
A Simply Typed Context Calculus
with First-class Environments

Masahiko Sato∗ Takafumi Sakurai†

Yukiyoshi Kameyama‡

March 10, 2002

Abstract
We introduce a simply typed λ-calculus λκε which has both con-

texts and environments as first-class values. In λκε, holes in contexts
are represented by ordinary variables of appropriate types and hole fill-
ing is represented by the functional application together with a new
abstraction mechanism which takes care of packing and unpacking of
the term which is used to fill in the holes of the context. λκε is a con-
servative extension of the simply typed λβ-calculus, enjoys subject
reduction property, is confluent and strongly normalizing.

The traditional method of defining substitution does not work for
our calculus. So, we also introduce a new method of defining substi-
tution. Although we introduce the new definition of substitution out
of necessity, the new definition turns out to be conceptually simpler
than the traditional definition of substitution.

1 Introduction

Informally speaking, a context (in λ-calculus) is a λ-term with some holes
in it. For example, writing [] for a hole, λy. [] is a context, and by filling

∗Graduate School of Informatics, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Ky-
oto, 606-8501, Japan, masahiko@kuis.kyoto-u.ac.jp

†Department of Mathematics and Informatics, Chiba University, Yayoi 1-33, Inage,
Chiba, 263-8522, Japan, sakurai@math.s.chiba-u.ac.jp

‡Institute of Information Sciences and Electronics, University of Tsukuba, Tennodai
1-1-1, Tsukuba, 305-8573, Japan, kam@is.tsukuba.ac.jp

1

the hole in it with x + y, we get λy. x + y. By this operation, the variable
y in x + y gets captured and becomes bound in λy. x + y, and the variable
x remains to be free. So, unlike substitution, hole filling may introduce
new and intended bound variables. The notion of contexts is important
in theoretical investigations such as contextual equivalence and evaluation
contexts, but it is getting important in modeling practical computations
as well. For instance, to model distributed computing, we often need to
represent open terms (terms with free variables) and dynamic binding of
variables, and that kind of representation is also necessary to treat modules as
first-class citizens. Such a representation can be given by formalizing contexts
and the hole-filling operations, but we refer to [10] for related discussions.
Here we point out that the key idea is to link distributed objects through
the names of variables.

Recently there have been several attempts to formalize the notion of
context and thereby make computing with contexts possible. For example,
Talcott [19], Lee-Friedman [11], Dami [5], Hashimoto-Ohori [10], Sands [16],
Mason [12] and Bognar-de Vrijer [4] made notable contributions. However, as
far as we know, there is as yet no proposal of a language which has contexts
as first-class values and which is at the same time pure in the following sense.
We understand that a functional language is pure1 if (i) it is a conservative
extension of the untyped or simply typed λβ-calculus, (ii) confluent and
(iii) strongly normalizing (SN) if the language is typed and has preservation
of strong normalization (PSN) property if the language is untyped. The
conservative extension property guarantees that the language is logically well-
behaved and the confluence property and SN or PSN would guarantee that
the language is computationally well-behaved.

In this paper, we introduce the calculus λκε (κ is for context and ε is
for environment) which is pure in the above sense and which has contexts
and environments as its first class values, so that we can bind contexts and
environments to variables and return them as the values of computations.
λκε is a simply typed calculus, and in λκε, holes are represented by ordinary
variables of appropriate types (which we will call hole types) and hole filling
is represented by the functional application together with a new abstraction
mechanism which takes care of packing and unpacking of the term which is
used to fill in the holes of the context.

We now illustrate some of the difficulties we face in formalizing the notion

1We have introduced this notion of purity in [18].

2

of context, and explain our solution informally by relating it to previous
works. First, let us consider the context:

a[] ≡ λx. (λy. x + [])3.

If we fill the hole in a[] with the term x + y, we get

a[x + y] ≡ λx. (λy. x + (x + y))3.

By β-reducing it, we can convert a[x+y] to λx. x+(x+3). Since we wish to
compute with contexts, we would also like to reduce the β-redex (λy. x+[])3
in a[]. If we reduce it näıvely, we get x+[], so that a[] reduces to λx. x+[].
Now, if we fill the hole in λx. x + [] with x + y, we get λx. x + (x + y).
This shows that hole filling and β-reduction do not commute if we define hole
filling and β-reduction as above. In this example, we can note that the hole
in the original context a[] is within the scope of λx and λy, while the hole
in the β-reduced context is only within the scope of λx. This means that a
part of the information as to which variables should be captured at the hole
is lost if one reduces a β-redex which has a hole in it. Hashimoto-Ohori [10]
did not solve this problem. Instead they put restriction on the β-reduction
rule in their system and prohibited such β-reductions like the above example.

To solve this problem, we introduce the type AE which represents the set
of objects obtained by abstracting objects of type A with respect to a set
E = {x1, . . . , xn} of variables. Canonical objects of type AE are abstracts
of the form κE. a where a is of type A and the κE binder declares that the
variables in E should be understood as local in a. Moreover, E is also a type
and its canonical elements are environments of the form {a1/x1, . . . , an/xn}.
Then, an object a of type AE can be instantiated to an object b of type A by
applying the abstract a to an environment e = {a1/x1, . . . , an/xn}. We write
a·e for the application of the abstract a to the environment e. For example,
(κ{x, y}. x + y)·{1/x, 2/y} can be reduced to 3.

In this setting, we can represent the above context a[] as

C ≡ λx. (λy. x + X·{x/x, y/y})3
where X represents the hole and its type is of the form A{x,y}. Now, suppose
that we wish to fill the hole X with the term x+y. Then, we can achieve this
hole filling by substituting κ{x, y}. x + y for X in C. By this substitution,
we have:

D ≡ λx. (λy. x + (κ{x, y}. x + y)·{x/x, y/y})3.

3

D can be reduced to λx. (λy. x + (x + y))3, which can be further reduced
to λx. x + (x + 3) as expected. Let us now see what happens if we reduce
the β-redex in C first and then fill the hole with x+ y. By β-reducing C, we
get λx. x+X·{x/x, 3/y}. Substituting κ{x, y}. x+ y for X in this term, we
have

λx. x + (κ{x, y}. x + y)·{x/x, 3/y},
which we can further reduce to λx. x + (x + 3). We can thus see that hole
filling and β-reduction commute in this case.

The idea of decorating a hole with an environment is due to Talcott
[19], and Mason [12] also used this idea in his calculus of contexts that has
contexts as first-class values. However, in Mason’s system, environments
appear in a term containing holes only as annotations. This means that
such environments are objects outside the system. We present our calculus
λκε as an extension of λε [18] which is a simply typed λ-calculus that has
environments as first class values. So, environments are first-class objects
in λκε. Moreover, Mason defines hole filling only as a meta-level operation.
Therefore, although contexts are first-class values in his system, one cannot
compute hole filling within his system. In contrast to this, we can compute
hole filling within our system. For example, we can express the above example
of filling a[] with x + y as follows:

(λX. λx. (λy. x + X·{x/x, y/y})3)(κ{x, y}. x + y).

We can compute the above term in λκε, and we get λx. x + (x + 3).
We now turn to another problem in the formalization of contexts. Con-

sider the informal context λx. []. If we fill the hole in this context with x,
we get the term λx. x. This term is α-equivalent to λy. y. What is the con-
text which is α-equivalent to λx. [] and which, when filled with x, becomes
λy. y? It is certainly preferable that such a context exists, since, otherwise,
hole filling and α-conversion will not always commute. A näıve attempt is
to α-convert λx. [] to λy. []. But this does not work, since filling λy. []
with x results in λy. x which is not α-equivalent to λy. y. We can solve
this problem easily in our setting as follows. In λκε, the context λx. [] is
written as λx. X·{x/x} and this context is α-equivalent to λy. X·{y/x}.
Filling these holes in these two contexts with x is achieved by substituting
κ{x}. x for X in these contexts, and the results are λx. (κ{x}. x)·{x/x} and
λy. (κ{x}. x)·{y/x} respectively. Then they are reduced to λx. x and λy. y
as expected.

4

In this paper we also introduce a new method of defining substitution. As
we explain below, the traditional method of defining substitution does not
work for our calculus. We are therefore forced to use the new method, but,
we believe our new definition of substitution is mathematically cleaner than
the traditional method of defining substitution. We now give an example
where the traditional method of defining substitution fails to work. By way
of comparison, we first consider the λ term a ≡ λx. x + y. What is the
result of substituting x for y in a? We must be careful enough to avoid
the variable clash and rename the bound variable x in a to a fresh variable,
say, z, and we get λz. z + x as the result of the substitution. Now consider
the abstract b ≡ κ{x}. x + y. What will be the result c of substituting x
for y in b? If we perform substitution by the same method as above, we
get κ{z}. z + x which is wrong for the following reason. Note that b·{2/x}
reduces to 2 + y. So, c·{2/x} must reduce to 2 + x. However, we cannot
reduce (κ{z}. z + x)·{2/x} since the argument {2/x} does not match the
binder κ{z}. By the same token, the term (κ{z}. z + x)·{2/x} is not even
typable. We can thus see that, unlike variables bound by the λ binder, we
cannot rename variables bound by the κ binder. To cope with this situation,
we introduce a new method of defining substitution where we rename free
variables (if necessary) to achieve the capture avoiding substitution. So, our
substitution will yield κ{x}. x + �x as the result of substituting x for y in
b, where �x in the scope of the κ{x} binder is a renamed form of the free
variable x and it stands for the free variable x.

The paper is organized as follows. In section 2, we introduce the type
system of λκε, and introduce derivation rules that are used to define (typed)
terms together with their types and free variables. There, we define vari-
ables so that they naturally contain both ordinary variables with names and
variables as de Bruijn indices. In section 3, we define substitution as a meta-
level operation. In section 4, we give reduction rules of λκε and give some
examples of computations in λκε. In section 5, we show that λκε enjoys a
number of desirable properties such as confluence and strong normalizability.
In section 6, we compare our calculus with some related works. In section 7,
we give concluding remarks.

5

2 The Type System

In this section, we define the type system of λκε by defining the notion of a
derivation of a typing judgment. A typing judgement is an expression of the
form Γ � a : A, and if it is derivable then it means that the expression a is a
term whose type is A and whose set of free variables is Γ.

In the following we assume that we have given a finite set of atomic
types which we do not specify further in this paper. We also assume that
we have infinitely many identifiers (i). Then, we define variables and types
simultaneously as follows.

A variable (we will use x, y, z as meta-variables for variables) is a triple
〈k, i, A〉 where k is a natural number, i is an identifier and A is a type. A
variable 〈k, i, A〉 is called a pure variable if k = 0. Types (A,B) are defined
by the following grammar:

A,B ::= K | E | A ⇒ B | AE

where K ranges over atomic types and E over finite sets of variables.
In the following, we will use declaration as a synonym for a finite set of

variables. We use E,F and Γ,∆ etc. as meta variables for declarations. A
declaration {x1, . . . , xn} will also be called an environment type since it is
the type of environments whose canonical forms are elements of the form
{a1/x1, . . . , an/xn}.

