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The increasing availability and growth rate of biomedical information, also known as ‘big data’,

provides an opportunity for future personalized medicine programs that will significantly improve

patient care. Recent advances in information technology (IT) applied to biomedicine are changing the

landscape of privacy and personal information, with patients getting more control of their health

information. Conceivably, big data analytics is already impacting health decisions and patient care;

however, specific challenges need to be addressed to integrate current discoveries into medical practice.

In this article, I will discuss the major breakthroughs achieved in combining omics and clinical health

data in terms of their application to personalized medicine. I will also review the challenges associated

with using big data in biomedicine and translational science
Introduction
A series of breakthroughs in medical science and IT are triggering a

convergence between the healthcare industry and the life sciences

industry that will quickly lead to more intimate and interactive

relations among patients, their doctors and biopharmaceutical

companies [1]. Big data analytics has an indispensable role in

fostering those enhanced relations because it vastly enriches the

remarkable but isolated wonder of the genome-on-a-thumb drive.

Healthcare providers and drug makers now have the ability to

explore and analyze omics data not only for an individual, but also

in an aggregate from an increasing number of patients in specific

population studies [2].

With rapid improvements in computer power, the cost of

genome sequencing has plunged from millions of dollars per

genome to thousands of dollars (and the cost will keep dropping).

With advances in technology, patients will see a shift from popu-

lation-based healthcare to personalized medicine that includes

targeted diagnostics and treatment based on each patient’s
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history, ancestry and genetic profile [3]. Online tools, such as

the General Practice Research Database (GPRD), applied to clinical

studies in drug discovery and assessment exemplify how IT is

impacting biomedicine [4]. Although complex, this trend could

one day revolutionize life sciences, biomedicine and what it means

to be a healthcare professional or a researcher. The main benefits of

applying big data analytics in personalized medicine include sav-

ing time while improving the overall quality and efficacy of

treating disease.

Big data in biomedicine is driven by the single premise of one day

having personalized medicine programs that will significantly

improve patient care. Constant advances in understanding of dif-

ferent omics information are providing the footholds into establish-

ing, for the first time, the causal genetic factors that could help

manage the golden triangle of treatment: the right target, the right

chemistry and the right patient. Solutions to deal with this overload

of information are becoming a reality. However, challenges ahead

include funneling clinical data, omics data, administrative data and

also financial information securely into an unified system [5] to

achieve better patient outcomes, advance research and continually

improve the quality of patient care while reducing costs.
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FIGURE 1

Big data in biomedicine. Schematic representation and depiction of a pipeline starting with data produced using next-generation sequencing (NGS), to data
‘translation’, and the generation of a ‘final report’ for clinicians and researchers. Personal health information and data generated by next-generation DNA

sequencers (i.e. omics data such as genomes, transcriptomes, exomes, epigenomes and other types of similar information) are correlated, transferred to the ‘cloud’

or internal servers, analyzed and visualized using different solutions and tools that are available for big data analytics. Finally, data is translated as a short report to

clinicians and researchers after a deep analysis for biomarkers and drug targets associated with specific disease phenotypes and after comparisons with public or
private databases. Genome variants could be identified when comparing different samples, thus generating high-quality interpretation based on current

knowledge and literature. This type of pipeline will ease the implementation and application of personalized medicine for clinicians and for research purposes.

Between data transfer, storage and visualization, patient data needs to be secured by encryption of the information. Some solutions for both medical and scientific
data security have been developed recently, but since this is a new area of study in biomedical informatics, big challenges lie ahead creating increasing

opportunities in the market. Abbreviations: PCs, personal computers; EHRs, electronic health records; EMRs, electronic medical records; IGV, integrated genome

viewer. Image designed by Eduardo Braga Ferreira Junior.
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Although both computers and the internet have become faster,

there is a lack of computational infrastructure that is needed to

generate, maintain, transfer and analyze large-scale information

securely in biomedicine and to integrate omics data with other

data sets, such as clinical data from patients (Fig. 1). Indeed, it

might now be less expensive to generate the data than it is to

analyze and store it [6]. Another challenge is to transfer data from

one location to another, because it is mainly done by mailing

external drives with the information inside [6]. The security and

privacy of the data from individuals are also a concern before and

during data transfer [6]. Possible solutions to these issues include

the use of better security systems with advanced encryption and

de-identification algorithms, such as those used by banks in the

financial sector to secure their clients’ privacy [6]. The future of big

data in life sciences is full of insecurities and challenges, but

changes in several sectors are occurring to deal with it. Impor-

tantly, making sense of accumulating data in life sciences requires

improved computational infrastructure, new methods to interpret

the information and unique collaborative approaches.

