator about the data that
really coming from the source dataset.

We managed to increase the performance of the used models to
the unseen dataset by approx. 10%. This indicates that the domain
adaption approaches can provide an appealing solution for the prob-
lem of mismatched training and testing data, regarding the acoustic
scene classification. As future directions we suggest the adoption of
different GAN losses and the usage of domain adaptation for sound
event detection.
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