If x ≡ 〈k, i, A〉, then we call k the level of x, i the name of x and A
the type of x. In this case, we sometimes write xA for x and also write �lx
for 〈k + l, i, A〉, �x for �1x, and �(x) for 〈0, i, A〉. As we explained in the
introduction, we need to distinguish different variables which have the same
name, and we use levels for this purpose. Levels can be considered as a
generalization of de Bruijn indices, as is shown by the example in the next
section. Let x and y be variables. We write x ≤ y if y ≡ �lx for some l ≥ 0.

We write V for the set of all the variables. Let E be a finite set of
variables. We define ⇑E as the unique bijection from V to V − E which
preserves the names of variables (that is, �(⇑E(x)) = �(x) for any variable
x) and is monotone in the sense that for any variables x, y such that x ≤ y
we have ⇑E(x) ≤ ⇑E(y). We also define ⇓E as the inverse function of ⇑E.
Note that ⇓E(x) is defined only when x �∈ E. For example, if E is empty,
then ⇑E(x) = x for any variable x. If E is {�1x, �3x}, then ⇑E(�0x) = �0x,
⇑E(�2x) = �4x, ⇑E(�3x) = �5x, ⇓E(�2x) = �1x, and ⇓E(�3x) is undefined. We

6

will use ⇑E later to systematically rename variables to avoid collision with
the variables in E.

Let Γ, E, and F be declarations. We define the declarations Γ⇑E and
Γ⇓E as follows:

Γ⇑E := {⇑E(x) | x ∈ Γ},
Γ⇓E := {⇓E(x) | x ∈ Γ},

where Γ⇓E is defined only when Γ ∩ E is empty. Furthermore, given two
declarations E and F , we define a function �E

F : V → V as follows.

�E
F (x) :=




⇑E(x) if x ∈ F,
⇓F (x) if x ∈ E⇑F ,
⇑E(⇑F (⇓E(⇓F (x)))) otherwise.

Since the above definition involves partial functions ⇓E and ⇓F , the function
�E

F may also be partial. But, the fact is that �E
F is a bijection from V to V,

and we can see this as follows. We will be done if we can check the claim
that �F

E(�E
F (x)) = x holds for any x ∈ V, since by the same argument we can

see that �E
F (�F

E(x)) = x holds for any x ∈ V. We prove the claim by cases.

(i) If x ∈ F , then �F
E(�E

F (x)) = �F
E(⇑E(x)) = x, since ⇑E(x) ∈ F ⇑E.

(ii) If x ∈ E⇑F , then there exists a y ∈ E such that x = ⇑F (y). Since
⇓F (x) is defined and equal to y, we have

�F
E(�E

F (x)) = �F
E(⇓F (x)) = �F

E(y) = ⇑F (y) = x.

(iii) Otherwise, ⇓F (x) is defined since x �∈ F , and ⇓E(⇓F (x)) is defined since
⇓F (x) �∈ E. Hence �E

F (x) is defined. It is easy to see ⇓F (⇓E(�E
F (x))) is

defined and equal to ⇓E(⇓F (x)). Hence

�F
E(�E

F (x)) = ⇑F (⇑E(⇓E(⇓F (x)))) = x.

We give a few examples here. If E is {x}, then �E
E(x) = �x, �E

E(�x) = x,
and �E

E(�2x) = �2x. If E is {x, �x} and F is {x}, then �E
F (x) = �2x, �E

F (�x) =
x, �E

F (�2x) = �1x, and �E
F (�3x) = �3x.

Using the function �E
F , we define the declaration Γ�E

F as follows.

Γ�E
F := {�E

F (x) | x ∈ Γ}.

7

As we will see in section 3, we will use �E
F to rename variables when

the order of two binders are exchanged. The definition of �E
F may seem

complicated, but if E and F are sets of pure variables (that is, bound variables
are pure), the definition is simplified as follows.

Lemma 2.1 Let E and F be sets of pure variables. We have

�E
F (x) =




⇑E(x) if x ∈ F,
⇓F (x) if x ∈ E⇑F ,
x otherwise.

Proof. Suppose x �∈ F and x �∈ E⇑F . By x �∈ F , there exists y such
that x = ⇑F (y). Then, we have ⇑F (y) �∈ E⇑F , that is, y �∈ E. Therefore,
there exists z such that y = ⇑E(z). Then, we have x = ⇑F (⇑E(z)) and
�E

F (x) = ⇑E(⇑F (⇓E(⇓F (x)))) = ⇑E(⇑F (z)). So, ⇑E(⇑F (z)) = ⇑F (⇑E(z))
implies �E

F (x) = x. We will be done when we show ⇑E(⇑F (z)) = ⇑F (⇑E(z))
in the following.

Let n be the level of z. Then, there exists a pure variable z0 such that
z = �nz0. Since E and F are sets of pure variables, we have

⇑E(⇑F (z)) =




�n+2z0 if z0 ∈ E ∩ F,
�n+1z0 if z0 ∈ (E − F) ∪ (F − E),
�nz0 otherwise.

So, we have ⇑E(⇑F (z)) = ⇑F (⇑E(z)). ✷

If E and F do not have common variable names (that is, E and F are
‘irrelevant’), �E

F is an identity function.

Lemma 2.2 Let E and F be declarations such that {�(x) | x ∈ E} ∩ {�(x) |
x ∈ F} = ∅. We have �E

F (x) = x.

Proof. In this proof, we write �(E) for {�(x) | x ∈ E}. First, note that
�(x) �∈ �(E) implies ⇑E(x) = ⇓E(x) = x. We prove the lemma by cases.

(i) If x ∈ F , then �(x) �∈ �(E) because �(E) ∩ �(F) = ∅. Therefore,
�E

F (x) = ⇑E(x) = x.

(ii) If x ∈ E⇑F , then �(x) ∈ �(E⇑F) = �(E). Therefore, �E
F (x) = ⇓F (x) =

x.

8

(iii) Otherwise, we have three cases. (1) If �(x) ∈ �(E), then �E
F (x) =

⇑E(⇑F (⇓E(⇓F (x)))) = ⇑E(⇓E(x)) = x. (2) If �(x) ∈ �(F), then
�E

F (x) = x is proved similarly. (3) Otherwise, trivial. ✷

Lemma 2.3 We have the following identities.
1. Γ⇑E ∩ E = ∅.
2. Γ⇑E ⇓E = Γ. If Γ ∩ E = ∅, then Γ⇓E ⇑E = Γ.
3. ((Γ− E)⇓E − F)⇓F = ((Γ�F

E − F)⇓F − E)⇓E.

Proof. 1, 2. Easy.
3. Since (Γ − E) ∩ E = ∅, there exists Γ′ such that Γ − E = Γ′⇑E . Then,
we have Γ = (Γ ∩ E) ∪ Γ′⇑E . Similarly, there exists Γ′′ such that Γ′ =
(Γ′ ∩ F) ∪ Γ′′⇑F . Therefore, we have

((Γ− E)⇓E − F)⇓F = (Γ′⇑E ⇓E − F)⇓F

= (Γ′ − F)⇓F = Γ′′⇑F ⇓F = Γ′′.

On the other hand, we have

Γ�F
E = ((Γ ∩ E) ∪ (Γ′ ∩ F)⇑E ∪ Γ′′⇑F ⇑E)�F

E

= (Γ ∩ E)⇑F ∪ (Γ′ ∩ F)⇑E ⇓E ∪ Γ′′⇑F ⇑E ⇓E ⇓F ⇑E ⇑F

= (Γ ∩ E)⇑F ∪ (Γ′ ∩ F) ∪ Γ′′⇑E ⇑F .

So, we have

(Γ�F
E − F)⇓F = ((Γ ∩ E)⇑F ∪ Γ′′⇑E ⇑F)⇓F = (Γ ∩ E) ∪ Γ′′⇑E .

Therefore, we have

((Γ�F
E − F)⇓F − E)⇓E = (Γ ∩ E) ∪ Γ′′⇑E − E⇓E = Γ′′⇑E ⇓E = Γ′′.

✷

A typing judgment is an expression of the form Γ � a : A where Γ is a
declaration and A is a type. We have the typing rules in Figure 1 that are
used to derive typing judgments, where those rules whose names end with
‘I’ (‘E’) introduce (eliminate, respectively) the types mentioned in the rule
names.

An expression a is said to be a term if a typing judgment of the form
Γ � a : A is derivable for some Γ and A. In this case, we say that Γ is the set

9

{x} � xA : A
(axiom)

Γ � b : B
(Γ − {x})⇓{x} � λxA. b : A ⇒ B

(⇒I) Γ � b : A ⇒ B ∆ � a : A
Γ ∪ ∆ � ba : B

(⇒E)

Γ � a : A
(Γ − E)⇓E � κE. a : AE

(absI) Γ � a : AE ∆ � e : E
Γ ∪ ∆ � a·e : A

(absE)

Γ1 � a1 : A1 · · · Γn � an : An

Γ1 ∪ . . . ∪ Γn � {a1/x
A1
1 , . . . , an/x

An
n } : {x1, . . . , xn}

(envI)

Γ � e : E ∆ � a : A
Γ ∪ (∆ − E)⇓E � e[[a]] : A

(envE)

In (envI), the variables x1, . . . , xn must be mutually distinct.

Figure 1: Typing rules of λκε

of free variables in a and write FV(a) for it and also say that A is the type of
a and write TY(a) for it. Note that if e ≡ {a1/x1, . . . , an/xn}, then the order
of ai/xi (i = 1, . . . , n) in e does not matter and TY(e) is {x1, . . . , xn}. We
will say that these variables are bound by e. We also write T for the set of all
the terms. A term is canonical if it is of the form λx.b, {a1/x1, . . . , an/xn}
or κE. a, that is, if it is obtained by one of the introduction rules. A term
is said to be an environment term if its type is an environment type. A
canonical environment term is a canonical term which is at the same time an
environment term.

In (⇒I), since free variables in b are within the scope of λxA, ⇓{x} should
be applied to Γ − {x} to refer to the variables in b from the outside of
the binder. By the same reason, ⇓E is used in (absI) and (envE). We
have explained the intuitive meaning of the typing rules (absI) and (absE)
for introducing and eliminating abstractions in section 1. The remaining
typing rules come from λε, and the reader is referred to [18] for the detailed
explanation of these rules. Here, we only remark that the term e[[a]] in the

10

(envE) rule means to evaluate a in the environment e. So, for example, if

e ≡ {λx. λy. x + y/z, 1/x, 2/u},
then e[[zxy]] is evaluated to 1 + y. Note that z and x in zxy are bound by e
and y is free in e[[zxy]].

We give below a simple example of a derivation. In the example below,
we assume that x and y are distinct pure variables.