In this article, I will discuss some of the major improvements in

combining omics and clinical health data applied to personalized

medicine. Moreover, an overview of the challenges faced by Big
2 www.drugdiscoverytoday.com
Data generation, transfer and analytics will be addressed. This

article will also exemplify some of the major improvements

needed to bridge the current technological gaps to address these

challenges. Computational strategies, instrumentation and the

current knowledge to interpret Big Data in order to make clinical

decisions with a positive impact in biomedicine will also be

discussed.

Big data, big impacts
Big data describe a new generation of technologies and architec-

tures, designed to extract value from large volumes of a wide

variety of data by enabling high-velocity capture, discovery and

analysis [7]. This world of big data requires a shift in computing

architecture so that researchers can handle both the data storage

requirements and the heavy server processing needed to analyze

large volumes of data in a secure manner [8]. Most of the big data

surge is unstructured information and is not typically easy for

traditional databases to analyze it. Therefore, the predictive power

of big data has been explored recently in fields such as public

health, science and medicine.

Computer tools to collect knowledge and insights from the vast

trove of unstructured data available via the Internet are improving
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TABLE 1

Examples of companies and institutions that provide solutions to generate, interpret and visualize combined omics and health clinical
data

Company or institution Type of solution Website

Appistry High-performance big data platform that combines self-organizing computational
storage with optimized and distributed high-performance computing to provide secure,

HIPAA-complaint accurate on-demand analysis of omics data in association with clinical

information

http://www.appistry.com

Beijing Genome Institute This solution serves as a solid foundation for large-scale bioinformatics processing. The

computing platform is an integrated service comprising versatile software and powerful
hardware applied to life sciences

http://www.genomics.cn/en

CLC Bio Utilizes proprietary algorithms, based on published methods, to accelerate successfully

data calculations to achieve remarkable improvements in big data analytics

http://www.clcbio.com

Context Matters Provides a comprehensive tool that empowers pharmaceutical and biotechnology
companies to make better strategic decisions using web-based applications, and

easy-to-use interface and visualization tools to deal with complex data sets

http://www.contextmattersinc.com

DNAnexus Provides solutions for NGS by using cloud computing infrastructure with scalable

systems and advanced bioinformatics in a web-based platform to solve data
management and the challenges in analysis that are common in unified systems.

http://www.dnanexus.com

Genome International

Corporation

Genome International Corporation (GIC) is a research-driven company that provides

innovative bioinformatics products and custom research solutions for corporate,

government, and academic laboratories in life sciences

http://www.genome.com

GNS Healthcare A big data analytics company that has developed a scalable approach to deal with big
data solutions that could be applied across the healthcare industry

http://www.gnshealthcare.com

NextBio Big data technology that enables users to integrate and interpret systematically public

and proprietary molecular data and clinical information from individual patients,

population studies and model organisms applying omics data in useful ways both in
research and in the clinic

http://www.nextbio.com

Pathfinder Develops customized software applications, providing solutions in different sectors,

including healthcare and omics, offering technologies that enable business

breakthroughs and competitive advantages

http://www.pathfindersoftware.com
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at this task. At the forefront of the rapidly advancing techniques of

artificial intelligence (AI) are natural-language processing [9], pat-

tern recognition [10] and machine learning [11]. Those AI tech-

nologies can be applied to many fields, especially in biomedicine

and life sciences. One such example is the algorithm used by

Google to track diseases that is known as Google Trends (GT)

[12]. GT and other strategies to track diseases using geospatial

maps is a daunting big data challenge, parsing vast quantities of

information and making decisions instantaneously. For example,

GT can find spikes in Google search requests for terms such as ‘flu

symptoms’ and ‘flu treatments’ before there is an increase in flu

patients coming to hospital emergency rooms in specific regions

[13]. Tools that are able to identify term requests in epidemic areas

are just one application of big data analytics in biomedicine. The

impacts that these information-driven tools will have in health

tracking and disease monitoring are currently immensurable [14].

