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Machine Learning and Bias Correction
of MODIS Aerosol Optical Depth

D.J. Lary, L. A. Remer, D. MacNeill, B. Roscoe, and S. Paradise

Abstract—Machine-learning approaches (neural networks and
support vector machines) are used to explore the reasons for a per-
sistent bias between aerosol optical depth (AOD) retrieved from
the MODerate resolution Imaging Spectroradiometer (MODIS)
and the accurate ground-based Aerosol Robotic Network. While
this bias falls within the expected uncertainty of the MODIS
algorithms, there is room for algorithm improvement. The results
of the machine-learning approaches suggest a link between the
MODIS AOD biases and surface type. MODIS-derived AOD may
be showing dependence on the surface type either because of the
link between surface type and surface reflectance or because of the
covariance between aerosol properties and surface type.

Index Terms—Aerosol optical depth (AOD), machine learning,
neural networks, support vector machines (SVMs).

I. INTRODUCTION

EROSOL and cloud radiative effects remain the largest

uncertainties in our understanding of climate change [1].
Over the past decade, observations and retrievals of aerosol
characteristics have been conducted from space-based sensors,
from airborne instruments, and from ground-based samplers
and radiometers. Much effort has been directed at these data
sets to collocate observations and retrievals and to compare
results. Ideally, when two instruments measure the same aerosol
characteristic at the same time, the results should agree within
well-understood measurement uncertainties. When interinstru-
ment biases exist, we would like to explain them theoretically
from first principles. One example of this task is the com-
parison between the aerosol optical depth (AOD) retrieved by
the MODerate resolution Imaging Spectroradiometer (MODIS)
and the AOD measured by the Aerosol Robotic Network
(AERONET). While progress has been made in understanding
the biases between these two data sets, we still have an imper-
fect understanding of the root causes. Thus, in this letter, we

Manuscript received February 18, 2009; revised March 16, 2009 and
April 22, 2009. First published July 7, 2009; current version published
October 14, 2009. This work was supported in part by the National Aeronau-
tics and Space Administration (NASA) through the Awards NNGO6GB78G,
NNX06AG04G, NNX06AF29G, and NNX07AD49G and in part by the NASA
Goddard Space Flight Center student DEVELOP Program.

D. J. Lary is with the Joint Center for Earth Systems Technology, University
of Maryland, Baltimore County, MD 21228 USA, and also with the Software
Integration and Visualization Office, NASA Goddard Space Flight Center,
Greenbelt, MD 20771 USA.

L. A. Remer is with the NASA Goddard Space Flight Center, Greenbelt, MD
20771 USA.

D. MacNeill and B. Roscoe are with the NASA Goddard Space Flight Center
DEVELOP Program, Greenbelt, MD20771 USA.

S. Paradise is with the NASA Jet Propulsion Laboratory, Pasadena, CA
91109 USA.

Digital Object Identifier 10.1109/LGRS.2009.2023605

examine the efficacy of empirical machine-learning algorithms
for bias correction.

II. PREVIOUS STUDIES

The MODIS instruments are aboard both the Aqua and Terra
satellites, launched on May 4, 2002 and December 18, 1999,
respectively. The MODIS instruments collect data over the
entire globe in two days. The AOD is retrieved using dark target
methods in bands at 550, 670, 870, 1240, 1630, and 2130 nm,
over ocean, and at 470, 550, and 670 nm over land [2], [3].
Other wavelengths are also used in the retrieval, for instance,
short-wave infrared wavelengths for the land algorithm. Pre-
vious MODIS aerosol validation studies have compared the
Aqua and Terra MODIS-retrieved AOD with the ground-based
AERONET observations [2]. AERONET is a global system
of ground-based sun and sky scanning sun photometers that
measure AOD in various channels, depending on individual
instrument, but usually include measurements at 340, 380, 440,
500, 675, 870, and 1020 nm [4]. Measurements are taken
every 15 min during daylight hours. AERONET Level 2 quality
assured AOD observations are accurate to within 0.01 for
wavelengths of 440 nm and higher.

