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Abstract. We present VMλ, a formalization and implementation of the
functional language VML.

VML is a programming language proposed by discovery scientists for
the purpose of assisting the process of knowledge discovery. It is a non-
trivial extension of ML with hypothetical views. Operationally, a hypo-
thetical view is a value with a representation that indicates how the
value was created. The notion of hypothetical views has already been
successful in the domain of genome analysis, and known to be useful in
the process of knowledge discovery. However, VML as a programming
language was only informally defined in English prose, and indeed found
problematic both in theory and in practice. Thus, a proper definition
and implementation of VML with formal foundations would be of great
help to discovery science and hence corresponding domain sciences.

This paper gives a solid foundation of VML by extending the standard
simply typed call-by-value λ-calculus. Although this extension, VMλ, is
simple and clear, its design required much care to find and fix problems of
the original VML. We also present a real implementation of VMλ, written
in Camlp4 as a conservative translator into OCaml. This implementation
makes extensive use of labeled arguments and polymorphic variants – two
advanced features of OCaml that originate in OLabl.

1 Introduction

Functional Programming for Scientific Discovery: Approaches and Problems.
Higher-order functional programming languages are known to be good for com-
plex applications such as theorem proving, artificial intelligence, program gener-
ation, database querying, and genome analysis [17, 18, 29, 34, 38, 40]. Given the
success of functional languages in these domains, it is natural to consider the
use of functional languages in the field of discovery science [3–5], an area of
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information science that aims to develop systematic methods of knowledge dis-
covery. Indeed, the features of functional languages—in particular, first-class
functions—seem to help much to create and evaluate scientific hypotheses.

For instance, suppose that we have the data of some people’s heights and
weights, and would like to find the relationship between each person’s height
and weight. The data can be represented by a list of pairs of two floating-point
numbers, one for height in centimeters and the other for weight in kilograms.
(For the sake of concreteness, we adopt OCaml-like syntax [27]. Readers who
are familiar with other functional languages should not have much difficulty in
understanding it.)

# let data =
[(175.4, 73.9); (167.6, 66.1); (180.8, 81.2); . . . ] ;;

val data : (float * float) list =
[(175.4, 73.9); (167.6, 66.1); (180.8, 81.2); . . . ]

A hypothesis for explaining this data can be modeled by a function that estimates
each person’s weight from the person’s height, for example by subtracting 100.
(The operator -. is the OCaml syntax of subtraction for floating-point numbers.)

# let simple_hypothesis h = h -. 100.0 ;;
val simple_hypothesis : float -> float = <fun>

Then, the appropriateness of this hypothesis can be evaluated by some statistical
method implemented by a higher-order function that takes the hypothesis as an
argument.

# (* fitness : (float -> float) ->
(float * float) list -> float *)

fitness simple_hypothesis data ;; (* 1.0 means a perfect fit *)
- : float = 0.81

Of course, there may well be other functions that fit the data better, for example:

# fitness (fun h -> h -. 101.0) data ;;
- : float = 0.83

Rather than trying the infinite possibilities of such functions one by one, it is
nicer to have another higher-order function that returns the function (of a certain
class) that fits the data best.

# let create_hypothesis data =
let (a, b) = compute such a and b that f(x) = ax + b is

the affine function f that fits the data best in
fun h -> a *. h +. b ;;

val create_hypothesis :
(float * float) list -> float -> float = <fun>

Then, by using this hypothesis-creating function, we can automatically obtain a
hypothesis that explains the data well.



# let good_hypothesis = create_hypothesis data ;;
val good_hypothesis : float -> float = <fun>
# fitness good_hypothesis data ;;
- : float = 0.95

Or can we? Not really – we cannot actually see what the function is, because we
have access only to the value of the function. That is, we have no access to the
representation of the hypothesis. Thus, there is no way for the user to interpret
the meaning of this hypothesis and evaluate it under domain experience. This
significant limitation makes the present system far less useful for knowledge
discovery.

An obvious solution for this problem is to have the user modify the pro-
gram and manipulate the representation by hand. For example, the hypothesis-
creating function above can be rewritten as

# let create_hypothesis data =
let (a, b) = . . . in ((fun h -> a *. h +. b), (a, b)) ;;

val create_hypothesis : (float * float) list ->
(float -> float) * (float * float) = <fun>

so that it returns the pair of the function and its parameters. In real programs,
however, this approach is much more troublesome and error-prone than it may
seem: the user must take care not to confuse the representations of a class of
functions with those of another; furthermore, in typed languages, some trick
(e.g., to use exceptions as an extensible data type) is necessary to unify the
types of functions whose values have the same type but whose representations
may have different types. These difficulties spoil the utility and simplicity of
functional languages in this application.

Another naive solution is to remember or reconstruct the source code of a
function, that is, taking the source code as the representation of a hypothesis.
However, doing so is inefficient or even impossible (e.g., for preserving type ab-
straction) in many languages, though it is possible in a few situations (e.g., by
get-lambda-expression in certain dialects of Lisp or by type-directed partial eval-
uation [9, 10]). Furthermore, the source code of functions can be rather complex
and therefore is not very useful as representation of hypotheses. In addition, a
similar problem arises in first-order values as well: in knowledge discovery, it
is often necessary to know not only a value itself but also how the value was
computed [6]; however, remembering the history of computation is even more
expensive than having the source code of a function.

VML: A Functional Language with Hypothetical Views. To address the issues
above, a group of discovery scientists have recently proposed a functional lan-
guage VML [6],3 an extension of ML with hypothetical views or just views in
short. (Note that they are different from views for abstract data types [39].) In-
tuitively, a view is the pair of a value and its representation that remembers how

3 It has nothing to do with the Vector Markup Language [25].



the value was computed. Views are constructed by defining a view constructor
via the keyword view and by applying the view constructor to an argument. A
view thus constructed can then be pattern-matched via the keyword vmatch.