Computational solutions and the use of the internet are also

helping to create tools to manage diseases. For example, data

repositories have been created to guide doctors and patients that

suffer from diseases such as cancer helping them find the right

drug for their disease type, one of the foundations of personalized

medicine. One such tool is the portal ‘My Cancer Genome’ created

by researchers at Vanderbilt University in the USA [15]. This

solution began 2 years ago and now has more than 50 contributors

from 20 institutions worldwide [15]. The portal lists mutations in

different cancer types, as well as drug therapies that might or
might not be of benefit to patients. Most of the drugs described on

the website are in clinical trials and only a few have been approved

by the US Food and Drug Administration (FDA). It is important to

note that there are significant limitations to this type of practice

since the FDA did not approve the majority of the drugs targeting

these mutations. However, the portal is free and doctors, research-

ers, patients, relatives and institutions can access it, easing the

translation of the findings in research laboratories to the bedside of

patients.

Another tool is exemplified by the solution provided by Context

Matters. This company provides a comprehensive solution that

leverages targeted biomedical information to pharmaceutical and

biotechnology companies using web-based applications with an

easy-to-use interface and personalized visualization tools to deal

with complex data sets. Some of these tools use crowdsourcing

approaches to analyze and make sense of big data. More solutions

and tools provided by specific companies are shown in Table 1.

Although these online tools are helpful for physicians, no

treatment plan can yet be based on the results provided by them.

A barrier that needs to be overcome is the difficult conversation

between patients that are empowered by preliminary results pro-

vided by these online solutions and their physicians, who some-

times do not know the limitations of applying such tools in their

practice. However, based on accumulating examples, it is clear that

increasing amounts of information in databases and the use of web

solutions by healthcare professionals and patients will have a big
www.drugdiscoverytoday.com 3
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impact on biomedicine by facilitating drug development and

disease treatment.

A digital revolution in life sciences
The Hippocratic oath is an oath historically taken by physicians

and other healthcare professionals swearing to practice medicine

honestly and ethically [16]. Although 25 centuries have passed

since Hippocrates’ call, physicians have not yet attained the dream

of true evidence-based healthcare. The Hippocratic oath is an

example of how medicine has to change and, as recently described,

how it has to somehow adapt to new technological breakthroughs

[17]. Computer-aided medicine, web-based solutions and big data

analytics will need to be taken seriously by physicians. Physicians

will also need to absorb and incorporate these changes. In the

Oath, physicians promise to treat according to their ability and

judgment. Evidence-based medicine has to be incorporated in the

Oath and in medical schools because it is becoming a reality. For

example, large quantities of data about wellness and illness con-

tinue to be disconnected, rather than collected and harnessed to

optimize the provision of care. I believe that we now stand at the

brink of a potential digital revolution in data-centric healthcare,

enabled by advances in computer technologies. The digital revo-

lution in life sciences promises to enhance the quality of health-

care while cutting costs and, more generally, enabling physicians

and researchers to do their very best with what is available from

aligned healthcare resources. Aligning available resources in IT

with the core promise that all healthcare professionals make when

they raise their hand and recite the Hippocratic oath upon receipt

of their medical degree will completely change the life sciences

[16]. However, enabling this vision of true evidence-based health-

care based on big data analytics will require crucial investments for

translating key methods and insights into working systems, as well

as for advances in core computer science research and engineering

to address key conceptual bottlenecks and opportunities. The

collection and analysis of data available on health and disease

promise to enhance the quality and efficacy of healthcare, and to

enhance the quality and longevity of life. This can also provide

new insights about diseases. In addition, data-centric methods will

enable researchers to transform information into predictive mod-

els, thus resulting in so-called ‘personalized medicine’.

