
GNUspool Release 1

API Reference Manual

GNUspool API

This manual is for GNUspool (API Reference Manual).

Copyright 2008 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any
later version published by the Free Software Foundation; with no
Invariant Sections, with no Front-Cover Texts, and with no Back-Cover
Texts. A copy of the license is included in the GNUSpool reference manual
in the section entitled ``GNU Free Documentation License''.

Page 2

GNUspool API

Table of Contents

1 Introduction to GNUspool API..I
2 Installation and access to API..2
3 The API file descriptor..3

3.1 Error return codes..3
4 Slot numbers...5
5 Sequence numbers..6
6 API Functions...7

6.1 Sign-on and off...7
6.1.1 gspool_open (Unix and GNU/Linux versions)...7
6.1.2 gspool_open (Windows version)..8
6.1.3 gspool_login (Windows version)..9
6.1.4 gspool_close...9

6.2 Job Operations...10
6.2.1 gspool_joblist..10
6.2.2 gspool_jobread...11
6.2.3 gspool_jobfind..13
6.2.4 gspool_jobdata (Unix and GNU/Linux)...14
6.2.5 gspool_jobdata (Windows version)..15
6.2.6 gspool_jobpbrk (Unix and GNU/Linux versions)..15
6.2.7 gspool_jobpbrk (Windows version)..16
6.2.8 gspool_jobadd (Unix and GNU/Linux versions)...16
6.2.9 gspool_jobadd (Windows version)...19
6.2.10 gspool_jobdel..19
6.2.11 gspool_jobupd...20
6.2.12 gspool_jobmon (Unix and GNU/Linux versions)..21
6.2.13 gspool_jobmon (Windows version)..21

6.3 Printer operations...22
6.3.1 gspool_ptrlist..22
6.3.2 gspool_ptrread..23
6.3.3 gspool_ptrfind...25
6.3.4 gspool_ptradd...26
6.3.5 gspool_ptrdel..26
6.3.6 gspool_ptrupd...27
6.3.7 gspool_ptrop...28
6.3.8 gspool_ptrmon..29

6.4 User permissions..30
6.4.1 gspool_getspu..30
6.4.2 gspool_getspd..32
6.4.3 gspool_putspu..33
6.4.4 gspool_putspd..34

7 Example API program..35

Page I

GNUspool API

1 Introduction to GNUspool API

The GNUspool API enables a C or C++ programmer to access GNUspool facilities
directly from within an application. The application may be on a Unix host or on a
Windows workstation.

Communication takes place using a TCP connection between the API running on a
Windows or Unix machine and the server process xtnetserv running on the Unix host
in question. The same application may safely make several simultaneous
conversations with the same or different host.

The user may submit, change, delete and alter the state of jobs or printers to which he
or she has access, and may receive notification about changes which may require
attention. In addition, the user access control parameters may be viewed and if
permitted, changed.

Page I

GNUspool API

2 Installation and access to API

The API is provided as two files, a header file gspool.h and a library file.

The header file should be copied to a suitable location for ready access.

#include <gspool.h>

The library file is supplied in the form libgnuspool.a or as a shared library
libgnuspool.so on Unix systems. This may need be copied or linked to /lib or /usr/
lib so that it may be linked with the option -lgnuspool when the program is
compiled. On some systems you may have to include a socket handling library as well.
The shared library is usually placed in /usr/local/lib.

On Windows systems the library is supplied as gnuspool.dll. Again we suggest that it
be placed in the default search path.

Page 2

GNUspool API

3 The API file descriptor

Each routine in the API uses a file descriptor to identify the instance in progress. This
is an integer value, and is returned by a successful call to the gspool_open or
gspool_login routine. All other routines, apart from job string manipulation routines,
take this value as a first parameter. As mentioned before, more than one session may
be in progress at once with different gspool_open parameters.

Each session with the API should be commenced with a call to gspool_open or
gspool_login and terminated with a call to gspool_close.

3.1 Error return codes

Nearly all the routines return an integer response code. This is usually zero to indicate
success (except for gspool_open which returns a positive or zero file descriptor). The
error codes are described below.

Those routines which return a pointer to a FILE structure return NULL on error and put
the error code in gspool_dataerror.

Code Name Meaning

0 GSPOOL_OK No error, successful completion
-1 GSPOOL_INVALID_FD The file descriptor argument is invalid.
-2 GSPOOL_NOMEM Run out of memory allocation within API library.

-3 GSPOOL_INVALID_HOSTNAME Invalid host name in gspool_open

-4 GSPOOL_INVALID_SERVICE Invalid service name in gspool_open

-5 GSPOOL_NODEFAULT_SERVICE
Default service relied upon and no default API
service set up in services file

-6 GSPOOL_NOSOCKET Cannot create socket
-7 GSPOOL_NOBIND Cannot bind address to socket
-8 GSPOOL_NOCONNECT Connection refused by server
-9 GSPOOL_BADREAD Read error on socket

-10 GSPOOL_BADWRITE Write error on socket
-11 GSPOOL_CHILDPROC Cannot fork to make child process
-23 GSPOOL_UNKNOWN_USER User invoking API is unknown on server
-24 GSPOOL_ZERO_CLASS Class code is effectively zero
-25 GSPOOL_BAD_PRIORITY Invalid priority (outside permitted range)
-26 GSPOOL_BAD_COPIES Invalid number of copies (above limit)
-27 GSPOOL_BAD_FORM Invalid form type (user is restricted)
-28 GSPOOL_NOMEM_QF No memory for queue file on server
-29 GSPOOL_BAD_PF Cannot open page file
-30 GSPOOL_NOMEM_PF No memory for page file on server
-31 GSPOOL_CC_PAGEFILE Cannot create page file
-32 GSPOOL_FILE_FULL Server file system is full
-33 GSPOOL_QFULL Server message queue full