{y} � y : A ⇒ A ⇒ B {��x} � ��x : A

{y, ��x} � y(��x) : A ⇒ B {x} � x : A

{y, ��x, x} � y(��x)x : B

{y, �x} � λx. y(��x)x : A ⇒ B

{} � κ{�x, y}. λx. y(��x)x : (A ⇒ B){
x,y}

It is easy to see that if Γ � a : A is derivable, then we can completely
recover the entire derivation tree uniquely by inspecting the typed term a2.

We have two kinds of abstractions λ and κ. As suggested by the type of
κ-abstracts, κ abstracts named variables, while we intend that λ abstracts
nameless variables. It is possible to eliminate names in λ-abstracts by taking
the distinguished name ι, replacing λxA by κ{〈0, ι, A〉}, and using the de
Bruijn index method that we explain in the next section. But we did not do
so, because we want to design λκε so that it extends the traditional λ-calculus
directly. However, unlike the traditional λ-calculus, we do not identify α-
equivalent terms when we define substitution, but introduce α-equivalence
later as an auxiliary notion that is necessary to describe conservativity over
λ-calculus. (See also the comments after the definition of α-equivalence in
section 3.)

3 Substitution and α-equivalence

In this section we define substitution as a meta-level syntactic operation. Our
definition is conceptually simpler than the ordinary definition of substitution
where α-conversion is sometimes necessary to avoid the unwanted capture of
variables. Our method of defining substitution is a simple extension of the
method due to de Bruijn [6].

2Strictly speaking, in order to have this property, we have to identify those derivations
which are the same up to the difference of ordering of the premises of the (envI) rule.

11

Before going into technical details, we explain our method by compar-
ing it with the traditional method of defining substitution for terms with
named variables [2] and also with the method invented by de Bruijn [6]. In
the traditional method, for example, substitution of x for y in λx. y is done
by first α-converting λx. y to, say, λz. y and then replacing y by x. Thus,
the result of substitution is λz. x. The α-conversion was necessary to avoid
unwanted capturing of x by the λx binder in the original term. So, in this
approach, one has to define terms as equivalence classes of concrete terms
modulo α-equivalence, and therefore, we have to check the well-definedness of
the substitution, since we first define the substitution operation on concrete
terms. Also, in this approach, one has to define α-equivalence before sub-
stitution, but the definition of α-conversion requires the notion of renaming
variables which is similar to substitution.

We think that such complication in the traditional definition of substi-
tution comes from the fact that avoidance of capturing free variables was
achieved by the renaming of the name of the λ-binder. Our approach here is
to avoid the capture of free variables by systematically renaming the free vari-
ables which would otherwise be captured3. For instance, in case of the above
example of substituting x for y in λx. y, we rename x to �x and substitute �x
for y, so that the result of the substitution becomes λx. �x. We note that in
the resulting term λx. �x, the variable �x is different from x within the scope
of λx, and that �x refers to x outside the scope of λx. From this explanation,
it should be easy to understand that the result of substituting x ∗ z for y in
λx. λx. x + y is λx. λx. x + (�2x ∗ z). As can be seen from this example, we
rename only those variables that would otherwise be captured. Therefore,
in case capturing does not occur, the result of substitution obtained by our
method is the same as that obtained by the traditional method.

After defining the substitution, we define α-equivalence of terms. As we
will see later, our definition of α-equivalence is also simpler than the existing
definitions of α-equivalence, and the proof that the relation is indeed an
equivalence relation is also simpler. Again, some examples will clarify the
intuitive idea. Suppose that x, y, z are distinct pure variables. Then the
following terms are all α-equivalent with each other.

λx. λy. (λz. y(zx))(yx)

≡α λ�1x. λ�1x. (λ�1x. �2x(�1x�3x))(�1x�2x)

3The idea of renaming free variables is introduced in [17].

12

≡α λ�1x. λ�2x. (λ�3x. �2x(�3x�1x))(�2x�1x)

≡α λ�2x. λ�1x. (λ�0x. �2x(�0x�4x))(�1x�3x)

≡α λx. λy. (λx. y(z�x))(yx).

If we write 1, 2 and 3 for �1x, �2x and �3x, respectively, in the second term
above, we get λ1. λ1. (λ1. 2(13))(12). Therefore, this term is essentially the
same as the representation of the first term in de Bruijn indices. Similarly,
the third term becomes λ1. λ2. (λ3. 2(31))(21), and this term is essentially
the same as the representation of the first term in de Bruijn levels, or, using
the terminology of Gunter [9], corresponds to the CCC model representation.
We can therefore see that our terms are natural extensions of both traditional
concrete terms with variable names and name free terms a la de Bruijn that
use indices and levels.

Let φ : V → V be a (possibly) partial function such that φ(x) may be
undefined for some x ∈ V. We extend this function to the function φ : T → T
as follows. φ will be total if and only if φ is total.

1. φ(x) := φ(x).

2. φ(λx. a) := λx. φ{x}(a).

3. φ(ba) := φ(b)φ(a).

4. φ(κF. a) := κF. φF (a).

5. φ(a·f) := φ(a)·φ(f).

6. φ({a1/x1, . . . , an/xn}) := {φ(a1)/x1, . . . , φ(an)/xn}.
7. φ(e[[a]]) := φ(e)[[φTY(e)(a)]].

where, for each declaration E, φE : V → V is defined by

φE(x) :=

{
x if x ∈ E,
⇑E(φ(⇓E(x))) otherwise.

(We note that φ is total if and only if φE is total.)
We define the push operation ↑E by putting a↑E :=⇑E(a), the pull oper-

ation ↓E by putting a↓E :=⇓E(a), and the exchange operation �E
F by putting

a�E
F := �E

F (a).

13

Let us give a few examples here. Let E be {x, �x}.
(λx. x(�3x))↑E ≡ ⇑E(λx. x(�3x))

≡ λx. ⇑E{x}(x(�
3x))

≡ λx. (⇑E{x}(x))(⇑E{x}(�
3x))

≡ λx. x(⇑{x}(⇑E(⇓{x}(�3x))))

≡ λx. x(�5x).

Note that FV(λx. x(�3x)) = {�2x}, and {�2x}⇑E = {�4x}, which is equal to
FV(λx. x(�5x)). Similarly, we have (λx. x(�3x))↓E ≡ λx. x(�x).

For the exchange operation, we have:

(λx. (�x)(�2x))�{x}{x} ≡ λx. (�2x)(�x),

(λx. (�x)(�2x))�{y}{x} ≡ λx. (�x)(�2x),

where x and y are distinct pure variables.
We now define the substitution operation as follows. Let s ≡ {c1/x1, . . . ,

cn/xn} be a canonical environment term. Note that TY(s) = {x1, . . . , xn} in
this case. For each term a we define a term a[s] inductively as follows.

1. x[s] :=

{
ci if x ≡ xi for some i,
⇓TY(s)(x) otherwise.

2. (λx. b)[s] := λx. b�TY(s)
{x} [s↑{x}].

3. (ba)[s] := b[s]a[s].

4. (κE. a)[s] := κE. a�TY(s)
E [s↑E].

5. (a·e)[s] := a[s]·e[s].
6. ({a1/x1, . . . , an/xn})[s] := {a1[s]/x1, . . . , an[s]/xn}.
7. (e[[a]])[s] := e[s][[(a�TY(s)

TY(e))[s↑TY(e)]]].

We call a[s] the result of substituting c1, . . . , cn for x1, . . . , xn in a.
Again we give a few examples. Let s be {�3x/x, (x �x)/�x}. Then we

have:

(λx. x �2x)[s] ≡λx. (x �2x)�{x,
x}
{x} [s↑{x}]

14

≡λx. (�2x �x)[{�4x/x, (�x �2x)/�x}]
≡λx. (⇓{x,
x}(�2x))(�x �2x)

≡λx. x(�x �2x),

(λx. xy)[{z/y}] ≡λx. xz,

where x, y, z are distinct pure variables. In the first example, x in λx. x �2x
is bound by λx and �2x is bound by s. When s goes into the scope of λx,
x and �2x should be renamed to �2x and �x, respectively so that they are
bound by λx and s↑{x}.

We are now ready to define the notion of α-equivalence. We prepare an
infinite set of identifiers ι1, ι2, . . . that are not used in λκε. We write ιAk or
just ιk for a variable 〈0, ιk, A〉. An extended term is a term constructed from
variables of λκε and variables ι1, ι2, We also assume that we have a total
order ≺ on variables. We define a transformation ∗λ that transforms a term
t to an extended term t∗λ using the following rules.

1. x∗λ := x.

2. (λx. a)∗λ := λι1. a∗λ[{ι1/x}].
3. (ba)∗λ := b∗λa∗λ.

4. (κE. a)∗λ := κE. a∗λ.

5. (a·f)∗λ := a∗λ·f ∗λ.

6. {a1/x1, . . . , an/xn}∗λ := {a∗λ
1 /x1, . . . , a

∗λ
n /xn}.

7. (e[[b]])∗λ := e∗λ[[b∗λ]].

We define another transformation ∗ε using the rules obtained by replacing ∗λ

of rules 1–6 by ∗ε and the following rules.

7. (e[[b]])∗ε := e∗ε[[b∗ε]], if e is not a canonical environment term.

8. ({a1/x1, . . . , an/xn}[[b]])∗ε
:={a∗ε

p(1)/ι1, . . . , a
∗ε
p(n)/ιn}[[b∗ε[{ι1/xp(1), . . . , ιn/xp(n)}]]]

where p is a permutation on 1..n such that xp(1) ≺ · · · ≺ xp(n) and the
type of ιk is the type of xp(k).

15

Let a and b be terms. If a∗λ ≡ b∗λ, we write a ≡λ
α b and say a is αλ-equivalent

to b. If a∗ε ≡ b∗ε, we write a ≡ε
α b (or a ≡α b) and say a is αε-equivalent to b

(or a is α-equivalent to b). In the following, we apply ∗λ and ∗ε to extended
terms (the definition should be clear), but we do not apply the notion of αλ-
or αε-equivalence to extended terms.

We have introduced αλ-equivalence to expresses our intention that λ ab-
stracts nameless variables. But it is not satisfactory because αλ-equivalence
is not preserved by reduction. Therefore, we have introduced αε-equivalence
as an equivalence that is preserved by reduction. (See Theorem 5.17.)

The α-equivalence in λκε also satisfies the following properties:

Theorem 3.1 1. If Γ � a : A and a ≡λ
α b, then Γ � b : A.

2. If Γ � a : A and a ≡ε
α b, then Γ � b : A.

3. Let a and b be terms, s be a canonical environment term, and ρ be λ or
ε. If a ≡ρ

α b, then a[s] ≡ρ
α b[s].