Importantly, data-driven medicine will facilitate the discovery

of new treatment options based on multimodel molecular mea-

surements on patients and on learning from the trends in differ-

ential diagnosis, prognosis and prescription adverse effects from

available clinical databases [18]. In addition, medical informatics,

represented by patients’ electronic medical records (EMRs) and

personalized therapies will enable the application of targeted

treatments for specific diseases. Mining of EMRs has the potential

for establishing new patient-stratification principles for revealing

unknown disease correlations [19]. Integrating EMRs with genetic

profiles will also give a finer understanding of genotype–pheno-

type relations [19]. However, a broad range of ethical, legal and

technical reasons hinder the systematic analysis of the data con-

tained in EMRs [19]. Even with several challenges and barriers,

there is a data-sharing trend in the web, exemplified by online

health resources, such as PatientsLikeMe, which allow patients to

share detailed health and treatment information, providing a

novel data source for different types of study and analysis [19].
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The same way as big enterprises, such as Amazon, Google,

Facebook, and other companies in computer technology, are

leveraging consumer data to target offers to individuals by offering

specific products based on the consumer actions, healthcare pro-

viders should be able to leverage the power of analytics to evaluate

an individual’s medical record and omics data signatures to com-

pare those to insights gained from the analysis of outcomes in large

populations. This is just the start for the big data analytics and

data-centric models in the digital revolution that researchers are

starting to experience. However, technological breakthroughs

dealing with clinical and genetic data from patients and popula-

tions bring several challenges, such as the security and privacy of

this information.

Information-driven technologies applied to biomedical
research
A wave of new sequencing technologies, named third- and fourth-

generation DNA sequencing, makes it possible to sequence gen-

omes, transcriptomes and epigenomes faster at a lower cost. These

new technologies are based on semiconductors [20] and nano-

pores [21]. With these types of approaches, it is possible to develop,

with relative success, large-scale sequencing projects and to ana-

lyze this information using big data analytics solutions. Two

examples of such projects are the 1000 Genomes Project and

the Encyclopedia of DNA Elements (ENCODE).

The international 1000 Genomes Project is a government-

backed initiative launched in 2008 that aims to sequence the

entire genome of thousands of people from around the world

and it is continuing to grow as the largest data set worldwide on

human genetic variation [22]. Additionally, data from this project

will be combined with expression and genotype data to create a big

data repository in biomedicine [23]. Phase one of this project has

already generated sequence for more than 1000 genomes [24].

Phase three was recently reported, with exome sequencing of

several genomes to extract expression data [25]. Information

generated by the 1000 Genomes Project has been widely used

by the genetics community, making it one of the most cited

studies in biology [26]. The challenge now is to apply the knowl-

edge from these genomes and understand disease phenotypes to

facilitate drug discovery.

Another ongoing big data project in biomedicine is ENCODE

[27]. The main objective of ENCODE was to map and characterize

how the entire human genome function. Members of this Project

have already performed 1600 experiments in approximately 150

cell types to deliver an incredible amount of data and information

[28] and the main research article was published by almost 500

authors working in 32 institutes worldwide [28]. The data gener-

ated by ENCODE highlighted biochemical functions for approxi-

mately 80% of the human genome, with a particular focus in

regions that are outside the well-studied protein-coding DNA (i.e.

protein-coding genes) [29]. In addition, the project showed that

90% of all human genetic variants fall inside a region that has no

protein-coding gene annotated, indicating that these regions

might be responsible for differences between individual humans

and are also likely to be important for a better understanding of

complex diseases [30].

ENCODE was also able to provide new insights into the orga-

nization and regulation of human genes and genomes and will
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TABLE 2

Examples of big corporations offering solutions and pipelines to store, analyze and deal with complex biomedical information

Company Solution(s) Website

Amazon Web Services Provides the necessary computing environment, including CPUs, storage,

memory (RAM), networking, and operating system, for a hardware

infrastructure as a service in the biomedical and scientific fields

http://aws.amazon.com

Cisco Healthcare Solutions Offers different types of solution for the life sciences, including specific
hardware and cloud computing for reliable and highly secure health data

communication and sharing across the healthcare community

http://www.cisco.com/web/strategy/
healthcare/index.html

DELL Healthcare Solutions Connects researchers to the right technology and processes to create