Page 3

GNUspool API

Code Name Meaning

-34 GSPOOL_EMPTYFILE Job file is empty
-35 GSPOOL_BAD_PTR Invalid printer name (user restricted)
-36 GSPOOL_WARN_LIMIT Job exceeds limit, truncated
-37 GSPOOL_PAST_LIMIT Job exceeds limit, not queued
-38 GSPOOL_NO_PASSWD Password required and not given
-39 GSPOOL_PASSWD_INVALID Invalid password
-40 GSPOOL_UNKNOWN_COMMAND Unknown API operation (error in library)
-41 GSPOOL_SEQUENCE Sequence error, operation(s) since last read
-42 GSPOOL_UNKNOWN_JOB Job not found
-43 GSPOOL_UNKNOWN_PTR Printer not found
-44 GSPOOL_NOPERM No privilege for operation
-45 GSPOOL_NOTPRINTED Job has not been printed
-46 GSPOOL_PTR_NOTRUNNING Printer not running
-47 GSPOOL_PTR_RUNNING Printer is running
-48 GSPOOL_PTR_NULL Null printer name
-49 GSPOOL_PTR_CDEV No permission to change device
-50 GSPOOL_INVALIDSLOT Invalid slot number

Page 4

GNUspool API

4 Slot numbers

Each job or printer is identified to GNUspool by means of two numbers:

1. The host or network identifier. This is a long corresponding to the internet
address in network byte order. The host identifier is given the type netid_t.

2. The shared memory offset, or slot number. This is the offset in shared
memory on the relevant host of the job or printer and stays constant during
the lifetime of the job or printer. The type for this is slotno_t.

These two quantities uniquely identify any job or printer.

It might be worth noting that there are two slot numbers relating to a remote job or
printer.

1. The slot number of the record of the job or printer held in local shared memory.
This is the slot number which will in all cases be manipulated directly by the
API.

2. The slot number of the job on the owning host. This is in fact available in the job
structures as the field apispq_rslot and in the printer structure as the field
apispp_rslot.

These fields usually have the same value as the slot number in local memory for local
jobs or printers, but this should not be relied upon.

Page 5

GNUspool API

5 Sequence numbers

These quantities are not available directly, but are held to determine how out-of-date
the user's record of jobs or printers may be.

Every time you read a job or printer record, the sequence number of the job or printer
list is checked, and if out-of-date, you will receive the error GSPOOL_SEQUENCE. This is
not so much of an error as a warning. If you re-read the job or printer required, then
you will not receive this error.

If you want to bypass this, you can access the job or printer without worrying about
the sequence using the flag GSPOOL_FLAG_IGNORESEQ, however you might receive an
error about unknown job or printer if the job or printer has disappeared.

Page 6

GNUspool API

6 API Functions

The following sub-sections describe the GNUspool API C routines including each
function's purpose, syntax, parameters and possible return values.

The function descriptions also contain additional information that illustrate how the
function can be used to carry out tasks.

In some cases there are slight differences between the Unix and Windows variants,
these are noted where appropriate.

6.1 Sign-on and off

6.1.1 gspool_open (Unix and GNU/Linux versions)

int gspool_open(const char *host,
 const char *serv,
 const classcode_t cl)

The gspool_open routine is used to commence a session with the API on Unix or
GNU/Linux hosts, where the user name is obtained from the effective user id invoking
the routine.

Host is the name of the host to be connected to. Serv is the name of the TCP/UDP
service to be used to connect to GNUspool. If this is set to NULL, the default service
will be used (but this must be set up correctly).

Cl is the classcode to be used for access to all printer and job operations. If 0 is used
the user's default class code will be used. Note that the class code bits are assigned
starting at the least significant bit, thus:

 1 = A
 2 = B
 4 = C

 0x8000 = P
 0x10000 = a
 0x20000 = b
 0x40000 = c

 0x80000000 = p

The function returns an integer descriptor greater than or equal to 0 on success. This
descriptor should be used in all subsequent operations with the API.

If an error occurs, one of the (negative) error codes will be returned as listed in section
3.1.

Any number of API sessions, to the same host or to various hosts, may be in progress
simultaneously, subject to the restrictions on the number of simultaneous open files
per process which the operating system allows.

Each connection should also be terminated by a call to gspool_close or exit from the
calling program.

Page 7

GNUspool API

An example to open a connection to host "xisl":

int fd, ret;
fd = gspool_open("xisl", (char *) 0, 0);
if (fd < 0) {
 /* error handling */
 ...
}

/* process connection */

gspool_close(fd);

6.1.2 gspool_open (Windows version)

int gspool_open(const char *host,
 const char *serv,
 const char *user,
 const classcode_t cl)

The gspool_open routine is used to commence a session with the API. This second
form is that used on Windows hosts, where the Windows machine has a static IP
address and no password is required. See the next section for the form used on
Windows hosts with IP addresses allocated via DHCP.

Host is the name of the host to be connected to. Serv is the name of the TCP/UDP
service to be used to connect to GNUspool. If this is set to NULL, the default service
will be used (but this must be set up correctly).

User is the Unix user name to be used.

Cl is the classcode to be used for access to all printer and job operations. If 0 is used
the user's default class code will be used. Note that the class code bits are assigned
starting at the least significant bit, thus:

 1 = A
 2 = B
 4 = C

 0x8000 = P
 0x10000 = a
 0x20000 = b
 0x40000 = c

 0x80000000 = p

The function returns an integer descriptor greater than or equal to 0 on success. This
descriptor should be used in all subsequent operations with the API.

If an error occurs, one of the (negative) error codes will be returned as listed in section
3.1.

Each connection should also be terminated by a call to gspool_close or exit from the
calling program.

Page 8

GNUspool API

6.1.3 gspool_login (Windows version)

int gspool_login(const char *host,
 const char *serv,
 const char *user,
 char *pass,
 const classcode_t cl)

This routine is used on Windows hosts with IP addresses allocated via DHCP and/or
where a password is required.

Host is the name of the host to be connected to. Serv is the name of the TCP/UDP
service to be used to connect to GNUspool. If this is set to NULL, the default service
will be used (but this must be set up correctly).

User is the Unix user name to be used on Windows hosts and pass is the password.
Note that this is not const, and the passed field will be deliberately overwritten as
soon as possible within gspool_login. Also note that the password may not be the Unix
password, it may be an interface password set up by xipasswd.

Cl is the classcode to be used for access to all printer and job operations. If 0 is used
the user's default class code will be used. Note that the class code bits are assigned
starting at the least significant bit, thus:

 1 = A
 2 = B
 4 = C

 0x8000 = P
 0x10000 = a
 0x20000 = b
 0x40000 = c

 0x80000000 = p

The function returns an integer descriptor greater than or equal to 0 on success. This
descriptor should be used in all subsequent operations with the API.