For instance, in the example above, let us define the hypotheses as views
rather than as ordinary functions. (For the sake of clarity, we use a little different
syntax and semantics from the original VML.)

# view AffineFun(a, b) = fun h -> a *. h +. b ;;
view AffineFun of float * float : float -> float

The view constructor AffineFun takes a pair of two floating-point numbers a
and b, and returns a function of type float -> float with the representation
AffineFun(a, b) of the function.

# AffineFun(1.0, -100.0) ;;
- : (float -> float) view = <fun> as AffineFun(1.0, -100.0)

By using this view constructor, the hypothesis-creating function above can be
rewritten as:

# let create_hypothesis data =
let (a, b) = . . . in AffineFun(a, b) ;;

val create_hypothesis :
(float * float) list -> (float -> float) view = <fun>

Then, by applying this view-returning function and by pattern-matching the re-
turned view, we can finally see what the automatically obtained good hypothesis
is.

# let good_hypothesis = create_hypothesis data ;;
- : (float -> float) view = <fun> as AffineFun(1.03, -102.8)
# vmatch good_hypothesis with AffineFun(a, b) -> (a, b) ;;
- : float * float = (1.03, -102.8)

From the data, the hypothesis-creating function found the function f(x) =
1.03x−102.8 to be the best affine function f that estimates each person’s weight
from his/her height. Of course, it is also possible to use the value part of the view
(i.e., the function fun h -> 1.03 *. h -. 102.8) as well as its representation
part.

# (valof good_hypothesis) 175.4 ;;
- : float = 77.862

Our Contributions. The notion of views itself has already been proved to be
useful by several applications in the domain of genome analysis [7, 22–24]. How-
ever, the semantics and even the syntax of VML were only informally presented
in English prose [6] and theoretically unclear as well as practically problematic.
As a result, VML was never successfully implemented.

This paper formalizes the syntax, the type system, and the dynamic seman-
tics of VML by extending the standard simply typed call-by-value λ-calculus.



M (term) ::= x (variable)
| λx. M (λ-abstraction)
| M1M2 (function application)
| view V {x} = M1 in M2 (view definition)
| V (view constructor)
| M1{M2} (view application)
| vmatch M1 with V {x} ⇒ M2 else M3 (view matching)
| valof M (view destruction)

Fig. 1. Syntax of Simple VMλ

This formalization, VMλ, reveals and fixes problems in the original VML. Fur-
thermore, we give a translation of VMλ into ordinary OCaml without views.
The translation is fully implemented in Camlp4 [11] and is conservative – that
is, features of the original OCaml are available for free.

2 Simple VMλ

First, we present the simplest version of VMλ, where every view constructor takes
just one argument. Later in the next section, we will present a more sophisticated
version of VMλ, where view constructors may take any number of arguments
in any order, with partial application of view constructors supported as well as
pattern matching against such partially applied view constructors.

2.1 Syntax and Informal Semantics

The syntax of VMλ is given in Figure 1. It assumes two countably infinite disjoint
sets Var of variables x, y, z, . . . and Name of view constructors V , W , . . .. In
addition to standard λ-terms, there are five kinds of terms involving views. Recall
that a view is the pair of a value v1 and its representation V {v2}.
– A view definition view V {x} = M1 in M2 first defines the view constructor

V and then evaluates the body M2, where the view constructor V takes an
argument v, evaluates the term M1 with the variable x bound to the value
v, and returns the result with its representation V {v}. The name V is called
bound in the term M2 and can be implicitly renamed by α-conversion.

– A view constructor V refers to its own definition as above.
– A view application M1{M2} first evaluates the term M1 to a view constructor

and the term M2 to a value v, and then applies the view constructor to the
argument v.

– A view matching vmatch M1 with V {x} ⇒ M2 else M3 first evaluates the
term M1 to a view and then matches its representation part W{v} against
the pattern V {x}. If V = W , then the term M2 is evaluated with the variable
x bound to the value v. Otherwise, the term M3 is evaluated.



v (value) ::= 〈E ; λx. M〉 (ordinary function closure)
| 〈E ; V {x} = M〉 (view constructor closure)
| V {v1} = v2 (view)

E(x) = v

E ` x ⇓ v
(E-Var) E ` λx. M ⇓ 〈E ; λx. M〉 (E-Lam)

E ` M1 ⇓ 〈E ′; λx. M〉 E ` M2 ⇓ v E ′, x 7→ v ` M ⇓ v′

E ` M1M2 ⇓ v′
(E-FApp)

V ′ fresh E , V 7→ 〈E ; V ′{x} = M1〉 ` M2 ⇓ v

E ` view V {x} = M1 in M2 ⇓ v
(E-VDef)

E ` M1 ⇓ 〈E ′; V {x} = M ′〉 E ` M2 ⇓ v E ′, x 7→ v ` M ′ ⇓ v′

E ` M1{M2} ⇓ V {v} = v′
(E-VApp)

E(V ) = 〈 ; V ′{ } = 〉 E ` M1 ⇓ V ′{v′} = E , x 7→ v′ ` M2 ⇓ v

E ` vmatch M1 with V {x} ⇒ M2 else M3 ⇓ v
(E-VMatch-Succ)

E(V ) = 〈 ; V ′{ } = 〉 E ` M1 ⇓ W{ } = W 6= V ′ E ` M3 ⇓ v

E ` vmatch M1 with V {x} ⇒ M2 else M3 ⇓ v
(E-VMatch-Fail)

E(V ) = v

E ` V ⇓ v
(E-VCon)

E ` M ⇓ { } = v

E ` valof M ⇓ v
(E-ValOf)

Fig. 2. Semantics of Simple VMλ

– A view destruction valof M evaluates the term M to a view and extracts
its value part v.