Proof. We can prove 1 and 2 by the induction on the derivation Γ � a : A.
We will prove 3 in section 5, because we need some properties of substitution
and α-equivalence to prove this theorem. ✷

Here, we refer to some preceding works that have relations with our ex-
change operator and our definition of substitution. The definition of sub-
stitution by Fiore, Plotkin, and Turi [7] is similar to ours, that is, the 2nd
clause of our definition corresponds to the 2nd clause of the definition of the
substitution operation σ : δΛ × Λ → Λ [7], and we think that it should be
possible to establish a precise correspondence. We also make a remark about
label-selective λ-calculus [8]. In label-selective λ-calculus, abstracts and ar-
guments are labeled and the labels are used in argument-passing. The label
consists of a symbol and a number and the number changes when the label
is pushed into the scope of λ-abstracts. Since argument-passing corresponds
to selecting the field of record by label, we can say label-selective λ-calculus
incorporates an idea similar to ours.

4 Reduction Rules

In this section we give reduction rules of the λκε calculus. We first define
�→λκε as the union of the following three relations �→λ, �→κ and �→ε.

The relation �→λ is defined by the following single rule:

16

(λ) (λx. b)a �→λ {a/x}[[b]],
and the relation �→κ is defined by the following single rule:

(κ) (κE. a)·e �→κ e[[a]].

The relation �→ε is defined by the following 8 conversion rules.

(gc) e[[a]] �→ε a↓TY(e), if TY(e) ∩ FV(a) = ∅.
(var) {a1/x1, . . . , an/xn}[[xi]] �→ε ai (1 ≤ i ≤ n).

(fun) e[[λx. b]] �→ε λx. (e↑{x})[[b�TY(e)
{x}]].

(funapp) e[[ba]] �→ε e[[b]]e[[a]].

(abs) e[[κE. a]] �→ε κE. (e↑E)[[a�TY(e)
E]].

(absapp) e[[a·f]] �→ε e[[a]]·e[[f]].

(env) e[[{a1/x1, . . . , an/xn}]] �→ε {e[[a1]]/x1, . . . , e[[an]]/xn}.
(eval) e[[f [[x]]]] �→ε e[[f]][[x]], if x ∈ TY(f).

The rules other than (eval) are internalized forms of the clauses 1–6 of the
definition of substitution in section 3. In these rules we have the environment
term e in place of the canonical environment term s, and the rule (gc) is a
generalization of the second case of clause 1. We can also internalize clause
7 directly and get a correct rule. But, we do not do so since it will result in
a system where the strong normalization property does not hold. Instead we
have the (eval) rule which corresponds to a special case of clause 7. Although
the (eval) rule is a weak version of clause 7, we will see in Theorem 5.9 that
we can faithfully compute substitution internally by using these reduction
rules, and at the same time the system enjoys the strong normalizability
(Theorem 5.26). In fact, as can be seen in, e.g., Melliès [13] and Bloo and
Rose [3], the strong normalizability of calculi of explicit substitutions and
explicit environments is a subtle problem. The reader is referred to [18] for
a detailed discussion on our choice of the (eval) rule.

We write a →λ b if b is obtained from a by replacing a subterm c in
a by d such that c �→λ d. Similarly →κ, →ε and →λκε are defined. The
reflexive and transitive closures of these reductions are denoted with asterisk
(*), such as

∗→ε. The equivalence relation generated by →λκε is denoted
by =λκε, namely, the reflexive, symmetric, and transitive closure of →λκε.
Similarly =ε is defined.

17

We give a few examples of reduction sequences. (s ≡ {�3x/x, (x �x)/�x}
in the second example.)

(λx. λy. x)y →λ {y/x}[[λy. x]]

→ε λy. ({y/x}↑{y})[[x�{x}{y}]]

≡ λy. {�y/x}[[x]] →ε λy. �y.

s[[λx. x �2x]] →ε λx. (s↑{x})[[(x �2x)�{x,
x}
{x}]]

≡ λx. {�4x/x, (�x �2x)/�x}[[(�2x �x)]]
∗→ε λx. ((�2x)↓{x,
x})(�x �2x)

≡ λx. x(�x �2x).

(λX. λy. X·{y/y})(κ{y}. y) →λ {κ{y}. y/X}[[λy. X·{y/y}]]
∗→ε λy. (κ{y}. y)·{y/y}
→κ λy. {y/y}[[y]] ∗→ε λy. y.

In the first example, y is renamed to �y so that it is not captured by the
λy binder. The second example corresponds to the example given after the
definition of substitution. The third example shows the hole-filling operation
where y is captured by the λy binder.

We take an example from Hashimoto-Ohori’s paper [10]. Consider the
term (λz. C[x + z])x where C is an (informal) context (λx. [] + y)3 and
C[x+z] represents the hole-filling operation in the λ-calculus. In Hashimoto-
Ohori’s calculus, this term can be written as

a ≡ (λz. (δX.(λu. X{u/x} + y)3)�{x/v} (v + z))x

where X represents a hole, δX abstracts the hole X, and � is a hole-filling
operator. {u/x} and {x/v} (called renamers) annotate X and � respec-
tively. They are introduced to solve the problem of variable capturing. In
our system, the above term can be written as

a ≡ (λz. (λX. (λu. X·{u/x} + y)3)(κ{x}. (x + z)))x.

We can compute this term in many ways, but, here we give three reduction
sequences.

18

a →λ {x/z}[[(λX. (λu. X·{u/x} + y)3)(κ{x}. x + z)]]
∗→ε (λX. (λu. X·{u/x} + y)3)(κ{x}. x + �x)

→λ {κ{x}. x + �x/X}[[(λu. X·{u/x} + y)3]]
∗→ε (λu. (κ{x}. x + �x)·{u/x} + y)3

→κ (λu. {u/x}[[x + �x]] + y)3
∗→ε (λu. u + x + y)3

→λ {3/u}[[u + x + y]]
∗→ε 3 + x + y

a →λ (λz. {κ{x}. x + z/X}[[(λu. X·{u/x} + y)3]])x
∗→ε (λz. (λu. (κ{x}. x + z)·{u/x} + y)3)x

→λ {x/z}[[(λu. (κ{x}. x + z)·{u/x} + y)3]]
∗→ε (λu. (κ{x}. x + �x)·{u/x} + y)3

→λ {3/u}[[(κ{x}. x + �x)·{u/x} + y]]
∗→ε (κ{x}. x + �x)·{3/x} + y

→κ {3/x}[[x + �x]] + y
∗→ε 3 + x + y

a →λ (λz. (λX. {3/u}[[X·{u/x} + y]])(κ{x}. x + z))x
∗→ε (λz. (λX. X·{3/x} + y)(κ{x}. x + z))x

→λ (λz. {κ{x}. x + z/X}[[X·{3/x} + y]])x
∗→ε (λz. (κ{x}. x + z)·{3/x} + y)x

→κ (λz. {3/x}[[x + z]] + y)x
∗→ε (λz. 3 + z + y)x

→λ {x/z}[[3 + z + y]]
∗→ε 3 + x + y

We remark that, in the second reduction sequence above, we have first
reduced the innermost β-redex (λu. X·{u/x}+ y)3. Such a reduction is not
possible in Hashimoto-Ohori’s calculus since in their system the β-conversion
is prohibited when the redex contains a free hole. Though the roles of X{u/x}

19

and X·{u/x} are similar, u in X{u/x} should always be a variable, while u
in X·{u/x} can be substituted by an arbitrary term. This is the reason
why our calculus need not put any restriction to the (λ)-reduction rule (the
β-conversion).

We also remark on the hole-filling operations without going into the tech-
nical details. In Hashimoto-Ohori’s calculus, the renamer ν in �ν works as
a variable binder to the second operand of � (i.e. to the term to be filled
into the hole). Because their typing rule of M �ν N causes a side effect to
the type of the free hole in N , they had to put the restriction that each free
hole may occur at most once. Our κE binder, which plays the similar role
to the renamer ν in �ν , does not have such a problem, because it is merely
an abstraction.

Therefore, our calculus λκε can be regarded as a natural and flexible
extension to Hashimoto-Ohori’s calculus.

5 Properties of λκε

In this section, we show that λκε enjoys a number of desirable properties.
First, we give an alternative definition of substitution (Lemma 5.5) which is
useful in proving the properties of λκε. Then, we show that the meta-level
operation of substitution is internally realized by the operation of evaluation
(Theorem 5.9). We also show that λκε enjoys subject reduction property
(Theorem 5.13), confluence property (Theorem 5.14), conservativity over the
simply typed λβ-calculus (Theorem 5.24), and strong normalizability (The-
orem 5.26). Theorems 5.14, 5.24, 5.26 establish the purity of λκε, and as a
corollary to the confluence of λκε, we see that the operations of hole filling
and β-reduction always commute.

It is sometimes useful to define the substitution operation in a similar
way as push/pull/exchange operations. Let φ : V → T be a (possibly)
partial function. We extend φ to the function φ : T → T in the same way as
φ defined in section 3, except that φE is now defined as follows.

φE(x) :=

{
x if x ∈ E,
φ(x↓E)↑E otherwise.

It is easy to see that if φ is total, then φ is also a total function. That is, if
a ∈ T, we have φ(a) ∈ T.

20

Let s be {b1/x1, . . . , bn/xn}. We define a total function [s] : V → T as
follows:

[s](x) :=

{
bi if x ≡ xi for some i,
⇓{x1,...,xn}(x) otherwise.

We give an example of this alternative definition of substitution. Let s be
{�3x/x, (x �x)/�x}.

[s](λx. x �2x) ≡ λx. [s]{x}(x �2x)

≡ λx. ([s]{x}(x))([s]{x}(�
2x))

≡ λx. x([s](�2x↓{x})↑{x})
≡ λx. x([s](�x)↑{x})
≡ λx. x((x �x)↑{x})
≡ λx. x(�x �2x).

We show in Lemma 5.5 that [s](a) coincides with the substitution a[s] de-
fined in section 3. In the following, we will write φE1···En for (· · · (φE1) · · ·)En

and sometimes just write φ for φ, and φa for φ(a), if there is no fear of
confusion.

Lemma 5.1 Let φ : V → T be a (possibly) partial function, a be a term, and
E, E1, . . ., En, F be declarations.
1. If ⇓Ei+1

· · · ⇓Enx ∈ Ei for some i, then φE1···En(x) ≡ x.
2. φE1···En(⇑En · · · ⇑E1x) ≡ φ(x)↑E1 · · ·↑En.
3. �E

F⇑F⇑Ex ≡ ⇑E⇑Fx.

Proof. 1, 2. Straightforward.
3. Note that ⇑F⇑Ex �∈ F and ⇑F⇑Ex �∈ E⇑F . ✷

Lemma 5.2 Let φ : V → T be a (possibly) partial function, a be a term,
and E, E1, . . ., En be declarations. Then, φE(a↑E) ≡ φ(a)↑E holds. As a
corollary, φE1···En(a↑E1 · · ·↑En) ≡ φ(a)↑E1 · · ·↑En.

Proof. First, we prove the lemma in the case φ is restricted to ψ : V → V.
We prove, by induction on the construction of a, that the identity

ψEF (⇑E
F (a)) ≡ ⇑E

F (ψF (a)) (/)

holds for any sequence of declarations F ≡ F1 · · ·Fn.