If an error occurs, one of the (negative) error codes will be returned as listed in section
3.1.

Each connection should also be terminated by a call to gspool_close or exit from the
calling program.

6.1.4 gspool_close

int gspool_close(const int fd)

The gspool_close function is used to close a connection to GNUspool. Fd is a file
descriptor previously returned by a successful call to gspool_open or gspool_login.

gspool_close returns 0 if successful or GSPOOL_INVALID_FD (Invalid File descriptor, a
constant defined in gspool.h) if the passed file descriptor was not valid, perhaps
because it was never opened successfully.

Page 9

GNUspool API

6.2 Job Operations

6.2.1 gspool_joblist

int gspool_joblist(const int fd,
 const unsigned flags,
 int *numjobs,
 slotno_t **slots)

The gspool_joblist function is used to obtain a list of jobs.

Fd is a file descriptor previously returned by a successful call to gspool_open

Flags is zero, or a logical OR of one or more of the following values

GSPOOL_FLAG_LOCALONLY
Ignore remote printers/hosts, i.e. not local to the server,
not the client.

GSPOOL_FLAG_USERONLY Ignore other users jobs

Numjobs is a pointer to an integer value which, on successful completion, will contain
the number of job slots returned.

Slots is a pointer to to an array of slot numbers. These slot numbers can be used to
access individual jobs. The memory used by this vector is owned by the API, therefore
no attempt should be made by the user to free it. This contrasts, for example, with X
library routines. Also note that certain other calls to the API, notably gspool_ptrlist,
with the same value of fd, may reuse the space, so the contents should be copied if
required before other API calls are made.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to list all jobs:

int fd, ret, nj, i;
slotno_t *slots;
fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */
 ...
}
for (i = 0; i < nj; i++) {
 slotno_t this_slot = slots[i];
 /* process this_slot */
 ...
}
gspool_close(fd);

Page 10

GNUspool API

6.2.2 gspool_jobread

int gspool_jobread(const int fd,
 const unsigned flags,
 const slotno_t slot,
 struct apispq *jobd)

The gspool_jobread function is used to retrieve the details of a job from a given slot
number.

Fd is a file descriptor previously returned by gspool_open

Flags is zero, or a logical OR of one or more of the following values

GSPOOL_FLAG_LOCALONL
Y

Ignore remote printers/hosts, i.e. not local to the server, not
the client.

GSPOOL_FLAG_USERONLY Ignore other users jobs
GSPOOL_FLAG_IGNORESE
Q

Ignore changes since the list was last read

Slot is the slot number corresponding to the job as returned by gspool_joblist or
gspool_jobfindslot.

Jobd is a descriptor, which on return will contain the details of the job in a struct
apispq as defined in gspool.h and containing the following elements:

Type Field Description
jobno_t apispq_job Job number
netid_t apispq_netid Host address (network byte order)
netid_t apispq_orighost Originating host address
slotno_t apispq_rslot Slot number on owning machine
time_t apispq_time Time job was submitted
time_t apispq_starttime Time job was started (if applicable)
time_t apispq_hold Time job held to, 0 if not held

unsigned short apispq_nptimeout
Time after to delete job if not printed
(hours)

unsigned short apispq_ptimeout Time after to delete job if printed (hours)
unsigned short apispq_extrn External job type index
unsigned short apispq_pglim Job size limit applies
long apispq_size Size of job in bytes
long apispq_posn Offset reached if currently being printed
long apispq_pagec Currently-reached page if being printed
char[] apispq_uname User name of job owner
char[] apispq_puname User name of posting user
unsigned char apispq_cps Copies
unsigned char apispq_pri Priority
classcode_t apispq_class Class code bits 1=A 2=B 4=C etc
unsigned short apispq_jflags Job flags
unsigned char apispq_dflags Despooler flags

Page 11

GNUspool API

slotno_t apispq_pslot Printer slot assigned to if printing
unsigned long apispq_start Start page 0=first page
unsigned long apispq_end End page
unsigned long apispq_npages Number of pages
unsigned long apispq_haltat "Halted at" page
char [] apispq_file Job title
char [] apispq_form Job form type
char [] apispq_ptr Printer pattern assigned to job
char [] apispq_flags Post-processing flags

The following bits are set in the apispq_jflags field to indicate job parameters:

Bit (#define) Meaning
APISPQ_NOH Suppress header
APISPQ_WRT Write result
APISPQ_MAIL Mail result
APISPQ_RETN Retain on queue after printing
APISPQ_ODDP Suppress odd pages
APISPQ_EVENP Suppress even pages
APISPQ_REVOE Invert APISPQ_ODDP and API_EVENP after printing
APISPQ_MATTN Mail attention
APISPQ_WATTN Write attention
APISPQ_LOCALONLY Handle job on local machine only
APISPQ_CLIENTJOB Job originated with windows client
APISPQ_ROAMUSER Job originated with DHCP windows client

The apispq_dflags field contains the following bits:

Bit (#define) Description
APISPQ_PQ Job being printed
APISPQ_PRINTED Job has been printed
APISPQ_STARTED Job has been started
APISPQ_PAGEFILE Job has a page file
APISPQ_ERRLIMIT Error if size limit exceeded
APISPQ_PGLIMIT Size limit in pages not KB

Note that the field apispq_pglim and the field bits APISPQ_ERRLIMIT and
APISPQ_PGLIMIT will always be zero when read, but the description is included for
completeness. The fields are only used when creating jobs.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to read the names of all jobs

int fd, ret, nj, i;
struct apispq job;
slotno_t *slots;

Page 12

GNUspool API

fd = gspool_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */
 ...
}

ret = gspool_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */
 ...
}

for (i = 0; i < nj, i++) {
 ret = gspool_jobread(fd, 0, slots[i], &job);
 if (ret < 0) { /* error handling */
 ...
 }
 printf("%s\n", job.apispq_file);
}

gspool_close(fd);

6.2.3 gspool_jobfind

int gspool_jobfind(const int fd,
 const unsigned flags,
 const jobno_t jobnum,
 const netid_t nid,
 slotno_t *slot,
 struct apispq *jobd)

int gspool_jobfindslot(const int fd,
 const unsigned flags,
 const jobno_t jobnum,
 const netid_t nid,
 slotno_t *slot)

The gspool_jobfind and gspool_jobfindslot functions may be used to find a job from a
given job number rather than by the slot number. gspool_jobfind retrieves the job
descriptor, gspool_jobfindslot just retrieves the slot number.