information-driven healthcare and accelerate innovation in life sciences

with electronic medical record (EMR) solutions

http://www.dell.com/Learn/us/en/70/

healthcare-solutions?c=us&l=en&s=hea

GE Healthcare Life Sciences Provides expertise and tools for a wide range of applications, including basic

research of cells and proteins, drug discovery research, as well as tools to

support large-scale manufacturing of biopharmaceuticals

http://www3.gehealthcare.com/en/

Global_Gateway

IBM Healthcare and
Life Sciences

Provides healthcare solutions, technology and consulting that enable
organizations to achieve greater efficiency within their operations, and

to collaborate to improve outcomes and integrate with new partners for

a more sustainable, personalized and patient-centric system

http://www-935.ibm.com/industries/
healthcare

Intel Healthcare Currently builds frameworks with governments, healthcare organizations,

and technology innovators worldwide to build the health IT tools and
services of tomorrow by combining different types of health information

http://www.intel.com/healthcare

Microsoft Life Sciences Provides innovative, world-class technologies to help customers nurture

innovation, improve decision-making and streamline operations

http://www.microsoft.com/health/en-us/

solutions/Pages/life-sciences.aspx

Oracle Life Sciences Delivers key functionalities built for pharmaceutical, biotechnology, clinical
and medical device enterprises. Oracle maximizes the chances of

discovering and bringing to market products that will help in treating

specific diseases

http://www.oracle.com/us/industries/
life-sciences/overview/index.html
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serve as an expansive resource of information for biomedical

research during the next decade [31]. From an evolutionary

perspective, ENCODE ends the myth that most of our genome

is ‘junk’ DNA, given that researchers now know that 75% of the

genome is capable of being transcribed in at least one cell type,

thus affecting the concept of a ‘gene’ [32]. Before ENCODE,

biologists understood that only a small fraction of the DNA of

a gene encodes a protein (approximately 2–3%). ENCODE

reported convincing evidence that the genome is pervasively

transcribed, such that the majority of its bases can be found in

primary transcripts, including nonprotein-coding transcripts

[33]. This paradigm shift in molecular biology, with nonpro-

tein-coding genes or noncoding RNAs pervasively transcribed

and with putative functions, has been discussed in my previous

articles [34–38].

Both consortia have shown that collaborative projects are pos-

sible and they will become more common as scientists tackle big

problems, such as the human genome [39]. Big data projects in

biomedicine such as these can ‘socialize’ science and make dis-

coveries faster by accelerating drug development, tests, and

approval [40]. Additionally, these projects show that biomedical

research is becoming an information-driven science and, as dis-

cussed above, researchers will need to use the same approaches

that big computer technology companies use to deal with increas-

ing amounts of personal data. A depiction of a step-by-step pipe-

line used by big projects similar to ENCODE, from omics data

generation using next-generation sequencing (NGS) to the pro-

duction of a final report to clinicians and researchers is illustrated

in Fig. 1.
Although these collaborative projects show great promise, the

direct clinical impacts of their findings and discoveries have yet to

be demonstrated. Large sample sizes, such as the ones from big

data projects, improve the ability to detect trivial differences that

might have limited the clinical applications [41,42]. In other

words, the use of large sample sizes facilitate the identification

of small populations of patients that might benefit from specific

drugs already approved by the FDA or that are currently in clinical

trials.

Solutions for data management and interpretation in
personalized medicine
With the increased need to store data and information generated

by big projects, computational solutions, such as cloud-based

computing, have emerged. Cloud computing is the only storage

model that can provide the elastic scale needed for DNA sequen-

cing, whose rate of technology advancement could now exceed

Moore’s Law. Moore’s law is the observation that, over the history

of computing hardware, the number of transistors on integrated

circuits and the speed of computers doubles approximately every 2

years. Although cloud solutions from different companies have

been used, several challenges remain, particularly related to the

security and privacy of personal medical and scientific data (Fig. 1).