These previous studies concluded that MODIS AOD agreed
with AERONET observations to within MODIS expected un-
certainties, on a global basis. AERONET is only available for
land locations, although some sites are in coastal regions.

However, the correlation for the MODIS ocean algorithm
was much better than the agreement for the MODIS land algo-
rithm, in the Collection 4 data set. Revision and implementation
of a new land algorithm and reprocessing of the data resulted in
much improvement to the retrieved MODIS AOD over land [3].
Even so, there remains a small overprediction of the AOD for
low values and underprediction at high AOD values [3], [5].

In previous studies, we intercompared the normalized dif-
ference vegetation indices (NDVIs) from different sensors [6].
We have found that machine-learning algorithms are able to
effectively perform interinstrument cross-calibration. Here, we
extend this approach to consider AOD. In our previous inter-
comparison of NDVIs, we found that the surface type played a
key role in explaining a significant fraction of the interinstru-
ment differences. In this letter, we wanted to investigate if the
same was true for AOD.

Xiao et al. [7] have examined the difference between AODs
retrieved from the Multiangle Imaging Spectro-Radiometer
(MISR) and MODIS over mainland Southeast Asia. They found
that, although the difference between MISR and MODIS should
be small and randomly distributed over space, the difference
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Fig. 1. MODIS bias with respect to AERONET [8]. Computed as a regression
with intercept at the origin. Red indicates that MODIS is higher; blue indicates
that AERONET is higher. The size of the circle is proportional to the slope of
the regression for slope > 1 (where MODIS is higher) and to the inverse of the
slope for slope < 1.

actually has a strong negative relationship with MODIS AODs
and tends to be spatially clustered. They concluded that further
research is needed to fully understand the spatial dependence in
these differences. The machine-learning approach outlined here
is also relevant to the MISR comparison in [7].

III. DATA DESCRIPTION

We use the global 10-km MODIS Collection 5 AOD product,
over land and ocean, and all the available AERONET ver-
sion 2.0 data. The AERONET program provides a long-term,
continuous, and readily accessible public domain database of
aerosol optical properties. The network imposes standardiza-
tion of instruments, calibration, processing, and distribution.
The location of individual sites is available from the AERONET
web site http://aeronet.gsfc.nasa.gov/.

We first identify all MODIS overpasses of the AERONET
sites throughout the lifetime of the two MODIS missions.
We use the single green band MODIS AOD (550 nm) in
the geographic grid point that contains the AERONET site.
AERONET AOD measurements within 30 min of the MODIS
observation are averaged. AERONET data are interpolated (in
log—log space) to the green band where they are missing.
We found a strong correlation between geographic location
and bias. For example, there is a negative bias (MODIS un-
derestimation relative to AERONET) over vegetated Western
Africa (from Liberia to Nigeria) and a positive bias over the
Southwestern U.S. The spatial dependence of the differences
between AERONET and MODIS is shown in Fig. 1 [8].

IV. AOD INTERCOMPARISON

Fig. 2(a) and (b) shows the scatter diagram comparisons of
AOD from AERONET (z-axis) and MODIS (y-axis) as green
circles overlaid with the ideal case of perfect agreement (blue
line). The left-hand column of plots is for MODIS Aqua, and
the right-hand column of plots is for MODIS Terra. These
comparisons between AERONET and MODIS are for the entire
period of overlap between the MODIS and AERONET instru-
ments from the launch of the MODIS instrument to the present
and include all possible collocations from all AERONET
stations. We note that MODIS has a high bias relative to

AERONET (the slope is not one), there is substantial scatter,
and there are correlation coefficients of 0.86 and 0.84 for
MODIS Aqua and MODIS Terra, respectively. The bias and
scatter indicate that the agreement between AERONET and
MODIS may be dependent on some factors not completely
accounted for in the retrievals. Note that the plots include both
land and ocean retrievals.