Fd is a file descriptor previously returned by gspool_open

Flags is zero, or a logical OR of one or more of the following values

GSPOOL_FLAG_LOCALONL
Y

Ignore remote printers/hosts, i.e. not local to the server, not
the client.

GSPOOL_FLAG_USERONLY Ignore other users jobs

Jobnum is the job number to be searched for.

Nid is the network-byte order IP address of the host of the machine whose job is to be
searched for. This should be correct even if GSPOOL_FLAG_LOCALONLY is specified.

Slot is a pointer to a location in which the slot number of the job is placed if the
search is successful. It may be NULL if this is not required (but this would be almost

Page 13

GNUspool API

pointless for gspool_jobfindslot).

Jobd is a descriptor containing the job descriptor as defined in gspool.h.

The fields in struct apispq are defined in the gspool_jobread documentation in
section 6.2.2.

The functions return 0 if successful otherwise one of the error codes as listed in
section 3.1.

6.2.4 gspool_jobdata (Unix and GNU/Linux)

FILE *gspool_jobdata(const int fd,
 const unsigned flags,
 const slotno_t slotno)

The function gspool_jobdata is used to retrieve the job file of a job.

Fd is a file descriptor previously returned by gspool_open.

Flags is zero, or GSPOOL_FLAG_IGNORESEQ to ignore changes since the job list was last
read.

Slotno is the slot number corresponding to the job previously returned by functions
such as gspool_joblist or gspool_jobfindslot.

The result is a FILE pointer which can be used with all standard I/O input functions
such as fgets(3), getc(3) etc. At the end of the data fclose(3) must be called. For
reasons of synchronisation the file should be read to the end before other operations
are attempted.

If an error is detected, gspool_jobdata returns NULL and an error code is placed in the
external variable gspool_dataerror. This will be one of the error codes listed in
section 3.1.

An example to retrieve the data for a job:

int fd, ret, ch;
slotno_t slot, *list;
FILE *inf;
fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}
/* Select a job slot and assign this to "slot" */

inf = gspool_jobdata(fd, 0, slot);
if (!inf) { /* handle errors */
 ...
}
while ((ch = getc(inf)) != EOF)
 putchar(ch);
fclose(inf);
gspool_close(fd);

Page 14

GNUspool API

6.2.5 gspool_jobdata (Windows version)

int gspool_jobdata(const int fd,
 const int outfile,
 int (*func)(int, void*, unsigned),
 const unsigned flags,
 const slotno_t slotno)

This format of the gspool_jobdata function is for use by Windows programs, as there is
no acceptable equivalent of the pipe(2) construct.

The second argument outfile is (possibly) a file handle to the file from to which the
job data is passed as the first argument to func.

The third argument func is a function with the same specifications as write, indeed it
may very well be write. The main reason for doing it this way is that some versions of
Windows do strange things if write is invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine
returning zero for success and an error code for failure rather than a FILE* or NULL.
For consistency with the Unix version, the external variable gspool_dataerror is also
assigned any error code returned. This will be one of the error codes listed in section
3.1.

6.2.6 gspool_jobpbrk (Unix and GNU/Linux versions)

FILE *gspool_jobpbrk(const int fd,
 const unsigned flags,
 const slotno_t slotno)

The function gspool_jobpbrk is used to retrieve the page break offset file of a job.

Fd is a file descriptor previously returned by gspool_open. Flags is zero, or
GSPOOL_FLAG_IGNORESEQ to changes since the job list was last read.

Slotno is the slot number corresponding to the job previously returned by functions
such as gspool_joblist or gspool_jobfindslot.

The result is a FILE pointer which can be used with all standard I/O input functions
such as fread(3), fgets(3), getc(3) etc. At the end of the data fclose(3) must be called.
For reasons of synchronisation the file should be read to the end before other
operations are attempted.

If an error is detected, gspool_jobpbrk returns NULL and an error code is placed in the
external variable gspool_dataerror. This will be one of the error codes listed in
section 3.1.

If there is no page offset file, probably because the delimiter is set to formfeed, then
this isn't really an error, but an error report of GSPOOL_BAD_PF will be returned. You
can tell whether there is a page file from the struct apispq job structure returned by
gspool_jobread or gspool_jobfind. The field apispq_dflags has the bit designated by
APISPQ_PAGEFILE set if there is a page file.

The data is returned in three parts.

Page 15

GNUspool API

struct apipages This is an instance of the following structure, defined in gspool.h,
and described below.

delimiter string This is the delimiter string itself,

A vector of longs giving the offsets of the start of each page, including the first page,
which is always zero, within the job data (as read by gspool_jobdata).

The struct apipages structure is as follows:

struct apipages {
 long delimnum; /* Number of delimiters */
 long deliml; /* Length of delimiter string */
 long lastpage; /* Number of delimiters remaining on last page */
};

6.2.7 gspool_jobpbrk (Windows version)

int gspool_jobpbrk(const int fd,
 const int outfile,
 int (*func)(int, void*, unsigned),
 const unsigned flags,
 const slotno_t slotno)

This second format of the gspool_jobpbrk function is for use by Windows programs, as
there is no acceptable equivalent of the pipe(2) construct.

The second argument outfile is (possibly) a file handle to the file from to which the
job data is passed as the first argument to func.

The third argument func is a function with the same specifications as write, indeed it
may very well be write. The main reason for doing it this way is that some versions of
Windows do strange things if write is invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine
returning zero for success and an error code for failure rather than a FILE* or NULL.
For consistency with the Unix version, the external variable gspool_dataerror is also
assigned any error code returned.

6.2.8 gspool_jobadd (Unix and GNU/Linux versions)

FILE *gspool_jobadd(const int fd,
 struct apispq *jobd,
 const char *delim,
 const unsigned deliml,
 const unsigned delimnum)

int gspool_jobres(const int fd,
 jobno_t *jobno)

The functions gspool_jobadd and gspool_jobres are used to add a job under Unix and
GNU/Linux.

Fd is a file descriptor previously returned by gspool_open

Page 16

GNUspool API

Jobd is a pointer to a struct apispq, as defined in gspool.h and in section 6.2.2
containing all the details of the job. The fields in struct apispq are defined in the
documentation.