21

1. a is a variable:

(a) ⇓Fi+1
· · · ⇓Fna ∈ Fi for some i: In this case, both sides of (/) are

a by Lemma 5.1 clause 1.

(b) Otherwise: In this case, there is a variable y such that a ≡
⇑Fn · · · ⇑F1y. By Lemma 5.1 clause 2, we have

LHS of (/) ≡ ψEF (⇑Fn · · · ⇑F1⇑Ey) ≡ ⇑Fn · · · ⇑F1⇑E(ψ(y)),

RHS of (/) ≡ ⇑E
F⇑Fn · · · ⇑F1(ψ(y)) ≡ ⇑Fn · · · ⇑F1⇑E(ψ(y)).

(The last ≡ holds because ψ(y) is a variable.)

2. a ≡ e[[b]]: We have

LHS of (/) ≡ ψEF (⇑E
F (e))[[ψEFTY(e)(⇑E

FTY(e)(b))]],

RHS of (/) ≡ ⇑E
F (ψF (e))[[⇑E

FTY(e)(ψFTY(e)(b))]].

Therefore, by the induction hypothesis, we have the identity.

3. Otherwise: Similar to the case 2 or trivial.

Next, we prove the lemma in the general case. Similarly to the restricted
case, we prove φEF (⇑E

F (a)) ≡ ⇑E
F (φF (a)) by induction on a. The induction

proceeds in exactly the same way except that, in case 1-(b), we need the
lemma in the restricted case to show

⇑E
F⇑Fn · · · ⇑F1(φ(y)) ≡ ⇑Fn · · · ⇑F1⇑E(φ(y)),

because φ(y) is a term. (⇑E
F1···Fi

is used as ψ.) ✷

Lemma 5.3 Let a be a term, s be a canonical environment term, and E, F
be declarations.
1. [s](a↑TY(s)) ≡ a.
2. a↑E ↓E ≡ a, a�E

F �F
E ≡ a.

3. a↑E ↑F �E
F ≡ a↑F ↑E.

Proof. We can prove these identities similarly to Lemma 5.2. We prove by
induction on a, but we need to generalize each function φ to φF by parame-
terizing with a sequence of declarations F , so that the function can handle
bound variables correctly when it is pushed into the scope in the induction
step. In the base case of the induction, we apply the case analysis of variables
given in the proof of Lemma 5.2. As for 1, we can prove by induction on a
that [s]F (⇑TY(s)

F (a)) ≡ a holds for any sequence of declarations F . ✷

22

Lemma 5.4 Let s be a canonical environment term. Then, for any term a
and declaration E, a�TY(s)

E [s↑E] ≡ [s]E(a) holds.

Proof. Put X := TY(s). We prove, by induction on the construction of a,
that the identity

((�X
En

◦ �X
En−1En

◦ · · · ◦ �X
E0E1···En

)(a))[s↑E0 ↑E1 · · ·↑En] ≡ [s]E0E1···En
(a) (/)

holds for any declarations E0, E1, . . ., En.

1. a is a variable: We put a0 := a, ai+1 := �X
EiEi+1···En

(ai), yn+1 := a, and

yi := ⇓Ei
yi+1. (If yi+1 ∈ Ei for some i, yj (j ≤ i) is undefined.)

(a) yi+1 ∈ Ei for some i: We have aj ≡ a (j ≤ i) by Lemma 5.1
clause 1 and �X

Ei
yi+1 ≡ ⇑Xyi+1 by assumption. Therefore, we

have ai+1 ≡ ⇑En · · · ⇑Ei+1⇑Xyi+1. By Lemma 5.1 clause 2,3, we
have

ai+2 ≡ �X
Ei+1Ei+2···En

(⇑En · · · ⇑Ei+1⇑Xyi+1)

≡ ⇑En · · · ⇑Ei+2�X
Ei+1

⇑Ei+1⇑Xyi+1

≡ ⇑En · · · ⇑Ei+2⇑X⇑Ei+1yi+1

≡ ⇑En · · · ⇑Ei+2⇑Xyi+2

We can proceed similarly and finally we have an+1 ≡ ⇑Xyn+1.
Then,

LHS of (/) ≡ ⇓X⇑Xyn+1 ≡ yn+1,

RHS of (/) ≡ a

by Lemma 5.1 clause 1. Therefore, (/) holds.

(b) y1 �∈ E0 and y1 ∈ X ⇑E0: We have �X
E0

y1 ≡ ⇓E0y1 ≡ y0 ∈ X
by assumption. Therefore, we have a1 ≡ ⇑En · · · ⇑E1y0. Since
⇑E1y0 �∈ E1 and ⇑E1y0 ∈ X ⇑E1, we have

a2 ≡ ⇑En · · · ⇑E2�X
E1
⇑E1y0

≡ ⇑En · · · ⇑E2⇓E1⇑E1y0

≡ ⇑En · · · ⇑E2y0

23

We can proceed similarly and finally we have an+1 ≡ y0. Then,

LHS of (/) ≡ y0[s↑E0 ↑E1 · · ·↑En],

RHS of (/) ≡ [s](y0)↑E0 ↑E1 · · ·↑En.

Therefore, (/) holds.

(c) y1 �∈ E0 and y1 �∈ X ⇑E0 : We have �X
E0

y1 ≡ ⇑X⇑E0⇓X⇓E0y1 by
assumption. Therefore, we have a1 ≡ ⇑En · · · ⇑E1⇑X⇑E0⇓Xy0. By
Lemma 5.1 clause 2,3, we have

a2 ≡ ⇑En · · · ⇑E2�X
E1
⇑E1⇑X⇑E0⇓Xy0

≡ ⇑En · · · ⇑E2⇑X⇑E1⇑E0⇓Xy0

We can proceed similarly and finally we have

an+1 ≡ ⇑X⇑En · · · ⇑E2⇑E1⇑E0⇓Xy0.

Put y′ := ⇑En · · · ⇑E2⇑E1⇑E0⇓Xy0. Then,

LHS of (/) ≡ ⇓X⇑Xy′ ≡ y′,

RHS of (/) ≡ (⇓Xy0)↑E0 ↑E1 · · ·↑En ≡ y′.

Therefore, (/) holds.

2. a ≡ e[[b]]: Put E := TY(e), φ := �X
En

◦ �X
En−1En

◦ · · · ◦ �X
E0E1···En

, φ′ :=

�X
EnE

◦ �X
En−1EnE

◦ · · · ◦ �X
E0E1···EnE

, and t := s↑E0 ↑E1 · · ·↑En . Then,

LHS of (/) ≡ φ(e)[[φ′(b)]][t] ≡ φ(e)[t][[φ′(b)�X
E [t↑E]]],

RHS of (/) ≡ [s]E0E1···En
(e)[[[s]E0E1···EnE(b)]].

Therefore, by the induction hypothesis, we have the identity.

3. Otherwise: Similar to the case 2 or trivial. ✷

Lemma 5.5 Let s be a canonical environment term. Then, for any term a,
a[s] ≡ [s](a) holds.

Proof. By induction on the construction of a, using Lemma 5.4 in the case
a is of the form λx. b, κE. b, or e[[b]]. ✷

24

Lemma 5.6 corresponds to the Substitution Lemma [2] in the λ-calculus,
that is, M [x := K][y := L] ≡ M [y := L][x := K[y := L]] if x �≡ y and
x �∈ FV(L).

Lemma 5.6 (Substitution Lemma) Let s and t be canonical environment

terms. Then, for any term a, a[s][t] ≡ a�TY(t)
TY(s)[t↑TY(s)][s[t]] holds.

Note that the effect of exchanging the order of two substitutions s and t
is adjusted by applying the exchange operation �TY(t)

TY(s) to a and the push

operation ↑TY(s) to t. For example, let a be (x �x), s be {z/x}, and t be
{�3x/x, (x �x)/�x} in the lemma. Then, we have

(x �2x)[s][t] ≡ (z �x)[t]

≡ z (x �x),

(x �2x)�{x,
x}
{x} [t↑{x}][s[t]] ≡ (�2x �x)[{�4x/x, (�x �2x)/�x}][s[t]]

≡ (⇓{x,
x}�2x (�x �2x))[s[t]]

≡ (x (�x �2x))[{z/x}]
≡ z (⇓{x}(�x) ⇓{x}(�2x))

≡ z (x �x).

(See also the example below the definition of the substitution in section 3.)

Proof of Lemma 5.6. Put X :=TY(s) and Y :=TY(t). We prove, by induction
on the construction of a, that the identity

[t]E([s]E(a)) ≡ [[t](s)]E([t↑X]E(�Y
XE(a))) (/)

holds for any sequence of declarations E ≡ E1 · · ·En. The lemma follows
from the case n = 0 of this identity and Lemma 5.5.

1. a is a variable: If ⇓Ei+1
· · · ⇓Ena ∈ Ei for some i, both sides of (/) are

a by Lemma 5.1 clause 1. Otherwise, we put y := ⇓E1 · · · ⇓Ena. In this
case, we can prove (/) by case analysis of y.

(a) y ∈ X: We have

LHS of (/) ≡ [t]E([s](y)↑E1 · · ·↑En) ≡ [t]([s](y))↑E1 · · ·↑En

25

by Lemma 5.2. On the other hand, since �Y
Xy ≡ ⇑Y y in this case

and [t↑X](⇑Y y) ≡ y by Lemma 5.3 clause 1, we have

[t↑X]E(�Y
XE(a)) ≡ [t↑X](⇑Y y)↑E1 · · ·↑En ≡ y ↑E1 · · ·↑En,

so, by Lemma 5.2,

RHS of (/) ≡ [[t](s)]E(y ↑E1 · · ·↑En) ≡ [[t](s)](y)↑E1 · · ·↑En .

Let s ≡ {s1/x1, . . . , sm/xm}, then y ≡ xi for some i. Therefore,

[t]([s](y)) ≡ [t](si),

[[t](s)](y) ≡ [{[t](s1)/x1, . . . , [t](sm)/xm}](y) ≡ [t](si)

Therefore, (/) holds.

(b) y ∈ Y ⇑X : We have

LHS of (/) ≡ [t]E([s](y)↑E1 · · ·↑En) ≡ [t](⇓Xy)↑E1 · · ·↑En

by Lemma 5.2 and Lemma 5.3 clause 1. On the other hand, since
�Y

Xy ≡ ⇓Xy, we have

[t↑X]E(�Y
XE(a)) ≡ [t↑X](⇓Xy)↑E1 · · ·↑En ,

so, by Lemma 5.2,

RHS of (/) ≡ [[t](s)]E([t↑X](⇓Xy)↑E1 · · ·↑En)

≡ [[t](s)]([t↑X](⇓Xy))↑E1 · · ·↑En .

Let t ≡ {t1/x1, . . . , tm/xm}, then ⇓Xy ≡ xi for some i. Therefore,

[t](⇓Xy) ≡ ti,

[[t](s)]([t↑X](⇓Xy)) ≡ [[t](s)](ti ↑X) ≡ ti ↑X ↓X ≡ ti.