In an exploratory data analysis study, we examined whether
this bias could be explained by a variety of factors, including
surface type, soil type, cultivation type, cloud reflectivity, and
total ozone column, to name just a few. In other words, we
constructed a comprehensive set of as many variables as pos-
sible and determined which of these variables was correlated
with the AOD bias between AERONET and MODIS. It was
found that the surface type could explain much of the difference
between MODIS and AERONET. The surface classification we
used was the global landcover classification for the year 2000
(GLC2000) at a resolution of (1/8)° x (1/8)° (http://www-
gem.jrc.it/glc2000/). Before using the surface classification in
our machine-learning bias correction (described hereinafter),
we reordered the surface types such that their annual mean area
weighted albedos are in ascending order. The reordering was
done as follows: When we use the surface type as an input for
the machine-learning algorithms, it is, in effect, being treated
as a quasi-continuous variable. As the surface reflectivity is
one of the most important properties of each surface type for
this problem, we want a surface-type classification which is
monotonic in surface reflectivity.

When we augmented the surface type with variables avail-
able within the MODIS AOD HDF files (MOD04 and MYDO04),
we found that the machine-learning algorithms were able to
further improve their bias correction. In the results presented
in Fig. 2, the variables we used in explaining the AOD bias
between MODIS and AERONET were the surface type, the
solar zenith angle, the solar azimuth angle, the sensor zenith
angle, the sensor azimuth angle, the scattering angle, and the
reflectance at 550 nm.

A. Machine Learning

Machine learning is a subfield of artificial intelligence that is
concerned with the design and development of algorithms that
allow computers to empirically learn the behavior of data sets.
A major focus of machine-learning research is to automatically
produce (induce) models from data. In this letter, we have
applied two types of machine learning to the correction of the
bias between MODIS and AERONET, i.e., neural networks and
support vector machines (SVMs).

For each of these machine-learning approaches, we used
two training data sets, i.e., one for MODIS Aqua and one
for MODIS Terra. These training data sets include all con-
temporaneous measurements of the MODIS instruments and
AERONET made from launch to the present that were within
30 min of each other, within a great circle distance of 0.25°, and
within a solar zenith angle of 0.1°. For MODIS Aqua, this gave
us a training record of 7543 points, and for Terra, 13 034 points.

The purpose of training a machine-learning algorithm is to
construct a mapping between a set of input variables and an
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Fig. 2. Scatter diagram comparisons of AOD from AERONET (z-axis) and MODIS (y-axis) as green circles overlaid with the ideal case of perfect agreement
(blue line). The measurements shown in the comparison were made within half an hour of each other, with a great circle separation of less than 0.25° and with a
solar zenith angle difference of less than 0.1°. The left-hand column of plots is for MODIS Aqua, and the right-hand column of plots is for MODIS Terra. The first
row shows the comparisons between AERONET and MODIS for the entire period of overlap between the MODIS and AERONET instruments from the launch
of the MODIS instrument to the present. The second row shows the same comparison overlaid with the neural network correction as red circles. We note that the
neural network bias correction makes a substantial improvement in the correlation coefficient with AERONET. An improvement from 0.86 to 0.96 for MODIS
Aqua and an improvement from 0.84 to 0.92 for MODIS Terra. The third row shows the comparison overlaid with the SVR correction as red circles. We note that
the SVR bias correction makes an even greater improvement in the correlation coefficient than the neural network correction. An improvement from 0.86 to 0.99
for MODIS Aqua and an improvement from 0.84 to 0.99 for MODIS Terra.
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output variable (i.e., a multivariate nonlinear nonparametric fit).
For each data set, the inputs were the surface type, the solar
zenith angle, the solar azimuth angle, the sensor zenith angle,
the sensor azimuth angle, the scattering angle, the reflectance,
and the MODIS AOD. For each data set, the output was the
AERONET AOD at 550 nm.