Note that we recommend that the whole structure be cleared to zeroes initially and
then required fields added; this approach will cover any future extensions with
additional fields which will behave as at present if zero.

Also note that from release 23 an additional field is provided in the structure. If this is
non-zero, then the size of the job is limited. If the bit APISPQ_PGLIMIT in is zero, then
the size is limited to the given number of kilobytes. If this bit is set, then the size is
limited to the given number of pages. If a job exceeds the given limit, then its
treatment depends upon the setting of the bit APISPQ_ERRLIMIT in . If this is zero,
then the job is truncated to the given number of kilobytes or pages and still proceeds
(although a warning code is returned by gspool_jobres). If it is set, then it is rejected
altogether.

Delim is a pointer to a string containing the page delimiter string, or NULL if the user
is content with the single formfeed character. Deliml is the length of the delimiter
string delim. This is necessary because delim is not necessarily null-terminated.

Delimnum in the number of instances of the delimiter string/character to be counted to
make up a page.

The result is either a standard I/O stream, which can be used as output for putc(3),
fprintf(3), fwrite(3) etc, or NULL to indicate an error has been detected. The I/O stream
connection should be closed, when complete, with fclose(3). Finally a call should be
made to gspool_jobres.

For reasons of synchronisation you must call gspool_jobres immediately after fclose(3)
even if you are not interested in the answer. Apart from that several calls to
gspool_jobadd may be in progress at once to submit several jobs simultaneously.

gspool_jobres returns zero on successful completion (or GSPOOL_WARN_LIMIT if the job
was truncated but still submitted). The parameter jobno is assigned the job number of
the job created. This value is also assigned to the field apispq_job in the passed
structure jobd to gspool_jobadd.

Note that you should not call gspool_jobres if gspool_jobadd returns NULL for error.
Most errors are detected at the gspool_jobadd stage and before any data is passed
across, but this should not in general be relied upon.

An example to add a job called readme from standard input:

int fd, ret, ch;
struct apispq outj;
jobno_t jn;
FILE *f;

fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}

Page 17

GNUspool API

/* It is safest to clear the structure first */
memset((void *) &outj, '\0', sizeof(outj));

/* set defaults */

outj.apispq_nptimeout = 24 * 7;
outj.apispq_ptimeout = 24;
outj.apispq_cps = 1;
outj.apispq_pri = 150;

/* The class code specified in gspool_open is not used here. However
the
 user's class code will be &ed with this unless the user has
 override class privilege. */

outj.apispq_class = 0xffffffff;

/* set a large page range to to ensure all pages are printed */

outj.apispq_end = 4000;

/* Only the form type is compulsory here. The others may
 be set to NULL */

strcpy(outj.apispq_file, "readme");
strcpy(outj.apispq_form, "a4");
strcpy(outj.apispq_ptr, "laser");

/* add the job with the default page delimiter */

f = gspool_outjadd(fd, &outj, (char *) 0, 1, 1);
if (!f) { /* error handling error in gspool_dataerror */
 ...
}

/* now send the data */

while ((ch = getchar()) != EOF)
 putc(ch, f);
fclose(f);

ret = gspool_jobres(fd, &jn);
if (ret < 0) { /* error handling */
 ...
} else
 printf("success the job number is %ld\n", jn);
gspool_close(fd);

Page 18

GNUspool API

6.2.9 gspool_jobadd (Windows version)

int gspool_jobadd(const int fd,
 const int infile,
 int (*func)(int, void*, unsigned).
 struct apispq *jobd,
 const char *delim,
 const unsigned deliml.
 const unsigned delimnum)

This second format of the gspool_jobadd function is for use by Windows programs, as
there is no acceptable equivalent of the pipe(2) construct.

The second argument infile is (possibly) a file handle to the file from which the job is
created and is passed as the first argument to func.

The third argument func is a function with the same specifications as read, indeed it
may very well be read. The main reason for doing it this way is that some versions of
Windows do strange things if read is invoked from within a DLL.

Other aspects of the interface are similar to the Unix routine, apart from the routine
returning zero for success and an error code for failure rather than a FILE* or NULL.

There is no gspool_jobres in the windows version, the job number is placed in the field
apispq_job in the passed structure jobd to gspool_jobadd. For consistency with the
Unix version, the external variable gspool_dataerror is also assigned any error code
returned.

6.2.10 gspool_jobdel

int gspool_jobdel(const int fd,
 const unsigned flags,
 const slotno_t slot)

The gspool_jobdel function is used to delete a job, aborting it if it is currently printing.

Fd is a file descriptor previously returned by gspool_open

Flags is zero, or the logical OR of one or both of the following:

GSPOOL_FLAG_IGNORESEQ Ignore changes since the list was last read
GSPOOL_FLAG_FORCE Ignore "not printed" flag

Slot is the slot number corresponding to the job as previously returned by
gspool_joblist or gspool_jobfindslot.

If the job has not been printed, and flags does not contain GSPOOL_FLAG_FORCE, then
the job will not be deleted, but the error GSPOOL_NOT_PRINTED will be reported. You
can tell whether the job has been printed from the struct apispq job structure
returned by gspool_jobread or gspool_jobfind. The field apispq_dflags has the bit
designated by APISPQ_PRINTED set if it has been printed.

The function returns 0 if successful otherwise one of the error codes listed in section
3.1.

Page 19

GNUspool API

An example to delete all jobs:

int fd, ret, nj, i;
slotno_t *slots;
fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */
 ...
}
for (i = 0; i < nj; i++) {
 ret = gspool_jobdel(fd, GSPOOL_FLAG_FORCE, slots[i]);
 if (ret < 0) { /* error handling */
 ...
 }
}
gspool_close(fd);

6.2.11 gspool_jobupd

int gspool_jobupd(const int fd,
 const unsigned flags,
 const slotno_t slot,
 struct apispq * jobd)

The gspool_jobupd function is used to update the details of a job.

Fd is a file descriptor previously returned by gspool_open

Flags is zero, or GSPOOL_FLAG_IGNORESEQ to ignore changes since the list was last
read.

Slot is the slot number corresponding to the job as previously returned by
gspool_joblist or gspool_jobfindslot.

Jobd is a descriptor containing the job descriptor as defined in gspool.h.