For example, assuming primitives for integers and tuples, the term

view V {x} = x + 1 in let v = V {2} in
〈valof v, vmatch v with V {y} ⇒ y else −1〉

evaluates to the tuple 〈3, 2〉. Here, let x = M1 in M2 is the syntax sugar of
(λx.M2)M1.

2.2 Operational Semantics

The semantics of VMλ is formalized by the evaluation relation E ` M ⇓ v, where
v is a value denoting the result of evaluation and E is an environment mapping
free variables (and free view constructors) of M to their values. Intuitively, the
relation E ` M ⇓ v means that the term M evaluates to the value v under the
environment E . Formally, E ` M ⇓ v is the least relation over E , M , and v that
satisfies the rules in Figure 2.



A value v is either a closure 〈E ; λx.M〉 of an ordinary function λx.M , a
closure 〈E ;V {x} = M〉 of a view constructor V defined as V {x} = M , or a view
V {v1} = v2 of a value v2 represented as V {v1}.

The rules (E-Var), (E-Lam), and (E-FApp) are standard. The other rules
formalize the intuitive semantics above of terms involving views. In rule (E-
VDef), the premise that V is bound to a closure of fresh V ′ reflects the fact that
view constructors are treated as generative because they are α-convertible but
may escape their syntactic scopes. Accordingly, in the rules (E-VMatch-Succ)
and (E-VMatch-Fail), this freshly generated V ′ is looked up in E by V and used
for the pattern matching. Here, denotes the “don’t-care” meta-variable.

For example, assuming primitives for integers and booleans, let M1 be the
term:

view V {x} = if x then 1 else 0 in V {true}
Then, under the empty environment, M1 evaluates to the value V ′{true} = 1
for a fresh view constructor V ′. That is, ` M1 ⇓ V ′{true} = 1. Let furthermore
M2 be the term:

view V {y} = y + 1 in vmatch M1 with V {z} ⇒ z − 2 else −1

Since the V ′ above is fresh, the pattern matching in this term fails and M2

evaluates to the integer −1 rather than causing the runtime type error true−2.

2.3 Type System

The type system of VMλ, given in Figure 3, is an extension of the simple type
system of the standard λ-calculus.4 In addition to standard types, there are two
kinds of types involving views.

– A view constructor type view{τ1}τ2 denotes the type of a view constructor
that takes an argument of type τ1 and returns the view for a value of type
τ2.

– A view type view{}τ denotes the type of a view for a value of type τ .

Thus, in this version of VMλ, a view constructor type view{τ1}τ2 is actually
equivalent to the function type τ1 → view{}τ2. However, these types are distin-
guished for the sake of presentation consistent with the next section.

The typing rules are straightforward, given the semantics of VMλ and the
meanings of types above. Thanks to the generativity of view constructors, there
is no worry about cases where two definitions of a syntactically identical view
constructor expect different types of argument, as in the example above.

The soundness of this type system is formally proved as follows. First, the
typing rules are naturally extended for values and environments as in Figure 4.
Next, the relation E ` M ⇓ error , denoting a runtime error in the evaluation
4 Γ, x : τ is the type environment such that (Γ, x : τ)(y) = Γ (y) for y ∈ dom(Γ )

and (Γ, x : τ)x = τ where x 6∈ dom(Γ ). If it happens that x ∈ dom(Γ ), we assume
implicit α-conversion of x to some z 6∈ dom(Γ ).



τ (type) ::= b (base type)
| τ1 → τ2 (function type)
| view{τ1}τ2 (view constructor type)
| view{}τ (view type)

Γ (x) = τ

Γ ` x : τ
(T-Var)

Γ, x : τ1 ` M : τ2

Γ ` λx. M : τ1 → τ2

(T-Lam)

Γ ` M1 : τ → τ ′ Γ ` M2 : τ

Γ ` M1M2 : τ ′
(T-FApp)

Γ, x : τ ` M1 : τ1 Γ, V : view{τ}τ1 ` M2 : τ2

Γ ` view V {x} = M1 in M2 : τ2

(T-VDef)

Γ ` M1 : view{τ}τ ′ Γ ` M2 : τ

Γ ` M1{M2} : view{}τ ′ (T-VApp)

Γ (V ) = view{τ}τ1 Γ ` M1 : view{}τ1

Γ, x : τ ` M2 : τ2 Γ ` M3 : τ2

Γ ` vmatch M1 with V {x} ⇒ M2 else M3 : τ2

(T-VMatch)

Γ (V ) = τ

Γ ` V : τ
(T-VCon)

Γ ` M : view{}τ
Γ ` valof M : τ

(T-ValOf)

Fig. 3. Type System of Simple VMλ

Γ ′ ` E Γ ′ ` λx. M : τ1 → τ2

Γ ` 〈E ; λx. M〉 : τ1 → τ2

(T-FunClos)

Γ ` V : view{τ}τ ′ Γ ′ ` E Γ ′, x : τ ` M : τ ′

Γ ` 〈E ; V {x} = M〉 : view{τ}τ ′ (T-VConClos)

Γ ` V : view{τ}τ ′ Γ ` v1 : τ Γ ` v2 : τ ′

Γ ` V {v1} = v2 : view{}τ ′ (T-View)

Γ ` E(x) : Γ (x) for each x ∈ dom(E)

Γ ` E (T-Env)

Fig. 4. Typing Rules for Values and Environments in Simple VMλ



of the term M under the environment E , is defined as the least relation that
satisfies rules such as:

V 6∈ dom(E)
E ` V ⇓ error

E ` M ⇓ v v is not a view
E ` valof M ⇓ error

E ` M ⇓ error
E ` valof M ⇓ error

The other rules are similar. (In the present formalization, we could actually
define E ` M ⇓ error just as “there exists no such v that e ` M ⇓ v.” However,
this approach does not scale to cases where evaluation may diverge, e.g., because
of recursion.) Then, the type soundness is proved as follows.