Therefore, (/) holds.

(c) Otherwise: We have

LHS of (/) ≡ [t]E([s](y)↑E1 · · ·↑En) ≡ (⇓Y ⇓Xy)↑E1 · · ·↑En.

On the other hand, since �Y
Xy ≡ ⇑Y ⇑X⇓Y ⇓Xy,

RHS of (/) ≡ (⇓X⇓Y ⇑Y ⇑X⇓Y ⇓Xy)↑E1 · · ·↑En

≡ (⇓Y ⇓Xy)↑E1 · · ·↑En.

26

2. a ≡ e[[b]]: Put σ1 := [[t](s)]E TY(e), σ2 := [t↑X]E TY(e), and φ :=�Y
XE TY(e).

Then, we have

LHS of (/) ≡ [t]E([s]E(e))[[[t]E TY(e)([s]E TY(e)(b))]],

RHS of (/) ≡ [[t](s)]E([t↑X]E(�Y
XE(e)))[[σ1(σ2(φ(b)))]].

Therefore, by the induction hypothesis, we have the identity.

3. Otherwise: Similar to the case 2 or trivial. ✷

Lemma 5.7 Let φ : V → T be a (possibly) partial function, a be a term, and
E, F be declarations. Then, φFE(a�E

F) ≡ φEF (a)�E
F holds.

Proof. We can prove, by induction on a, that the identity

φFEE(�E
F E(a)) ≡ �E

F E(φEFE(a))

holds for any sequence of declarations E. In the case a is a variable, we
apply the case analysis similar to the one in the proof of Lemma 5.6 and use
Lemma 5.3 clause 3. ✷

The reduction is compatible with substitution.

Theorem 5.8 If a
∗→λκε b, then a[s]

∗→λκε b[s].

Proof. By Lemma 5.5 and Lemma 5.7. ✷

As we have studied in [18], we can internalize the meta-level operation of
substitution by means of evaluation terms which are of the form e[[a]]. We
can show that the meta-level substitution and the internalized substitution
coincide, that is, a[s] =ε s[[a]] holds.

Theorem 5.9 Let s be a canonical environment term. Then, for any term
a, a[s] =ε s[[a]] holds.

Proof. We define the size |a| of a term a as follows.

1. |x| := 1

2. |λx. b| := |b| + 1

3. |ba| := |b| + |a|

27

4. |κE. a| := |a| + 1

5. |a·e| := |a| + |e|
6. |{a1/x1, . . . , an/xn}| := |a1| + · · ·+ |an| + 1

7. |e[[a]]| := |e| + |a|
For terms e1, . . ., en, a, we prove the identity

(e1[[· · · en[[a]] · · ·]])[s] =ε s[[e1[[· · · en[[a]] · · ·]]]] (/)

by induction on the lexicographic order (|e1[[· · · en[[a]] · · ·]]|, |a|).
1. a is a variable: We put X := TY(s), Ei := TY(ei), yn+1 := a, and

yi := ⇓Ei
(yi+1).

(a) yi+1 ∈ Ei for some i: We put f := e1[[· · · ei−1[[ei]] · · ·]]. Since

e1[[· · · en[[a]] · · ·]] ∗→ε e1[[· · · ei[[yi+1]] · · ·]] ∗→ε f [[yi+1]]

holds, we have

LHS of (/)
∗→ε (f [[yi+1]])[s] ≡ f [s][[yi+1 �X

Ei
[s↑Ei]]],

RHS of (/)
∗→ε s[[f [[yi+1]]]] →ε s[[f]][[yi+1]].

Since we have

yi+1�X
Ei

[s↑Ei] ≡ ⇑X(yi+1)[s↑Ei] ≡ ⇓X(⇑X(yi+1)) ≡ yi+1,

the identity (/) holds by the induction hypothesis for e1, . . ., ei−1,
ei.

(b) Otherwise: Since e1[[· · · en[[a]] · · ·]] ∗→ε y1, the identity (/) holds
from s[[y1]] →ε y1[s].

2. a ≡ λy. b: By successively using (fun), we have

e1[[· · · en[[λy. b]] · · ·]] ∗→ε λy. e′1[[· · · e′n[[b′]] · · ·]]
where e′1, . . ., e′n, b′ are obtained by applying push/exchange operations
to e1, . . ., en, b respectively. By Theorem 5.8 and the definition of
substitution,

LHS of (/)
∗→ε λy. (e′′1[[· · · e′′n[[b′′]] · · ·]][s′])

28

where e′′1, . . ., e′′n, b′′, s′ are obtained by applying push/exchange oper-
ations to e′1, . . ., e′n, b′, s respectively. On the other hand, we have

RHS of (/)
∗→ε s[[λy. e′1[[· · · e′n[[b′]] · · ·]]]] →ε λy. s′[[e′′1[[· · · e′′n[[b′′]] · · ·]]]].

Since the size of a term does not change by push/exchange operations,
we can apply the induction hypothesis.

3. a ≡ e[[b]]: (e1[[· · · en[[e[[b]]]] · · ·]])[s] =ε s[[e1[[· · · en[[e[[b]]]] · · ·]]]] by the induc-
tion hypothesis for e1, . . ., en, e, b.

4. Otherwise: Similar to the case 2 or trivial. ✷

We can generalize the internalized version of Substitution Lemma (Lemma
5.6).

Lemma 5.10 Let e and f be environment terms. Then, for any term a,
e[[f [[a]]]] =ε e[[f]][[(e↑TY(f))[[a�TY(e)

TY(f)]]]] holds.

Proof. (Sketch) We can prove the following identities:

⇑X
E(a) ≡ �E

X(⇑X(a)), �F
XE(�E

X(�E
F X(a))) ≡ �E

F (�E
XF (�F

X(a))),

where a is a term and E, F , X are declarations. Using these identities, we
can prove this lemma by induction of the size of a. ✷

In the following, we prove several important theorems. Especially, Theo-
rem 5.14, 5.24 and 5.26 will establish the purity of our calculus.

Theorem 5.11 (Closed Normal Term is Canonical) If � c : C and c
is normal, then c is canonical.

Proof. We omit the proof, because this theorem can be proved in the same
way as in [18]. ✷

Lemma 5.12 If Γ � a : A, then Γ⇑E � a↑E : A and Γ�E
F � a�E

F : A for any
declarations E, F .

29

Proof. (Sketch) In this proof, we use the notation φ(Γ) :={φ(x) | x ∈ Γ} for
φ : V → V. We can prove that if Γ � a : A, then

⇑E
E(Γ) � ⇑E

E(a) : A, �E
F E(Γ) � �E

F E(a) : A

for any sequence of declarations E, by the induction on the derivation Γ �
a : A. ✷

Theorem 5.13 (Subject Reduction) If Γ � a : A and a →λκε b, then
∆ � b : A for some ∆ ⊆ Γ.

Proof. The theorem is proved by the induction on the derivation Γ � a : A
and the reduction a →λκε b. Here we verify only a few key cases.

....
Γ � a : A

(Γ − E)⇓E � κE. a : AE

....
∆ � e : E

(Γ − E)⇓E ∪ ∆ � (κE. a)·e : A �→κ

....
∆ � e : E

....
Γ � a : A

∆ ∪ (Γ − E)⇓E � e[[a]] : A.

....
Γ � e : F

....
∆ � a : A

(∆ − E)⇓E � κE. a : AE

Γ ∪ ((∆ − E)⇓E − F)⇓F � e[[κE. a]] : AE �→ε

....
Γ⇑E � e↑E : F

....
∆�F

E � a�F
E : A

Γ⇑E ∪ (∆�F
E − F)⇓F � (e↑E)[[a�F

E]] : A

((Γ⇑E ∪ (∆�F
E − F)⇓F) − E)⇓E � κE. (e↑E)[[a�F

E]] : AE .

We have Γ ∪ ((∆ − E)⇓E − F)⇓F ≡ ((Γ⇑E ∪ (∆�F
E − F)⇓F) − E)⇓E from

Lemma 2.3. By Lemma 5.12, we are done. ✷

Theorem 5.14 (Confluence) →λκε on λκε-terms is confluent.

Proof. The proof is a straightforward extension of that for λε [18], and we
omit the details here. ✷

30

We remark that from the confluence of λκε, we see that the operations of hole
filling and β-reduction always commute, since in λκε, hole filling is computed
by reducing a term of the form (λX. a)(κE. b).

We next prove that λκε is a conservative extension of λβ and λε [18]. We
first prove that α-equivalence is preserved by reduction.

Lemma 5.15 Let ∗ be ∗λ or ∗ε, a be a λκε-term, and E, F be declarations.
We have the following identities.

FV(a∗) = FV(a), TY(a∗) = TY(a),

(a↑E)∗ ≡ a∗ ↑E, (a↓E)∗ ≡ a∗↓E , (a�E
F)∗ ≡ a∗�E

F .

Proof. FV(a∗) = FV(a) can be proved by induction on a. TY(a∗) = TY(a)
can be proved easily. For the rest of identities, we give a sketch of the proof
of (a↑E)∗ ≡ a∗↑E , because other ones can be proved similarly.

Put X := {x1, . . . , xn} and I := {ι1, . . . , ιn}. We can prove the identity:

(⇑E
X(a))[{ι1/x1, . . . , ιn/xn}] ≡ ⇑E

I(a[{ι1/x1, . . . , ιn/xn}]).
Using this identity, we can prove that (⇑E

F (a))∗ ≡ ⇑E
F (a∗) holds for any

sequence of declarations F by induction on a. ✷

Lemma 5.16 Let E and F be declarations such that {�(x) | x ∈ E}∩{�(x) |
x ∈ F} = ∅. Then, we have a�E

F ≡ a.

Proof. We can prove that �E
F F (a) ≡ a holds for any sequence of declarations

F by induction on a and Lemma 2.2. ✷

Theorem 5.17 If a ≡α a′, a →λκε b, a′ →λκε b′, and the position of the
redex of a →λκε b and that of the redex of a′ →λκε b′ are the same, then
b ≡α b′.

Proof. This theorem is proved by induction on a →λκε b. We prove only
the base case e[[λx. b]] →λκε λx. (e↑{x})[[b�TY(e)

{x}]]. Other cases are similar or

trivial. In this case, we have a term e′[[λx′. b′]] such that e[[λx. b]] ≡α e′[[λx′. b′]]
and e′[[λx′. b′]] →λκε λx′. (e′ ↑{x′})[[b′ �TY(e′)

{x′}]]. So, we will prove

λx. (e↑{x})[[b�TY(e)
{x}]] ≡α λx′. (e′↑{x′})[[b′�TY(e′)

{x′}]] (/)

in the following. We have two cases according to the form of e. (In the
following, ∗ stands for ∗ε and ι for ι1.)