The fields in struct apispq are defined in the gspool_jobread documentation (see
section 6.2.2).

Note that we recommend that the whole structure be first read in with gspool_jobread
or gspool_jobfind and then required fields updated; this approach will cover any future
extensions with additional fields.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to change the name of job "readme.txt" to "myfile"

int fd, ret, nj, i;
struct apispq job;
slotno_t *slots;

Page 20

GNUspool API

fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}

/* make a list of jobs */

ret = gspool_joblist(fd, 0, &nj, &slots);
if (ret < 0) { /* error handling */
 ...
}

for (i = 0; i < nj; i++) {
 ret = gspool_jobread(fd, 0, list[i], &job);
 if (ret < 0)
 continue;
 if (strcmp(job.apispq_file, "readme.txt"))
 continue;
 strcpy(job.apispq_file, "myfile");
 ret = gspool_jobupd(fd, 0, list[i], &job);
 if (ret < 0) { /* error handling */
 ...
 }
 break;
}
gspool_close(fd);

6.2.12 gspool_jobmon (Unix and GNU/Linux versions)

int gspool_jobmon(const int fd,
 void (*fn)(const int))

The gspool_jobmon function is used to set the function fn to be called upon notification
of any changes to the jobs list.

Fd is a file descriptor previously returned by gspool_open.

Fn is a function which must be declared as returning void and taking one const int
argument. Alternatively, this may be NULL to cancel monitoring.

The function fn will be called upon each change to the job list. The argument passed
will be fd. Note that any changes to the job queue are reported (including changes on
other hosts whose details are passed through) as the API does not record which jobs
the user is interested in.

The function gspool_jobmon returns 0 if successful otherwise the error code
GSPOOL_INVALID_FD if the file descriptor is invalid. Invalid fn parameters will not be
detected and the application program will probably crash.

6.2.13 gspool_jobmon (Windows version)

int gspool_setmon(const int fd,
 HWND hWnd,

Page 21

GNUspool API

 UINT wMsg)

int gspool_procmon(const int fd)

void gspool_unsetmon(const int fd)

The gspool_setmon routine may be used to monitor changes to the job queue or
printer list. Its parameters are as follows.

fd is a file descriptor previously returned by gspool_open.

hWnd is a windows handle to which messages should be sent.

wMsg is the message id to be passed to the window (WM_USER or a constant based on
this is suggested).

To decode the message, the gspool_procmon is provided. This returns
XTWINAPI_JOBPROD to indicate a change or changes to the job queue and
XTWINAPI_PTRPROD to indicate a change or changes to the printer list. If there are
changes to both, two or more messages will be sent, each of which should be decoded
via separate gspool_procmon calls.

To cancel monitoring, invoke the routine

gspool_unsetmon(fd)

If no monitoring is in progress, or the descriptor is invalid, this call is just ignored.

6.3 Printer operations

6.3.1 gspool_ptrlist

int gspool_ptrlist(const int fd,
 const unsigned flags,
 int *numptrs,
 slotno_t **slots)

The gspool_ptrlist function is used to obtain a list of printers.

Fd is a file descriptor previously returned by gspool_open

Flags is either zero, or GSPOOL_FLAG_LOCALONLY to request that only printers local to
the server be listed.

Numptrs is a pointer to an integer value which, on successful completion, will contain
the number of printer slots returned.

Slots is a pointer to to an array of slot numbers. These slot numbers can be used to
access individual printers. The memory used by this vector is owned by the API,
therefore no attempt should be made by the user to free it. This contrasts, for
example, with X library routines.

Also note that certain other calls to the API, notably gspool_joblist, with the same fd,
may reuse the space, so the contents should be copied if required before other API
calls are made.

Page 22

GNUspool API

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to list all printers

int fd, ret, np, i;
slotno_t *slots;
fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */
 ...
}
for (i = 0; i < np; i++) {
 slotno_t this_slot = slots[i];
 /* process this_slot */
 ...
}
gspool_close(fd);

6.3.2 gspool_ptrread

int gspool_ptrread(const int fd,
 const unsigned flags,
 const slotno_t slot,
 struct apispptr *ptrd)

The gspool_ptrread function is used to retrieve the details of a printer from a given slot
number.

Fd is a file descriptor previously returned by gspool_open

Flags is zero, or a logical OR of one of the following values

GSPOOL_FLAG_LOCALONL
Y

Ignore remote printers/hosts, i.e. not local to the server, not
the client.

GSPOOL_FLAG_USERONLY Ignore other users jobs
GSPOOL_FLAG_IGNORESE
Q

Ignore changes since the list was last read

Slot is the slot number corresponding to the printer as previously returned by a call to
gspool_ptrlist or gspool_ptrfindslot.

Ptrd is a descriptor, which on return will contain the details of the printer in a struct
apispptr as defined in gspool.h and containing the following elements:

Type Field Description
jobno_t apispp_job Job number being printed
slotno_t apispp_jslot Slot number of job being printed
char apispp_state State of printer

Page 23

GNUspool API

char apispp_sflags Scheduler flags
unsigned char apispp_dflags Despooler flags
unsigned char apispp_netflags Network flags
unsigned short apispp_extrn External printer type 0=standard
classcode_t apispp_class Class code bits 1=A 2=B 4=C etc
int_pid_t apispp_pid Process id of despooler process

netid_t apispp_netid
Host id of printer network byte
order

slotno_t apispp_rslot Slot number on remote machine
unsigned long apispp_minsize Minimum size of acceptable job
unsigned long apispp_maxsize Maximum size of acceptable job
char [] apispp_dev Device name
char [] apispp_form Form type
char [] apispp_ptr Printer name
char [] apispp_feedback Feedback message
char [] apispp_comment Printer description

The following bits are set in the apispp_sflags field to indicate printer flags:

Bit (#define) Meaning

APISPP_INTER
Had interrupt message, not yet acted on
it.