1) Neural Networks: Neural networks are multivariate non-
parametric “learning” algorithms [9], [10] that are ideally suited
to learning, and correcting for, interinstrument biases.

When training a neural network, we randomly split the
training data set into three portions of 80%, 10%, and 10%. The
80% of the data are used to train the neural network weights.
This training is iterative, and on each iteration, we evaluate
the current rms error of the neural network. The rms error is
calculated by using the second 10% of the data that were not
used in the training. We use the rms error and the way it changes
with training iteration (epoch) to determine the convergence of
our training. When the training is complete, we use the final
randomly chosen 10% as a validation data set. These 10% of the
data were randomly chosen and not used in either the training or
rms evaluation. We only use the neural network if the validation
scatter diagram, which plots the actual data from validation por-
tion against the neural network estimate, yields a straight-line
graph with a slope of one. This is a stringent and independent
validation. The validation is global as the data were randomly
selected over all temporal and spatial data points available.
The neural network algorithm used was a feedforward back-
propagation network with 20 hidden nodes. The training was
done by the Levenberg—Marquardt back-propagation algorithm
provided by the Matlab neural network toolbox (http://www.
mathworks.com/products/neuralnet/).

Fig. 2(c) and (d) shows the result of performing a neural
network bias correction. We see that the neural network is able
to make a substantial improvement in the correlation coefficient
with AERONET: an improvement from 0.86 to 0.96 for MODIS
Aqua and an improvement from 0.84 to 0.92 for MODIS
Terra.

When we perform linear regression on the scatter diagram
of AERONET AOD versus the MODIS AOD corrected by the
neural network fit, we see that the intercept (bias) is consid-
erably reduced, from 0.03 to 0.01 for both Aqua and Terra.
However, the slope of the neural network fit is not close to one.

2) SVMs: SVMs were initially used for classification and
are based on the concept of decision planes that define decision
boundaries and were first introduced by Vapnik [11], [12].
SVMs have subsequently been extended by others to include
regression, i.e., support vector regression (SVR) [13], [14]. In
this letter, we use the SVR provided by LIBSVM [15], [16].

Fig. 2(e) and (f) shows the result of performing an SVR
bias correction. The SVR makes an even greater improvement
than the neural network correction, improving the correlation
coefficient from 0.86 to 0.99 for MODIS Aqua and from 0.84
to 0.99 for MODIS Terra.

When we perform linear regression on the SVM fit, we see
that the intercept (bias) is considerably reduced, from 0.03 to
0.0005 for Aqua and from 0.03 to 0.0001 for Terra. In addition,
the slope of the SVM fit is almost 1 (0.99) for both Aqua and
Terra.

3) Why the Improvement: Why did the SVM model outper-
form the neural networks? SVMs use a kernel function to map
the data into a different space. The concept of a kernel mapping
function is very powerful. The SVM model algorithmic process
utilizes higher dimensional space to achieve superior predictive
power.

The SVM algorithmic process offers an important advantage
compared with neural network approaches. Specifically, neural
networks can suffer from multiple local minima; in contrast,
the solution to an SVM is global and unique. This character-
istic may be partially attributed to the development process of
these algorithms; SVMs were developed in the reverse order
to the development of neural networks. SVMs evolved from
the theory to implementation and experiments; neural networks
followed a more heuristic path, from applications and extensive
experimentation to theory.

4) Factor Analysis: As we have seen, there is a suite of
variables available that can be used collectively to empirically
“correct” the MODIS AOD to better agree with AERONET.
However, some of these variables “overlap” in the sense that
groups of them are interdependent. We can determine if this is
so by using factor analysis. Factor analysis is a well-established
statistical method used to explain the variability among a set
of observed variables in terms of fewer unobserved variables
called factors [17]-[19]. The observed variables are modeled
as linear combinations of these underlying factors, plus error
terms. Factor analysis determines that surface type is the vari-
able that best explains the bias in the MODIS AOD data. Trends
are similar for both Aqua MODIS and Terra MODIS.