Perhaps the greatest advantage could be the ability to offer a broad

platform for the development of new analysis and visualization

tools as well as a software service to use these tools on shared data

sets in a secure and collaborative workspace [43]. In fact, some

companies and big corporations already offer such solutions

applied to healthcare and life sciences (Tables 1 and 2). There is
www.drugdiscoverytoday.com 5
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TABLE 3

Examples of companies that offer personalized genetics and omics solutions

Company Applications and/or services Website

23andme A DNA analysis service providing information and educational tools for individuals to

learn and explore their DNA through personal genomics

http://www.23andme.com

Counsyl Offers tests for gene mutations and variations in more than 100 inherited rare genetic

disorders using a DNA biochip designed specifically to test for these disorders

http://www.counsyl.com

Foundation Medicine A molecular information company at the forefront of bringing comprehensive cancer
genomic analytics to routine clinical care

http://www.foundationmedicine.com

Knome Analyzes whole-genome data using software-based tests to examine and compare

simultaneously many genes, gene networks and genomes as well as integrate other

forms of molecular and nonmolecular data

http://www.knome.com

Pathway Genomics Incorporates customized and scientifically validated technologies to generate
personalized reports, which address a variety of medical issues, including an

individual’s propensity to develop certain diseases

http://www.pathway.com

Personalis A genome-scale diagnostics services company pioneering genome-guided medicine

focused on producing the most accurate genetic sequence data from each sample,
using data analytics and proprietary content to draw accurate and reliable biomedical

interpretations

http://www.personalis.com
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also an opportunity for the development of applications or apps,

specifically for omics tools, from which hundreds of specialty

solutions could be developed [44]. Companies such as Illumina

and 23andme already offer an open platform for developers and

more companies will implement application programming inter-

faces (APIs) in their services. Therefore, solutions to overcome data

privacy issues will be crucial.

Pipelines to deal with increasing amounts of omics data will be

needed to store, transfer, analyze, visualize and generate ‘short’

reports for researchers and clinicians (Fig. 1). In fact, an entirely

new genomics industry could result from cloud computing, which

will transform medicine and life sciences. Indeed, cloud comput-

ing opens a new world of possibilities for the genomics industry to

transform the way that it approaches research and medicine.

Other solutions to deal with big data, especially when analyzing

complex genomics information, include the use of graphics pro-

cessing units (GPUs). GPUs have the potential to improve quickly

and drastically computational power over conventional proces-

sors, even when compared with the cloud [45]. For example, GPUs

can be used as a tool to detect gene–gene interactions in genome-

wide studies [46]. Compared with the currently used central

processing units (CPUs), GPUs are highly parallel hardware pro-

viding massive computation resources. GPUs have been recently

used for proteomic analysis [47] and metagenomic sequence clas-

sification [48], and could be applied to deal with heterogeneous

sources of data, such as clinical and genomic information.

Big data analytics is also affecting how both biotechnology and

pharmaceutical sectors identify new drug targets. The pharmaceu-

tical industry is partnering with different omics companies and

with academia to develop personalized drugs based on a patient’s

genetic code (Table 3). For example, Vertex Pharmaceuticals devel-

oped a collaborative study with more than 200 scientists in a cystic

fibrosis (CF) project that aimed to screen >500 000 compounds

using computer software. Using this approach, this project vir-

tually screened thousands of compound combinations to narrow

the choice to a single drug capable of helping a small group of CF

patients with a specific DNA mutation (G551D) that affects 4% of

such patients [49,50]. The end product of this collaboration was
6 www.drugdiscoverytoday.com
Kalydeco [50]. This is a clear example of the future of genetically

targeted drugs in personalized medicine. The identification of this

new drug was a powerful result of combinatory technology using

big data analytics and genetics and was the first drug discovered to

correct an underlying cause of CF [51].

Successful applications of personalized medicine in cancer

include three drugs that have been identified and used in specific

groups of patients. Patients with melanoma and the BRAF muta-

tion V600E can be treated with dabrafenib [52], patients with

breast cancer and the amplification or overexpression of the gene

encoding Her2/Neu can be treated with a targeted therapy using

trastuzumab [53] and different types of tumor that contain the

fusion protein BCR-ABL can be treated with imatinib [54]. These

targeted therapies show how important personalized medicine

programs will be to identify novel treatments for rare genetic

diseases and for complex diseases, such as cancer. In such cases,

the use of big data analytics tools to deal with complex combina-

tions of information simultaneously will be crucial.