APISPP_HEOJ Had halt at end of job

The following bits are set in the apispp_dflags field to indicate printer flags:

Bit (#define) Meaning
APISPP_HADAB Had "Abort" message
APISPP_REQALIGN Alignment required

The apispp_netflags field contains the following bits:

Bit (#define) Meaning
APISPP_LOCALONLY Printer is local only to host.
APISPP_LOCALHOST Printer uses network filter

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to read the names of all printers

int fd, ret, np, i;
struct apispptr ptr;
slotno_t *slots;
fd = gspool_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */

Page 24

GNUspool API

 ...
}
for (i = 0; i < np, i++) {
 ret = gspool_ptrread(fd, GSPOOL_FLAG_IGNORESEQ, slots[i], &ptr);
 if (ret < 0) { /* error handling */
 ...
 }
 printf("%s\n", ptr.apispp_ptr);
}
gspool_close(fd);

6.3.3 gspool_ptrfind

int gspool_ptrfind(const int fd,
 const unsigned flags,
 const char *name,
 const netid_t nid,
 slotno_t *slot,
 struct apispptr *ptrd)

int gspool_ptrfindslot(const int fd,
 const unsigned flags,
 const char *name,
 const netid_t nid,
 slotno_t *slot)

The gspool_ptrfind and gspool_ptrfindslot functions may be used to find a printer from
a given printer name rather than by the slot number. gspool_ptrfind retrieves the
printer description, gspool_ptrfindslot just retrieves the slot number.

Fd is a file descriptor previously returned by gspool_open.

Flags is zero, or GSPOOL_FLAG_LOCALONLY to ignore remote printers/hosts, i.e. not
local to the server, not the client.

Name is the printer name to be searched for.

Nid is the network-byte order IP address of the host of the machine whose printer is to
be searched for. This should be correct even if GSPOOL_FLAG_LOCALONLY is specified.

Slot is a pointer to a location in which the slot number of the printer is placed if the
search is successful. It may be NULL if this is not required (but this would be almost
pointless for gspool_ptrfindslot).

Ptrd is a pointer to a field to contain the printer name as defined in gspool.h.

The fields in struct apispptr are defined in the gspool_ptrread documentation in
section 6.3.2.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

NB If two or more printers on the same host have the same name, then it is not
defined which is returned by gspool_ptrfind and gspool_ptrfindslot. In such cases, the

Page 25

GNUspool API

whole printer list should be read and the correct one selected.

6.3.4 gspool_ptradd

int gspool_ptradd(const int fd,
 struct apispptr *ptrd)

The function gspool_ptradd is used to create a printer.

Fd is a file descriptor previously returned by gspool_open.

Ptrd is a struct apispptr describing the details of the printer. It is defined in the file
gspool.h and as described in the gspool_ptrread documentation in section 6.3.2.

Only values for the name, device, formtype, description, local flag, the minimum and
maximum job sizes, the network filter flag and the class code are accepted. All other
parameters are ignored. We suggest that you clear all fields to zero before starting.
Future releases with additional fields will be guaranteed to default to the existing
behaviour if the additional fields are set to zero.

gspool_ptradd returns zero if successful, otherwise an error code as listed in section
3.1.

An example to add a printer called hplj1 on device /dev/tty12 with form type a4

int fd, ret;
struct apispptr ptr;
fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}
memset((void *) &ptr, '\0', sizeof(ptr));
ptr.apispp_class = 0xffffffff;
ptr.apispp_minsize = ptr.apispp_maxsize = 0;
strcpy(ptr.apispp_ptr, "hplj1");
strcpy(ptr.apispp_form, "a4");
strcpy(ptr.apispp_dev, "tty12");
strcpy(ptr.apispp_comment, "My new printer");
ret = gspool_ptradd(fd, &ptr);
if (ret < 0) { /* error handling */
 ...
}
gspool_close(fd);

6.3.5 gspool_ptrdel

int gspool_ptrdel(const int fd,
 const unsigned flags,
 const slotno_t slot)

The function gspool_ptrdel is used to delete a printer.

Fd is a file descriptor previously returned by gspool_open.

Flags is either zero, or GSPOOL_FLAG_IGNORESEQ to ignore changes since the list was

Page 26

GNUspool API

last read.

Slot is the slot number corresponding to the printer as previously returned by
gspool_ptrlist or gspool_ptrfindslot.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to delete all printers:

int fd, ret, np, i;
slotno_t *slots;

fd = gspool_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_ptrlist(fd, GSPOOL_LOCALONLY, &np, &slots);
if (ret < 0) { /* error handling */
 ...
}

for (i = 0; i < np; i++) {
 ret = gspool_ptrdel(fd, 0, slots[i]);
 if (ret < 0) { /* error handling */
 ...
 }
}

gspool_close(fd);

6.3.6 gspool_ptrupd

int gspool_ptrupd(const int fd,
 const unsigned flags,
 const slotno_t slot,
 struct apispp *ptrd)

The gspool_ptrupd function is used to update the details of a printer.

Fd is a file descriptor previously returned by gspool_open.

Flags is zero, or GSPOOL_FLAG_IGNORESEQ to ignore changes since the list was last
read.

Slot is the slot number corresponding to the printer as previously returned by
gspool_ptrlist or gspool_ptrfindslot.

Ptrd is a descriptor containing the printer descriptor as defined in gspool.h.

The fields in struct apispptr are defined in the gspool_ptrread documentation.

Note that we recommend that the whole structure be first read in with gspool_ptrread
or gspool_ptrfind and then required fields updaated; this approach will cover any
future extensions with additional fields.

Page 27

GNUspool API

Only changes to the name device, description, form type, local flag, the minimun and
maximum job sizes, the network filter flag and the class code are accepted, and none
at all if the printer is running.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to change the form type on printer hplj1.

int fd, ret;
struct apispptr ptr;
slotno_t pslot;

fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}

/* Find printer */
ret = gspool_ptrfind(fd, 0, "hplj1", servip, &pslot, &ptr);
if (ret < 0) { /* error handling */
 ...
}

strcpy(ptr.apispp_form, "a4.p10");
ret = gspool_ptrupd(fd, 0, pslot, &ptr);

if (ret < 0) { /* error handling */
 ...
}

gspool_close(fd);

6.3.7 gspool_ptrop

int gspool_ptrop(const int fd,
 const unsigned flags,
 const slotno_t slot,
 const unsigned op)

The gspool_ptrop function is used to perform an operation on a printer.

Fd is a file descriptor previously returned by gspool_open.

Flags is zero, or GSPOOL_FLAG_IGNORESEQ to ignore changes since the list was last
read.

Slot is the slot number corresponding to the printer as previously returned by a call to
gspool_ptrlist or gspool_ptrfindslot.