Lemma 1 (Weakening). Let Γ, Γ ′ be the type environment such that (Γ, Γ ′)(x) =
Γ (x) for x ∈ dom(Γ ) and (Γ, Γ ′)(x) = Γ ′(x) for x ∈ dom(Γ ′) where dom(Γ ) ∩
dom(Γ ′) = ∅.
1. If Γ ` M : τ , then Γ, Γ ′ ` M : τ for any Γ ′ with dom(Γ ) ∩ dom(Γ ′) = ∅.
2. If Γ ` v : τ , then Γ, Γ ′ ` v : τ for any Γ ′ with dom(Γ ) ∩ dom(Γ ′) = ∅.
3. If Γ ` E, then Γ, Γ ′ ` E for any Γ ′ with dom(Γ ) ∩ dom(Γ ′) = ∅.

Proof. Straightforward induction on the derivation of Γ ` M : τ , Γ ` v : τ , and
Γ ` E .

Theorem 1 (Type Soundness). If Γ ` M : τ and Γ ` E, then E ` M 6⇓
error. Furthermore, if E ` M ⇓ v, then Γ, Γ ′ ` v : τ for some Γ ′ with dom(Γ )∩
dom(Γ ′) = ∅.
Proof. By induction on the structure of M using Lemma 1. The only non-trivial
cases are the following two.

Case M = (view V {x} = M1 in M2). Suppose Γ, x : τ ′ ` M1 : τ ′1 and
Γ, V : view{τ ′}τ ′1 ` M2 : τ . By Lemma 1, Γ, V : view{τ ′}τ ′1, V ′ : view{τ ′}τ ′1 `
M2 : τ for any fresh V ′. On the other hand, Γ, V : view{τ ′}τ ′1, V ′ : view{τ ′}τ ′1 `
〈E ;V ′{x} = M1〉 : view{τ ′}τ ′1 by (T-VConsClos) with the assumption that
Γ ` E , so Γ, V : view{τ ′}τ ′1, V ′ : view{τ ′}τ ′1 ` E , V 7→ 〈E ; V ′{x} = M1〉 by
(T-Env) with the inversion of Γ ` E . Therefore, by the induction hypothesis,
E , V 7→ 〈E ;V ′{x} = M1〉 ` M2 6⇓ error . Suppose E , V 7→ 〈E ; V ′{x} = M1〉 `
M2 ⇓ v. The theorem then follows by (E-VDef) and the induction hypothesis.

Case M = (vmatch M1 with V {x} ⇒ M2 else M3). Suppose Γ (V ) =
view{τ ′}τ ′1 and Γ ` M1 : view{}τ ′1 with Γ, x : τ ′ ` M2 : τ and Γ ` M3 : τ .
Since Γ ` E , Γ ` E(V ) : view{τ ′}τ ′1. Thus, by inversion of (T-VConsClos),
E(V ) is of the form 〈 ; V ′{ } = 〉 and Γ ` V ′ : view{τ ′}τ ′1. On the other hand,
E ` M1 6⇓ error by the induction hypothesis. Suppose E ` M1 ⇓ v1. Again by
the induction hypothesis, Γ, Γ ′ ` v1 : view{}τ ′1 for some Γ ′. Thus, by inversion
of (T-View), v1 is of the form W{v′} = . If W 6= V ′, the theorem follows by (E-
VMatch-Fail) and the induction hypothesis. Suppose W = V ′. Again by inver-
sion of (T-View), Γ, Γ ′ ` v′ : τ ′. Therefore, by (T-Env), Γ, Γ ′, x : τ ′ ` E , x 7→ v′.
On the other hand, Γ, Γ ′, x : τ ′ ` M2 : τ by Lemma 1. The theorem then follows
by (E-VMatch-Succ) and the induction hypothesis.



M (term) ::= . . . (same as before)
| view V {l+ = x+} = M1 in M2 (view definition)
| M1{l+ = M+

2 } (view application)
| vmatch M1 with V {l∗ = x∗} ⇒ M2 else M3 (view matching)

Fig. 5. Syntax of VMλabl

3 VMλabl: An Extension of Simple VMλ with Labeled
Arguments

In this section, we present VMλabl, a more sophisticated version of VMλ ex-
tended with labeled arguments [1, 13, 16].

Partial application of functions is a convenient feature of functional lan-
guages: it allows one to create a special function by fixing part of the arguments
of a generic function, without having to name and define the special function
explicitly and separately; furthermore, λ-abstraction enables giving any (rather
than only the first) of the arguments of a function in advance, for example like
λx. λz. f(x, 123, z).

Unfortunately, however, in the simple VMλ in the previous section, this
convenient feature is not available for views: even if V {(x, 123, z)} is a view,
λx. λz. V {(x, 123, z)} is not – it is a mere ordinary function that does not have
a representation and cannot be pattern-matched.