Other examples of how personalized computer-aided diagnos-

tics can help save time while improving the overall quality of care

for patients is the use of computer algorithms to screen patients for

cancer [55]. These informatics tools are just as accurate as trained

radiologists, except that the computer algorithms have a lower

false positive rate [55]. Computer-aided diagnostics (CAD) can also

help in ascertaining responses to the use of specific drugs [56].

Challenges ahead
These revolutionary changes in big data generation and acquisi-

tion create profound challenges for the storage, transfer and the

security of information. Indeed, it might now be less expensive to

generate the data than it is to store, secure and analyze it. In

addition, biological and medical data are more heterogeneous

than information from any other research field. For example,

the National Center for Biotechnology Information (NCBI) has

been leading big data efforts in biomedical science since 1988, but

neither the NCBI nor anyone in the private sector has a compre-

hensive, inexpensive and secure solution to the problem of data

storage (even though companies with different solutions are

http://www.23andme.com/
http://www.counsyl.com/
http://www.foundationmedicine.com/
http://www.knome.com/
http://www.pathway.com/
http://www.personalis.com/


Drug Discovery Today � Volume 00, Number 00 �November 2013 REVIEWS

R
ev
ie
w
s
�
IN
F
O
R
M
A
T
IC
S

starting to appear, as shown in Tables 1 and 2). These capabilities

are beyond the reach of small laboratories and institutions, posing

several challenges for the future of biomedical research.

Another challenge is to transfer data from one location to

another, because this is mainly performed by shipping external

hard disks containing the information. An interesting solution for

data transfer is the use of different types of software to compress

the data without losing pieces of information. Another tool that

could be used is open-access sharing of scientific data and the use

of peer-to-peer file-sharing technology [57]. In addition, a specific

solution that became available for data storage and transfer is a

type of Dropbox for data scientists named Globus Online, which

provides a ‘Software as a Service’ (SaaS) for the storage and transfer

of data [58–61]. In this case, data is generated in one location

where large-scale storage is not available. Then, the data produced,

especially in genomics, when whole genomes are sequenced, need

to be transferred to other locations. Globus Online provides sto-

rage capacity and secure solutions to transfer the data [58]. Aspera

also offers a service named ‘fast’ that is a software able to speed up

data transfer hundreds of times compared with the other methods

available, using a regular internet protocol [61]. However, all

transfer protocols have challenges associated with transferring

large, unstructured data sets. Finally, tools to speed the process

of data transfer and latency have been developed recently; one

example is a cloud-based solution that overcomes this problem by

processing the data while it is being transferred to another location

[62].

The security and privacy of the data from individuals is also a

concern. Possible solutions to this issue include the use of better

security systems with advanced encryption algorithms, such as

those used by the financial sector to secure their clients’ privacy

[63]. In addition, a new generation of consent forms that spe-

cifically allow study participants or patients to openly share the

data generated on them with researchers has been proposed and

might be implemented soon [64]. A context-specific approach to

informed consent for web-based health research can facilitate a

dynamic research enterprise and, at the same time, maintain

public trust [64]. Furthermore, if privacy concern is an issue, the

use of ‘in-house’ hardware solutions instead of cloud computing

could ease the implementation of big data with more informa-

tion protection. One example is the hardware system that the
company Knome is implementing, called ‘knoSYS100’ [65]

(Table 3). These are just some of the solutions that could be

applied to overcome the challenges of dealing with big data

privacy, but I believe that other tools will emerge in the near

future.

Concluding remarks
Success in biomedical research to deal with the increasing

amounts of omics data combined with clinical information will

depend on the ability to interpret large data sets that are generated

by different emerging technologies. Big corporations, such as

Microsoft, Apple, Oracle, Amazon, Google, Facebook and Twitter,

are masters in dealing with big data sets. The scientific and medical

fields will need to implement the same type of scalable structure to

deal with the volumes of data generated by different omics tech-

nologies and health information. Biomedicine will need to adapt

to the advances in informatics to address successfully the big data

problems that will be faced in the future, especially in personalized

medicine programs, to improve significantly patient care. Addi-

tionally, more studies will be needed to demonstrate that perso-

nalized medicine and computer-aided diagnostics directly benefit

patients.
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