In addition, the MODIS solar zenith and scattering angles
also have a weak correlation (correlation coefficients between
0.1 and 0.2) with the AOD difference between MODIS and
AERONET.

V. SIGNIFICANCE

MODIS-derived AOD may show dependence on surface type
either because of the link between surface type and surface
reflectance or because of the covariance between aerosol prop-
erties and surface type. Different surface types (e.g., forests,
croplands, pastures, bare rock, or soil) exhibit varying re-
flectance properties. For example, deciduous forests in full
foliage are dark, with reflectances in the range of 0.03-0.10 in
the visible portion of the solar spectrum. Bare soil or rock is
bright, with reflectances that can be as high as 0.3-0.4. The
MODIS algorithm needs to extract an atmospheric aerosol sig-
nal from the combined surface—atmosphere reflectances mea-
sured by the satellite sensor. The separation of atmosphere from
surface reflectance is based on assumptions concerning spectral
properties of the surface [3]. These surface spectral properties
are determined empirically and are dependent on sun—satellite
geometry and an atmospherically resistant vegetation index
(NDVIswir) [3], [20]. The results of the neural network
exercise suggest a residual dependence on surface type in the
assumptions of surface reflectance that is not already param-
eterized by the vegetation index. Note that, in the development
of the current Collection 5 MODIS aerosol algorithm over
land, surface type was explored as a possible influential factor
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before vegetation index was chosen as the parameter. Vegeta-
tion index was chosen over surface type because no unique
linear relationship was found between surface reflectance and
wavelength, contingent upon surface type. The neural network
analysis provides a nonlinear relationship that otherwise could
not have been found.

On the other hand, the reason for dependence between the
MODIS AOD and surface type may have nothing to do with
surface reflectance, but instead be linked to aerosol optical
properties found in different places of the world. For example,
we expect to find a dominance of dust aerosol over bare or
desert surfaces and urban/industrial pollution over urban sur-
faces. Other relationships may not be so obvious, but could be
revealed by the nonlinear neural network analysis. The MODIS
retrieval algorithm requires assumptions of aerosol properties
in order to retrieve aerosol loading. Assuming dust when the
aerosol is actually urban pollution will result in a significantly
large error in the AOD retrieval. The assumptions of aerosol
properties are based on a cluster analysis of AERONET re-
trieval data that are fixed seasonally and geographically [21].
While this distribution should represent typical values, it will
introduce errors whenever the actual aerosol properties differ
from the expected. The neural network analysis may represent
an adjustment to the algorithm’s global and seasonal distri-
bution of assumed aerosol properties, resulting in collocated
retrievals closer to AERONET observations.

Overall, the machine-learning results show us that there is
opportunity in the MODIS aerosol algorithm to improve the
accuracy of the AOD retrieval, as compared with AERONET,
and that this improvement is linked to surface type. We can use
information from AERONET, from other satellite sensors such
as MISR, and from detailed field experiments to continue to
test and refine the assumptions in the MODIS algorithm. The
results from the machine-learning analysis that point to surface
type as the missing piece of information will allow us to focus
the refinement procedure where it will help most.

VI. CONCLUSION

Machine-learning algorithms were able to effectively ad-
just the AOD bias seen between the MODIS instruments and
AERONET. SVMs performed the best, improving the correla-
tion coefficient between the AERONET AOD and the MODIS
AOD from 0.86 to 0.99 for MODIS Aqua and from 0.84 to
0.99 for MODIS Terra. Key in allowing the machine-learning
algorithms to “correct” the MODIS bias was provision of
the surface type and other ancillary variables that explain the
variance between MODIS and AERONET AOD.
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