To overcome this limitation, the original VML allowed pattern matching over
λ-abstracted views [6], like:

# vmatch (fun x -> fun z -> V(x, 123, z)) with V(_, y, _) -> y
- : int = 123

However, it is rather problematic both theoretically and practically, because
it requires evaluation inside functions and breaks the standard weak normal-
ization strategy of most functional languages. For instance, pattern-matching
λx. λz. V {(x, g(456), z)} against V ( , y, ) forces the quite unnatural evaluation
of g(456), which may diverge, have a side effect, or take a long time. (It may
take more than an hour or even a week if the data is large.)

We solve the problems above by allowing partial and commutative application
of view constructors via labeled arguments [1, 13, 16]. For this purpose, we define
VMλabl, an extension of VMλ with labeled arguments of view constructors.
With this extension, the example above can be rewritten like vmatch V {l2 =
g(456)} with V {l2 = y} ⇒ y, in which it is natural to evaluate g(456).

3.1 Syntax

The abstract syntax of VMλabl is given in Figure 5. It is the same as VMλ except
for three kinds of terms, namely, view definition, view application, and view



matching, where the arguments of view constructors are labeled. We assume yet
another countably infinite set Lab of labels l, m, n, . . ., distinct from variables
and view constructors. The order of labeled arguments does not matter: for
example, {l1 = M1, l2 = M2} is the same as {l2 = M2, l1 = M1}.

For the sake of brevity, we use + and ∗ to abbreviate sequences: X+ denotes
X1, . . . , Xn where n > 0; X∗ denotes X1, . . . , Xn where n ≥ 0 (i.e., the sequence
may be empty). The notations X+ op Y + and X∗ op Y ∗ mean the sequence
X1 op Y1, . . . , Xn op Yn for any binary operator op. For example, {l+ = M+}
means {l1 = M1, . . . , ln = Mn} where n > 0.

Also, for the sake of syntactic convenience, the view application V {l+ = v+}
can take more than one argument at a time. It is semantically equivalent to the
sequence of view applications V {l1 = v1} . . . {ln = vn}.

3.2 Semantics

The evaluation semantics of VMλabl is given in Figure 6. Its difference from the
semantics of the simple VMλ is that view constructors may be partially applied,
and also, that their arguments are labeled. The result of the partial application
V {l+ = v+} of a view constructor defined as V {l+ = y+, m+ = x+} = M
is written V {l+ = v+,m+ = x+} = M . Note that the labels m+ of the yet
unknown arguments x+ are non-empty, which makes this application partial.
The body M is evaluated when all of the arguments are given, that is, when the
view constructor V is fully applied. Thus, the rules (E-VApp), (E-VMatch-Succ)
and (E-VMatch-Fail) are divided into two cases (. . . -Part) and (. . . -Full) each,
according to whether the view constructor of concern is partially applied (or not
applied at all) or fully applied.

3.3 Type System

Having introduced partial application of view constructors, types in VMλabl
are actually simpler than those in the simple VMλ, because the type view{}τ of
views are integrated into the type view{l∗ : τ∗}τ of view constructors that are
possibly partially applied, as a special case where the yet unknown arguments l∗

are empty. The typing rules of VMλabl, given in Figure 7, are straightforward
adaptation of those of the simple VMλ. We conjecture that the type soundness
proof of VMλabl should also be similar to that of the simple VMλ.

4 Translation of VMλabl into OCaml

This section explains an implementation5 of VMλabl, specifically, its translation
into OCaml [27]. The translation itself is implemented by using Camlp4 [11], a
pre-processor (and pretty printer) for OCaml. The translated code uses labeled
arguments and polymorphic variants [14, 30] (so the target language may well be

5 Available at: http://www.yl.is.s.u-tokyo.ac.jp/~sumii/pub/vml.tar.gz



v (value) ::= . . . (same as before)
| 〈E ; V {l∗ = v∗, m+ = x+} = M〉 (view constructor closure)
| V {l+ = v+} = v (view)

V ′ fresh E , V 7→ 〈E ; V ′{l+ = x+} = M1〉 ` M2 ⇓ v

E ` view V {l+ = x+} = M1 in M2 ⇓ v
(E-VDef’)

E ` M1 ⇓ 〈E ′; V {l∗1 = v∗1 , l+2 = x+, l+3 = y+} = M〉
E ` M+

2 ⇓ v+
2

E ` M1{l+2 = M+
2 } ⇓

〈E ′, x+ 7→ v+
2 ; V {l∗1 = v∗1 , l+2 = v+

2 , l+3 = y+} = M〉
(E-VApp-Part)

E ` M1 ⇓ 〈E ′; V {l∗1 = v∗1 , l+2 = x+} = M〉
E ` M+

2 ⇓ v+
2 E ′, x+ 7→ v+

2 ` M ⇓ v

E ` M1{l+2 = M+
2 } ⇓ V {l∗1 = v∗1 , l+2 = v+

2 } = v
(E-VApp-Full)

E ` M1 ⇓ 〈 ; V ′{l∗ = v∗, m+ = y+} = 〉
E(V ) = 〈 ; V ′{. . .} = 〉 E , x∗ 7→ v∗ ` M2 ⇓ v

E ` vmatch M1 with V {l∗ = x∗} ⇒ M2 else M3 ⇓ v
(E-VMatch-Succ-Part)

E ` M1 ⇓ 〈 ; V ′{. . .} = 〉 E(V ) = 〈 ; W{. . .} = 〉
W 6= V ′ E ` M3 ⇓ v

E ` vmatch M1 with V {l∗ = x∗} ⇒ M2 else M3 ⇓ v
(E-VMatch-Fail-Part)

E ` M1 ⇓ V ′{l+ = v+} = E(V ) = 〈 ; V ′{. . .} = 〉
E , x+ 7→ v+ ` M2 ⇓ v

E ` vmatch M1 with V {l+ = x+} ⇒ M2 else M3 ⇓ v
(E-VMatch-Succ-Full)