31

1. e is not a canonical environment term: In this case, we have e∗ ≡ e′∗

and b∗[{ι/x}] ≡ b′∗[{ι/x′}], since e[[λx. b]] ≡α e′[[λx′. b′]]. On the other
hand, we have

(λx. (e↑{x})[[b�TY(e)
{x}]])∗

≡ λι. ((e↑{x})[[b�TY(e)
{x}]])∗[{ι/x}]

≡ λι. (e↑{x})∗[{ι/x}][[((b�TY(e)
{x})∗�{x}TY(e))[{ι/x}]]]

≡ λι. e∗[[b∗[{ι/x}]]]
by Lemma 5.15 and Lemma 5.3 clause 1,2. We also have

(λx′. (e′↑{x′})[[b′�TY(e′)
{x′}]])∗ ≡ λι. e′∗[[b′∗[{ι/x′}]]]

by the same calculation. Therefore, we have (/).

2. e ≡ {a1/y1, . . . , an/yn}: By putting {ι/y} := {ι1/yp(1), . . . , ιn/yp(n)}
where yp(1) ≺ · · · ≺ yp(n), we have

(e[[λx. b]])∗ ≡ {ap(1)
∗/ι1, . . . , ap(n)

∗/ιn}[[(λx. b)∗[{ι/y}]]].
We also put Y := {y1, . . . , yn}, I := {ι1, . . . , ιn}, and ι′ := �ι1, ι2, . . . , ιn.
Then, we have

(λx. b)∗[{ι/y}] ≡ (λι. b∗[{ι/x}])[{ι/y}]
≡ λι. (b∗[{ι/x}])�Y

{ι}[{ι/y}↑{ι}] ≡ λι. b∗[{ι/x}][{ι′/y}]
by Lemma 5.16 for Y and {ι}. Since e[[λx. b]] ≡α e′[[λx′. b′]], e′ should
be an environment term such that e′ ≡ {a′

1/y
′
1, . . . , a

′
n/y

′
n} and ap(i)

∗ ≡
a′

q(i)
∗ where y′

q(1) ≺ · · · ≺ y′
q(n). Putting {ι/y′}:={ι1/y′

q(1), . . . , ιn/y
′
q(n)},

we have
b∗[{ι/x}][{ι′/y}] ≡ b′∗[{ι/x′}][{ι′/y′}].

On the other hand, we have

(λx. (e↑{x})[[b�TY(e)
{x}]])∗

≡ λι. ((e↑{x})[[b�Y
{x}]])

∗[{ι/x}]
≡ λι. {cp(1)/ι1, . . . , cp(n)/ιn}[[(b�Y

{x})
∗[{ι/y}]]][{ι/x}]

≡ λι. {dp(1)/ι1, . . . , dp(n)/ιn}[[((b�Y
{x})

∗[{ι/y}])�{x}I [{ι/x}]]]

32

where we put ci := (ai ↑{x})∗ and di := (ai ↑{x})∗[{ι/x}]. Then, we have

((b�Y
{x})

∗[{ι/y}])�{x}I [{ι/x}] ≡ (b�Y
{x})

∗[{ι/y}][{ι/x}]
≡ (b�Y

{x})
∗ �{x}Y [{ι↑I/x}][{ι/y}] ≡ b∗[{�ι/x}][{ι/y}]

and di ≡ a∗
i by Lemma 5.16 for {x} and I, Lemma 5.15 and Lemma 5.3

clause 1,2. By the same calculation, we have

(λx′. (e′↑{x′})[[b′�TY(e′)
{x′}]])∗

≡ λι. {a′
q(1)

∗
/ι1, . . . , a

′
q(n)

∗
/ιn}[[b′∗[{�ι/x′}][{ι/y′}]]].

Therefore, we have (/). ✷

Note that αλ-equivalence is not preserved by reduction. For example, (λx. x)z
and (λy. y)z are αλ-equivalent, but {z/x}[[x]] and {z/y}[[y]] are not.

Now we can describe the conservativity of λκε over λβ. Let λκε/α be
the system obtained by identifying α-equivalent terms in λκε. By Theorem
5.17, the reduction relation in λκε becomes the reduction relation in λκε/α.

Theorem 5.18 (Conservativity) Let a and b be terms of λβ. Then, a
∗→ b

in λκε/α iff a
∗→ b in λβ.

Proof. This theorem can be proved in the same way as in [18], which uses
the translation from terms of λε to terms of λβ. ✷

To describe the conservativity theorem (Theorem 5.18), we have identified
α-equivalent terms in λκε, because α-equivalent terms are identified in λβ.
But we can give an elaborated description by using the feature of λκε that
α-conversion is not necessary to reduce terms. In the following, we will
prove the conservativity of λκε over λε and λβ described in a different style
(Theorem 5.22, 5.24). For this purpose, we embed the terms of λε in the λκε-
terms. A general λε-term is a λκε-term such that its typing derivation uses
the (axiom), (⇒I), (⇒E), (envI), (envE) rules only, and in the derivation,
x in (⇒I) is a pure variable, x1, . . . , xn in (envI) are pure variables, and E
in (envE) is a set of pure variables. A term is pure if all the variables used
in the (axiom) rule in its typing derivation are pure variables. A λε-term is
a pure general λε-term. Next we represent the reduction rules of λε in λκε.
The rules of λε are (var), (funapp), (env), (eval) of λκε and the following two
rules.

33

(gc′) e[[a]] �→ε a, if TY(e) ∩ FV(a) = ∅.
(fun′) e[[λx. b]] �→ε λx. e[[b]], if x �∈ TY(e) ∪ FV(e).

But unlike λκε, αλ-equivalent terms are identified in λε. Therefore, we rep-
resent the reduction rules as follows: Let a and b be λε-terms. We write
a λε→ b if there exist λε-terms a′ and b′ such that a ≡λ

α a′, b ≡λ
α b′, and a′ is

reduced to b′ by the above rules. We write λε∗→ for the reflexive and transitive
closure of λε→.

Lemma 5.19 Let a be a λε-term and E, F be sets of pure variables.
1. E ∩ FV(a) = ∅ iff a↑E ≡ a iff a↑E is a λε-term.
2. E ∩ FV(a) = ∅ iff a↓E ≡ a iff a↓E is a λε-term.
3. E ∩ F ∩ FV(a) = ∅ iff a�E

F ≡ a iff a�E
F is a λε-term.

Proof. Since a is a λε-term, all the variables in a are of level 0. Therefore,
we need to prove only the case a is a variable. But it is easily checked. ✷

Lemma 5.20 1. Let e[[a]] be a λε-term. Then, a↓TY(e) ≡ a iff TY(e) ∩
FV(a) = ∅.
2. Let e[[λx. b]] be a λε-term. Then, λx. (e↑{x})[[b�TY(e)

{x}]] ≡ λx. e[[b]] iff

x �∈ TY(e) ∪ (FV(e) ∩ FV(b)).

Proof. By Lemma 5.19. ✷

By this lemma, we know that (gc) restricted to λε-terms is (gc′), but (fun)
restricted to λε-terms requires a weaker condition than (fun′). However, this
difference is not essential as we see in Lemma 5.21.

Lemma 5.21 If a and b are general λε-terms, a′ is a λε-term, a ≡α a′, and
a →λε b, then there is a λε-term a′′ and b′ such that a′ ≡λ

α a′′, b′ ≡α b, and
a′′ →λε b′. Here, if a →λε b by (fun), then a′′ →λε b′ by (fun′), otherwise,
a′′ →λε b′ by the same rule as a →λε b.

Proof. This theorem is proved by induction on a →λε b. We prove only
the base case e[[λx. b]] →λε λx. (e↑{x})[[b�TY(e)

{x}]]. Other cases are similar or

trivial. In this case, we have a λε-term e′[[λx′. b′]] such that e[[λx. b]] ≡α

e′[[λx′. b′]]. Then, we can find a λε-term λx′′. b′′ such that λx′′. b′′ ≡λ
α λx′. b′

and x′′ �∈ TY(e′) ∪ FV(e′). So, we will prove

λx. (e↑{x})[[b�TY(e)
{x}]] ≡α λx′′. e′[[b′′]] (/)

34

in the following. We have two cases according to the form of e. (In the
following, ∗ stands for ∗ε and ι for ι1.)

1. e �≡ {a1/y1, . . . , an/yn}: In this case, we have e∗ ≡ e′∗ and b∗[{ι/x}] ≡
b′′∗[{ι/x′′}], since e[[λx. b]] ≡α e′[[λx′′. b′′]]. On the other hand, we have

(λx. (e↑{x})[[b�TY(e)
{x}]])∗ ≡ λι. e∗[[b∗[{ι/x}]]]

as we have shown in the proof of Theorem 5.17. By a similar calcula-
tion, but using x′′ �∈ TY(e′) and x′′ �∈ FV(e′) in this case, we have

(λx′′. e′[[b′′]])∗ ≡ λι. e′∗[[b′′∗[{ι/x′′}]]].
Therefore, we have (/).

2. e ≡ {a1/y1, . . . , an/yn}: As we have shown in the proof of Theorem
5.17, we have

ap(i)
∗ ≡ a′

q(i)
∗
, b∗[{ι/x}][{ι′/y}] ≡ b′′∗[{ι/x′′}][{ι′/y′}]

where yp(1) ≺ · · · ≺ yp(n), {ι/y} := {ι1/yp(1), . . . , ιn/yp(n)}, e′ ≡ {a′
1/y

′
1,

. . . , a′
n/y

′
n}, y′

q(1) ≺ · · · ≺ y′
q(n), and {ι/y′} := {ι1/y′

q(1), . . . , ιn/y
′
q(n)}.

We have also shown

(λx. (e↑{x})[[b�TY(e)
{x}]])∗ ≡ λι. {ap(1)

∗/ι1, . . . , ap(n)
∗/ιn}[[b∗[{�ι/x}][{ι/y}]]].

By a similar calculation, but using x′′ �∈ Y and x′′ �∈ FV(a′
i) in this

case, we have

(λx′′. e′[[b′′]])∗ ≡ λι. {a′
q(1)

∗
/ι1, . . . , a

′
q(n)

∗
/ιn}[[b′′∗[{�ι/x′′}][{ι/y′}]]].

Therefore, we have (/). ✷

Theorem 5.22 (Conservativity) Let a and b be λε-terms.

1. If a
∗→λκε b, then there is a λε-term b′ such that a λε∗→ b′ and b ≡α b′.

2. If a λε∗→ b, then there is a λε-term b′ such that a
∗→λκε b′ and b ≡α b′.

Proof. 1. The reduction sequence a
∗→λε b is of the form a1 →λε · · · →λε an

where a ≡ a1 and b ≡ an. (Note that ai is a general λε-term.) We define
λε-terms a′

i (i = 1, . . . , n) and a′′
i (i = 1, . . . , n − 1) as follows. First, we put

a′
1 := a1. Next, assume we have a λε-term a′

i such that ai ≡α a′
i. By Lemma

35

5.21, there are λε-terms a′′
i and a′

i+1 such that a′′
i →λε a′

i+1, a′
i ≡λ

α a′′
i , and

ai+1 ≡α a′
i+1. Since a′

i
λε→ a′

i+1, we have a1
λε∗→ a′

n.