E ` M1 ⇓ V ′{. . .} = E(V ) = 〈 ; W{. . .} = 〉
W 6= V ′ E ` M3 ⇓ v

E ` vmatch M1 with V {l+ = x+} ⇒ M2 else M3 ⇓ v
(E-VMatch-Fail-Full)

E(V ) = v

E ` V ⇓ v
(E-VCon)

E ` M ⇓ { } = v

E ` valof M ⇓ v
(E-ValOf)

Fig. 6. Semantics of VMλabl



τ (type) ::= . . . (same as before)
| view{l∗ : τ∗}τ (view and view constructor type)

Γ, x+ : τ+ ` M1 : τ1 Γ, V : view{l+ : τ+}τ1 ` M2 : τ2

Γ ` view V {l+ = x+} = M1 in M2 : τ2

(T-VDef’)

Γ ` M1 : view{l+ : τ+, l∗0 : τ∗0 }τ Γ ` M+
2 : τ+

Γ ` M1{l+ = M+
2 } : view{l∗0 : τ∗0 }τ

(T-VApp’)

Γ (V ) = view{l∗ : τ∗, l∗0 : τ∗0 }τ Γ ` M1 : view{l∗0 : τ∗0 }τ
Γ, x∗ : τ∗ ` M2 : τ ′ Γ ` M3 : τ ′

Γ ` vmatch M1 with V {l∗ = x∗} ⇒ M2 else M3 : τ ′
(T-VMatch’)

Γ (V ) = τ

Γ ` V : τ
(T-VCon)

Γ ` M : view{}τ
Γ ` valof M : τ

(T-ValOf)

Fig. 7. Type System of VMλabl

called OLabl [13] rather than OCaml). Although we have adopted OCaml as the
actual target language, observations in this section would also apply to other
typed languages extended with labeled arguments and polymorphic variants.
(We are interested in typed languages because views are originally typed [7, 22–
24].) For a brief introduction to labeled arguments and polymorphic variants,
see http://caml.inria.fr/ocaml/htmlman/manual006.html.

The main ideas of the translation are as follows. A possibly partially applied
view V {l∗ = v∗,m∗ = x∗} = M , including a non-applied view V {m+ = x+} =
M and a fully applied view V {l+ = v+} = v, is represented as a record with
three fields valu, repr, and addargs. The field valu holds a function fun m1:x1

-> . . . -> fun mn:xn -> M with its arguments x∗ labeled as m∗. The field
repr keeps the polymorphic variant ‘V [‘l1(v1); . . .; ‘ln(vn)] of a list of
polymorphic variants ‘l∗(v∗). The field addargs is an auxiliary function for
allowing the translation of a view application to apply the view constructor
without knowing its label. Generic rules of the translation based on these ideas
are given in Figure 8.

Why do we use polymorphic variants? The reason is twofold: one is to unify
the types of two views whose values have the same type but whose representa-
tions have different types (this demand precludes encodings using tuples, records,
or objects); the other is to avoid unnecessary type declaration (this demand pre-
cludes encodings using exceptions or modules). The types of the arguments of
polymorphic variants need not be declared, and the types [> ‘V1 of τ1] and [>
‘V2 of τ2] of different polymorphic variants V1 and V2 can naturally be unified
to [> ‘V1 of τ1 | ‘V2 of τ2], which is indeed the main point of polymorphic
variants.



exception VMatchFailure

type (’v, ’r, ’a) view =

{ valu : ’v; repr : ’r; addargs : ’r -> ’a list -> ’r }

[[view V {l+ = x+} = M1 in M2]] =
let Wi = generate fresh name from V in

let vml V =

{ valu = fun ~l1:x1 -> . . . -> fun ~ln:xn -> [[M1]];
repr = ‘Wi [];

addargs = fun newargs ->

(function ‘Wi oldargs -> ‘Wi (oldargs @ newargs)

| -> failwith ”a bug in VMλ”) } in

let vml V getargs = (function ‘Wi args -> args

| -> raise VMatchFailure) in [[M2]]

[[V ]] = vml V

[[M1{l+ = M+
2 }]] =

let { valu = vml valu; repr = vml repr; addargs = vml addargs } = [[M1]] in

let vml arg l1 = [[M21]] in

. . .
let vml arg ln = [[M2n]] in

{ valu = vml valu ~l1:vml arg l1 . . . ~ln:vml arg ln;
repr = vml addargs [‘l1(vml arg l1); . . .; ‘ln(vml arg ln)] vml repr;

addargs = vml addargs }

[[vmatch M1 with V {l∗ = x∗} ⇒ M2 else M3]] =
let { valu = vml valu; repr = vml repr; addargs = vml addargs } = [[M1]] in

let = fun () -> TypeCheck in

try let vml repr’ = vml V getargs vml repr in

let x1 = search l1 vml repr’ in

. . .
let xn = search ln vml repr’ in [[M2]]

with VMatchFailure -> [[M3]]
where
let rec search li = (function [] -> failwith ”a bug in VMλ”

| ‘li(x) :: -> x

| :: r -> search li r)

TypeCheck = (* a trick to ensure that M1 and V {l∗ = x∗} have the same type *)

fun ~l1:vml arg l1 -> . . . -> ~ln:vml arg ln ->

vml valu == vml V .valu ~l1:vml arg l1 . . . ~ln:vml arg ln

[[valof M ]] = [[M ]].valu

Fig. 8. Translation of VMλabl into OCaml with Labeled Arguments and Polymorphic
Variants



One drawback of this approach is that labels of polymorphic variants are
not generative, so view constructors are not actually generative either; rather,
they are applicative [20] in the present implementation. Fortunately, however,
this problem is not so significant: since view constructors can be renamed by α-
conversion at compile time, the conflict of view types occurs only in subtle cases
involving polymorphic functions, for example as below, and incurs only static
(rather than dynamic) type errors. (As for pattern matching between different
instances of the same view constructor, it may actually be even better to have
applicativity rather than generativity.)

# let f x = (view V{l = } = 123 in V{l = x}) ;;
val f : ’a -> int view = <fun>
# if true then f 4.56 else f "abc" ;;
(* This causes a mysterious static type error

because the then-clause gives V{l = 4.56}
while the else-clause gives V{l = "abc"}.
It would not occur if the two V’s were fresh and different. *)

Characters 25-32:
This expression has type
[> ‘V_1 of [> ‘l of string] list]

but is here used with type
[> ‘V_1 of [> ‘l of float] list]

A simple way of avoiding such unfortunate cases is to apply view constructors to
monomorphic values only. (This restriction would be compulsory in encodings
using exceptions, since they cannot carry polymorphic values.)

Another drawback is that the notorious value restriction interferes with sep-
arate compilation of modules that export (possibly partially) applied view con-
structors, since their representations have non-generalizable types (i.e., types
with free monomorphic type variables) such as

[> ‘V of [> ‘l of int | ‘m of bool ] list]

which are not allowed in module interfaces. This problem is solved if a weaker
restriction on polymorphism (e.g. [15, 28]) is adopted, which makes the types
polymorphic like

[> ‘V of [> ‘l of int | ‘m of bool ] list]

as desired.

5 A Real Example

As a test case to show the utility of VMλabl, we applied it to the following
problem. (This explanation is simplified for the sake of informal presentation and
not quite precise from the viewpoint of molecular biology. See [2, Chapter 12] and
[8] for more detailed description.) In a living cell, genes coded in DNA are copied



into RNA, materialized as a chain of amino acids and folded to a piece of protein.
Those pieces of protein are then biochemically transported to specific places in
a cell to fulfill their function. The information which determines the destination
of a protein is typically contained in a portion of its amino-acid sequence, and
the problem is to discover the rule that determines what kind of protein is
transported to which places from the sequence information only. This problem
is important because: since the biological function of the protein is related to
where it is carried to, being able to guess where a (presently uncharacterized)
protein would go can help reduce the cost incurred in experimentally confirming
its function.

Firstly, we considered the set of proteins that are known (via biological ex-
periments) to be transported to a place called endoplasmic reticulum (ER for
short). Specifically, we looked at the amino-acid sequences of 269 proteins (in
the cells of plants) that are transported to the ER and 671 proteins that are not.

On the basis of observation by experts, we designed the following hypothetical
view to explain the distinction between those two sets of amino-acid sequences.

view V1{sequence = s; position = p; length = l;
aa index = i; threshold = t} =

t ≤ average (apply aa index i (substring p l s))

Each amino-acid sequence is represented as a string s. The function substring p l
takes a string and gives its substring of length l from position p. The function
apply aa index i also takes a string, maps each character to a floating-point
number, and returns its list. This mapping (taken from a database called AAin-
dex [19]) represents various characteristics of amino acids, where the identifier i
(just a string, actually) determines which characteristic to use. Finally, the func-
tion average takes a list of floating-point numbers and returns their arithmetic
means. Thus, the view V1 as a whole has type:

view{sequence : string ; position : int ; length : int ;
aa index : string ; threshold : float}bool

It can be seen as a function from an amino-acid sequence to a boolean value,
with four auxiliary parameters. The boolean value means whether the protein
made from the sequence would be transported to the ER.

Then, our task is to find the “best” values for position, length, aa index and
threshold that explain the experimental facts. By means of a brute-force search,
we found:

good views for er : view{sequence : string}bool list =
[V1{position = 5; length = 20; aa index = "NADH010103"; threshold = 635};
V1{position = 5; length = 20; aa index = "KYTJ820101"; threshold = 18.5};
V1{position = 5; length = 20; aa index = "JURD980101"; threshold = 15.68}; . . . ]

We evaluated these hypothetical views (according to a certain criterion called
MCC [26], in which 1.0 means the best and 0.0 the worst) by implementing a



function evaluate view for er : view{sequence : string}bool → float .

> List .map evaluate view for er good views for er ; ;
- : float list = [0.874716968026; 0.873939179445; 0.861257759764; . . .]

We confirmed that these numbers are comparable to those in other work [12]
and our hypotheses are indeed reasonable from biological viewpoints [36] (e.g.,
all three AA-indices shown above are related to the hydropathy of the amino
acids, and the hypotheses capture the hydrophobic h-region common to signal
peptides).

Secondly, we applied the same approach to characterize the amino-acid se-
quence of proteins that are transported to mitochondria and chloroplasts (both
of them are a kind of “power stations” in living cells). The data set is the amino-
acid sequences of 509 proteins (in plant cells) that are carried to mitochondria
or chloroplasts, and 162 proteins that are not.