2. The reduction sequence a λε∗→ b is of the form a1
λε→ · · · λε→ an where

a ≡ a1 and b ≡ an. We define λε-terms a◦
i (i = 1, . . . , n) as follows. First,

we put a◦
1 := a1. Next, assume we have a◦

i such that a1
∗→λε a◦

i and a◦
i ≡α ai.

Since ai
λε→ ai+1, we have a′

i and a′
i+1 such that a′

i ≡λ
α ai, a′

i+1 ≡λ
α ai+1,

and a′
i →λε a′

i+1. So we have a′
i ≡α a◦

i . By Lemma 5.21, there is a λε-term

a◦
i+1 such that a◦

i →λε a◦
i+1 and a◦

i+1 ≡α a′
i+1. So, we have a1

∗→λε a◦
i+1 and

a◦
i+1 ≡α ai+1. Therefore, we can take a◦

n as b′. ✷

In [18], it is proved that λε is a conservative extension of the simply typed
lambda calculus λβ. To express the conservativity within λκε, we embed the
λβ-terms in the λκε-terms similarly to the λε-terms. A λβ-term is a λκε-
term such that its typing derivation uses the (axiom), (⇒I), (⇒E) rules
only, and all the variables used in the (axiom) rule are pure variables. We
represent the reduction rule of λβ in λκε as follows: Let a and b be λβ-terms.
We write a β→ b if there exist λβ-terms a′ and b′ such that a ≡α a′, b ≡α b′,
and a′ →β b′, where the conversion �→β is defined by the following rule.

(β) (λx. b)a �→β b[{a/x}].
Then, we have the following theorem.

Theorem 5.23 (Theorem 5.8 [18]) Let a and b be λβ-terms. Then, a β∗→
b iff a λε∗→ b.

By combining Theorem 5.22 and 5.23, we have the conservativity of λκε
over the simply typed λβ-calculus.

Theorem 5.24 (Conservativity) Let a and b be λβ-terms. Then, a β∗→ b

iff there is a λβ-term b′ such that a
∗→λκε b′ and b ≡α b′.

Proof. The only-if-part is proved by Theorem 5.22 and 5.23. The if-part is
proved as follows. By Theorem 5.22, there is a λε-term c such that a λε∗→ c
and b′ ≡α c. Let an−1

λε→ c be the last step of the reduction sequence. Then
there exist a′

n−1 and c′ such that a′
n−1 →λε c′, an−1 ≡λ

α a′
n−1, and c ≡λ

α c′.
Since c is a λβ-term, b ≡λ

α c. So, we have b ≡λ
α c′. Therefore, we have

an−1
λε→ b, so that a λε∗→ b. By Theorem 5.23, we have a β∗→ b. ✷

Now, we prove Theorem 3.1 which relates α-equivalence and substitution.

36

Lemma 5.25 Let a be a λκε-term and s be a canonical environment term.

(a[s])∗λ ≡ a∗λ[s∗λ], (a[s])∗ε ≡ (a∗ε[s∗ε])∗ε

Proof. The first identity can be proved similarly to Lemma 5.15. The second
one can also be proved similarly, but we have to take care of the case that a
has a subterm z[[b]] and s is of the form {. . . , e/z, . . .} where e is a canonical
environment term. ✷

Proof of Theorem 3.1. By Lemma 5.25, we have (a[s])∗λ ≡ a∗λ[s∗λ] ≡
b∗λ[s∗λ] ≡ (b[s])∗λ and (a[s])∗ε ≡ (a∗ε[s∗ε])∗ε ≡ (b∗ε[s∗ε])∗ε ≡ (b[s])∗ε. ✷

Theorem 5.26 (Strong Normalizability) If Γ � a : A, then a is strongly
normalizable.

Proof. We can prove this theorem in the same way as the strongly nor-
malizability theorem of λε [18], because we can treat the cases of (abs) and
(absapp) similarly to the cases of (fun) and (funapp). ✷

6 Related Works

In this section, we compare our calculus with some related works.
In the formulation of contexts in λκε, first-class environments (or explicit

substitutions) play an essential role. Abadi et al [1] first introduced explicit
substitutions, and there are many interesting works on this subject since
then. However, to our knowledge, the λε-calculus [18] is the only language
which is pure in our sense. We therefore designed our calculus as an extension
of λε.

The style of the presentation of our paper is very close to that of Hashimoto-
Ohori [10]. Both our calculus and the calculus presented in [10] are simply
typed calculi which include simply typed λβ-calculus as their subcalculus.
The system in [10] enjoys subject reduction property and is confluent. How-
ever, neither conservativity over simply typed λβ-calculus nor strong normal-
izability are shown in the paper. Therefore, it is not known whether their
system is pure in our sense4. Also, their calculus has severe restrictions in
that (i) each context may have at most one hole in it, and (ii) as we have ex-
plained in section 1, the application of the β-reduction is allowed only when

4Sakurada [15] proved the strong normalizability of Hashimoto-Ohori’s calculus by
interpreting it in λε.

37

the β-redex has no hole in it. Our calculus does not have such restrictions
and β-reduction and hole-filling always commute.

Dami’s calculus λN [5] is a very simple and powerful calculus with named
variables. It is possible to represent both contexts and hole-filling in λN .
However, this is done by a translation of λβ calculus into λN . Therefore,
it is hard to read the translated terms as contexts. On the other hand,
Mason [12] introduces a system with first-class contexts in which contexts
are directly represented as terms in his calculus. However, he defines hole-
filling as a meta-level operation. It is therefore not possible to compute hole-
filling within his system. Unlike these systems, in λκε, contexts are directly
representable as terms of λκε, and we can compute hole-filling within λκε.

Sands [16] uses Pitts’ [14] definition of contexts and shows that hole-
filling commutes with many relations on terms including α-equivalence. Pitts
defines contexts by representing holes by (higher-order) function variables
where each function variable has a fixed arity, and by representing hole-filling
by substitution of a meta-abstraction for a function variable. For example,
the term

λx. (λy. x + X·{x/x, y/y})3
in λκε can be expressed by

λx. (λy. x + ξ(x, y))3

where ξ is a binary function variable, and the substitution

{κ{x, y}. x + y/X}
in λκε can be expressed by

[(x, y)(x + y)/ξ].

As can be seen by this example, Pitts’ representation of contexts is struc-
turally similar to ours, but the statuses of contexts are quite different. That
is, Pitts’ contexts are meta-level objects outside the object language (λ cal-
culus in case of the above example) and our contexts are internal objects of
our language λκε. Because of this meta-level status of Pitts’ contexts, Sands
[16] could successfully attach contexts to many languages and could prove
that hole-filling commutes with many rules in a uniform way. In contrast to
this, we have been interested in internalizing such meta-level objects as con-
texts and environments so that we can enrich λ-calculus to a more powerful
programming language.

38

7 Conclusion

We have introduced a simply typed λ-calculus which has both contexts and
environments as first-class values. We have shown that our calculus, λκε,
is a conservative extension of the simply typed λβ-calculus, enjoys subject
reduction property, is confluent and strongly normalizing. Thus we have
shown that our language is pure in the sense of [18] and also we have realized
our hope, which we stated in the conclusion of [18], to design a pure language
that has both contexts and environments as first-class values. To the best of
our knowledge, λκε is the first such language.

We have also introduced a new method of defining substitution which is
conceptually simpler than traditional methods. We think that our method
is also suitable for representing terms and computing substitutions on the
computer.

References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit Substitu-
tions. Journal of Functional Programming, 1:375–416, 1991.

[2] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics.
North-Holland, 1981.

[3] R. Bloo and K.H. Rose. Preservation of Strong Normaliza-
tion in Named Lambda Calculi with Explicit Substitution and
Garbage Collection. In van Vliet J. C., editor, Proc. CSN’95
(Computer Science in Netherlands), 1995. (ftp://ftp.diku.dk/
diku/semantics/papers/D-246.ps).

[4] M. Bognar and R. de Vrijer. A calculus of lambda calculus contexts. J.
Automated Reasoning, 27:29–59, 2001.

[5] L. Dami. A Lambda-Calculus for Dynamic Binding. Theoretical Com-
puter Science, 192:201–231, 1998.

[6] D. G. de Bruijn. Lambda Calculus Notation with Nameless Dummies,
a Tool for Automatic Formula Manipulation, with Application to the
Church-Rosser Theorem. Indag. Math., 34:381–392, 1972.

39

[7] M. Fiore, G. Plotkin, and D. Turi. Abstract Syntax and Variable Binding
(Extended Abstract). In Proc. 14th Symposium on Logic in Computer
Science, pages 193–202, 1999.

[8] J. Garrigue and H. Aı̈t-Kaci. The Typed Polymorphic Label-Selective
λ-Calculus. In Proc. 21st Annual ACM Symposium on Principles of
Programming Languages, pages 35–48, 1994.

[9] C. Gunter. Semantics of Programming Languages. The MIT Press, 1992.

[10] M. Hashimoto and A. Ohori. A Typed Context Calculus. Preprint RIMS-
1098. Research Institute for Mathematical Sciences, Kyoto University,
1996. (Journal version is to appear in Theoretical Computer Science.).

[11] S.-R. Lee and D. P. Friedman. Enriching the Lambda Calculus with
Contexts: Toward a Theory of Incremental Program Construction. In
ACM SIGPLAN Notices, Proc. International Conference on Functional
Programming, pages 239–250, 1996.

[12] I. Mason. Computing with Contexts. Higher-Order and Symbolic Com-
putation, 12:171–201, 1999.

[13] P.-A. Melliès. Typed λ-calculi with explicit substitutions may not ter-
minate. In Proc. Second International Conference on Typed Lambda
Calculi and Applications, LNCS 902, pages 328–349, 1995.

[14] A. M. Pitts. Some Notes on Inductive and Co-Inductive Techniques in
the Semantics of Functional Programs. Notes Series BRICS-NS-94-5,
Department of Computer Science, University of Aarhus, 1994.

[15] H. Sakurada. An Interpretation of a Context Calculus in an Environ-
ment Calculus. Transactions of Information Processing Society of Japan:
Programming, 41(SIG 9 (PRO 8)):1–7, 2000.

[16] D. Sands. Computing with Contexts - a simple approach. Electronic
Notes in Theoretical Computer Science, 10, 1998.

[17] M. Sato. Theory of Symbolic Expressions, II. Publ. of Res. Inst. for
Math. Sci., Kyoto Univ., 21:455–540, 1985.

[18] M. Sato, T. Sakurai, and R. Burstall. Explicit Environments. Funda-
menta Informaticae, 45(1-2):79–115, 2001.

40

[19] C. Talcott. A Theory of binding structures and applications to rewriting.
Theoretical Computer Science, 112(1):99–143, 1993.

41