This time, however, the view V1 above did not yield any good hypotheses:
even the best parameters scored less than 0.7. We therefore defined another view
V2:

view V2{sequence = s; position = p; length = l;
alphabet indexing = i; pattern = p; mismatch allowance = m} =

astrstr m p (apply alphabet indexing i (substring p l s))

The first three arguments sequence, position and length are the same as in V1.
Instead of AA-indexing and averaging, however, V2 uses alphabet indexing [32]
(mapping from each amino acid to some small natural number) and approxi-
mate string matching with a bounded number of mismatches allowed. Since this
hypothetical view neither performed well by itself—in fact, it even tends to give
the opposite answers!—we furthermore tried the combination of two views:

view V3{v1 = v1; v2 = v2; sequence = s} =
valof v1{sequence = s} ∧ ¬(valof v2{sequence = s})

Then, we obtained the following hypotheses that make biological sense [37] (e.g.,
the amino acids are seldom negatively charged and the signals are at the N-



terminal)

good views for mit chl : view{sequence : string}bool list =
[V3{v1 = V1{position = 0; length = 30;

aa index = "FAUJ880112"; threshold = 3};
v2 = V2{position = 0; length = 10; alphabet indexing =

[("DE", 0); ("AR", 1); ("BCFGHIKLMNPQSTVWXYZ", 2)];
pattern = "2022202222"; mismatch allowance = 3}};

V3{v1 = V1{position = 0; length = 30;
aa index = "FAUJ880112"; threshold = 3};

v2 = V2{position = 0; length = 10; alphabet indexing =
[("DE", 0); ("CR", 1); ("ABFGHIKLMNPQSTVWXYZ", 2)];
pattern = "2002222222"; mismatch allowance = 3}};

V3{v1 = V1{position = 0; length = 30;
aa index = "RICJ880106"; threshold = 26.9};

v2 = V2{position = 0; length = 10; alphabet indexing =
[("DE", 0); ("AR", 1); ("BCFGHIKLMNPQSTVWXYZ", 2)];
pattern = "2022202222"; mismatch allowance = 3}}; . . . ]

with scores

> List .map evaluate view for mit chl good views for mit chl ; ;
- : float list = [0.771504; 0.766387; 0.762190; . . .]

which are again comparable to the results in other work [12, 37].
Note that the advantages of views—that is, they have visible representations

of an extensible data type and can be applied to multiple arguments in an
arbitrary order—were of great help in the above process of knowledge discovery.
Indeed, it took only a few days for us to obtain these results from the very
beginning of this task. Without VMλabl, the process would have been far less
pleasant.

As for execution performance, most of the computation time was spent on
the approximate string matching during the brute-force search of good V2. The
actual CPU power spent was about 84 processor-hours on UltraSPARC III 900
MHz. Since our implementation is based on the interactive OCaml bytecode
interpreter for engineering reasons, there is still much room left for efficiency
improvement.

6 Related Work and Future Work

ML-Like Exceptions. The representation part of a view is similar to ML-like
exceptions in that they carry arguments, have generative constructors, and can
be pattern-matched. Indeed, representations of views can be implemented by ex-
ceptions. (In the implementation above, we did not take this approach because of
the lack of type information in Camlp4: in OCaml, exception definitions require
explicit type annotations.) However, views are different from ML-like exceptions



in that a view has its own value part in addition to the representation part.
Nevertheless, techniques developed for exceptions, such as static detection of
uncaught exceptions [21, 41–44], can perhaps be adapted for views, for exam-
ple to analyze the flow of view constructors and check the exhaustiveness (or
redundancy) of pattern matching.

Views for Abstract Data Types. Originally, hypothetical views had nothing to
do with views for abstract data types [39]. Taking a hindsight, however, it would
be interesting to consider implementing hypothetical views by using views for
abstract data types, because they might enable hiding the type of the represen-
tation part of a view, yet allowing pattern matching over this representation.

Generative Names. As stated before, view constructors in (the formalization of)
VMλ are generative. In our formal semantics, however, fresh generation of view
constructors is assumed a priori and left implicit. More rigorous treatment of
generative names is already studied in the literature [31, 33, 35, etc.].

Extensions of Hypothetical Views. Since a view is just a pair of a value and its
representation, it is straightforward to introduce recursive views on the basis of
standard recursive types and recursive functions.

It is also straightforward to extend VMλ for remembering and pattern-
matching the values of the free variables of a view definition, for example like:

# let x = 3 ;;
val x : int = 3
# view V{y = y} = x + y ;; (* x is free in the definition of V *)
view V of { x : int = 3; y : int } : int
# let v = V{y = 7} ;;
val v : int view = 10 as V{ x = 3; y = 7} ;;
# vmatch v with V{ x = x; y = y} -> (x, y) ;;
- : int * int = (3, 7)

Views for views deserve more consideration. For example, suppose that we
define a view constructor W applying another view constructor V as follows.

# view V{x = x; y = y} = x + y ;;
view V of { x : int; y : int } : int
# view W{z = z} = V{x = 1; y = z + 2} ;;
view W of { z : int } : int view

Currently, applying W yields a view whose value is another view.

# let v = W{z = 3} ;;
val v : int view view = (6 as V{x = 1; y = 5}) as W{z = 3} ;;
# vmatch v with W{z = z} -> z ;;
- : int = 3
# vmatch v with V{x = x; y = y} -> (x, y) ;;
Uncaught exception: VMatchFailure.



# vmatch (valof v) with V{x = x; y = y} -> (x, y) ;;
- : int * int = (1, 5)

However, it may be useful if one can pattern-match this view both with V and
with W , for example as follows.

# let v = W{z = 3} ;;
val v : int view = 6 as V{x = 1; y = 5} and W{z = 3} ;;
# vmatch v with W{z = z} -> z ;;
- : int = 3
# vmatch v with V{x = x; y = y} -> (x, y) ;;
- : int * int = (1, 5)

As for fully applied views, this extension is straightforwardly realizable by re-
membering a list of representations. As for partially applied views, however,
the extension is more subtle for the same reason as pattern matching over λ-
abstracted views was problematic in the original VML (cf. Section 3).

Other Directions. Other examples of scientific knowledge discovery using the
notion of views are found in previous work [6, 7, 22–24]. A more user-friendly
interface to the language for non-programmers is also a future topic of research
interest.
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