Op is one of the following values:

Operation code Description

PRINOP_RSP Restart printer

Page 28

GNUspool API

Operation code Description

PRINOP_PHLT Halt printer at the end of the current job

PRINOP_PSTP Halt printer at once

PRINOP_PGO Start printer

PRINOP_OYES Approve alignment page

PRINOP_ONO Disapprove alignment page

PRINOP_INTER Interrupt printer

PRINOP_PJAB Abort current job on printer

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to halt all printers:

int fd, ret, np, i;
struct apispptr ptr;
slotno_t *slots;

fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}

/* make a list of all the printers */
ret = gspool_ptrlist(fd, 0, &np, &slots);
if (ret < 0) { /* error handling */
 ...
}

for (i = 0; i < np; i++) {
 ret = gspool_ptrop(fd, GSPOOL_FLAG_IGNORESEQ, slots[i],
PRINOP_PHLT);
 if (ret < 0 && ret != GSPOOL_PTR_NOTRUNNING) {
 /* error handling ignoring ones already stopped*/
 ...
 }
}
gspool_close(fd);

6.3.8 gspool_ptrmon

int gspool_ptrmon(const int fd,
 void (*fn)(const int))

NB that this routine is not available in the Windows version, please see the section on
gspool_setmon in section 6.2.13 which covers both jobs and printers.

The gspool_ptrmon function is used to set the function fn to be called upon
notification of any changes to the printers list.

Page 29

GNUspool API

Fd is a file descriptor previously returned by gspool_open

Fn is a function which must be declared as returning void and taking one const int
argument. Alternatively, this may be NULL to cancel monitoring.

The function fn will be called with fd as an argument upon each change to the printer
list.

Please note that any changes to the printer list is reported as the API does not record
which printers the user is interested in.

The function gspool_ptrmon returns 0 if successful otherwise the error code
GSPOOL_INVALID_FD if the file descriptor is invalid. Invalid fn parameters will not be
detected and the application program will probably crash.

6.4 User permissions

The following routines access user permissions (in most cases the user will need to
have write administration file privilege).

6.4.1 gspool_getspu

int getspu(const int fd,
 const char *user,
 struct apispdet *res)

The function gspool_getspu is used to retrieve the defaults for a particular user. Unless
the calling user has Write Administration File privilege, the user name must be the
calling user.

Fd is a file descriptor previously returned by gspool_open

User is a pointer to the username of the user details being retrieved.

Res is a descriptor, which upon return will contain the details of user. The structure
apispdet is defined in the file gspool.h, and contains the following fields:

Type Field Description
unsigned char spu_isvalid Valid user ID
char [] spu_resvd1 Reserved
int_ugid_t spu_user User ID
unsigned char spu_minp Minimum priority
unsigned char spu_maxp Maximum priority
unsigned char spu_defp Default priority
char [] spu_form Default form type

char [] spu_formallow
Allowed form type
pattern

char [] spu_ptr Default printer
char [] spu_ptrallow Allowed printer pattern
unsigned long spu_flgs Privilege flag
classcode_t spu_class Class of printers

Page 30

GNUspool API

unsigned char spu_cps
Maximum copies
allowed

unsigned char spu_version Release of GNUspool

The spu_flgs field of res will contain a combination of the following:

PV_ADMIN Administrator (edit admin file)
PV_SSTOP Can run sstop (can stop scheduler)
PV_FORMS Can use other forms than default
PV_CPRIO Can change priority on queue
PV_OTHERJ Can change other users' jobs
PV_PRINQ Can move to printer queue
PV_HALTGO Can halt, restart printer
PV_ANYPRIO Can set any priority on queue
PV_CDEFLT Can change own default priority
PV_ADDDEL Can add/delete printers
PV_COVER Can override class
PV_UNQUEUE Can unqueue jobs
PV_VOTHERJ Can view other jobs not neccesarily edit
PV_REMOTEJ Can access remote jobs
PV_REMOTEP Can access remote printers
PV_FREEZEOK Can save default options
PV_ACCESSOK Can access sub-screens
PV_OTHERP Can use other printers from default
ALLPRIVS A combination of all of the above

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to view the privileges of user mark:

int fd, ret;
struct apispdet res;
fd = gspool_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */
 ...
}
ret = gspool_getspu(fd, "mark", &res);
if (ret < 0) { /* error handling */
 ...
}
if (res.spu_flags & PV_HALTGO)
 printf("user mark cannot halt printers\n");

printf("marks maximim priority is %d\n", res.spu_maxp);
gspool_close(fd);

Page 31

GNUspool API

6.4.2 gspool_getspd

int gspool_getspd(const int fd,
 struct apisphdr *res)

The gspool_getspd function is used to retrieve the defaults privileges, form types etc
for new users on the host with which the API is communicating. No particular privilege
is required to perform this operation.

Fd is a file descriptor previously returned by gspool_open.

Res is a descriptor which upon return will contain the the default user privileges. The
structure apisphdr is defined in gspool.h and contains the following elements:

Type Field Description
long sph_lastp Time last read password file
unsigned char sph_minp Minimum priority
unsigned char sph_maxp Maximum priority
unsigned char sph_defp Default priority
char [] sph_form Default form type
char [] sph_formallow Allowed form type pattern
char [] sph_ptr Default printer
char [] sph_ptrallow Allowed printer pattern
unsigned long sph_flgs Privilege flag
classcode_t sph_class Class of printers
unsigned char sph_cps Maximum copies allowed
unsigned char sph_version Release of GNUspool

The spu_flgs field will contain a combination of the following:

PV_ADMIN Administrator (edit admin file)
PV_SSTOP Can run sstop (can stop scheduler)
PV_FORMS Can use other forms than default
PV_CPRIO Can change priority on queue
PV_OTHERJ Can change other users' jobs
PV_PRINQ Can move to printer queue
PV_HALTGO Can halt, restart printer
PV_ANYPRIO Can set any priority on queue
PV_CDEFLT Can change own default priority
PV_ADDDEL Can add/delete printers
PV_COVER Can override class
PV_UNQUEUE Can unqueue jobs
PV_VOTHERJ Can view other jobs not necessarily edit
PV_REMOTEJ Can access remote jobs
PV_REMOTEP Can access remote printers
PV_FREEZEOK Can save default options
PV_ACCESSOK Can access sub-screens

Page 32

GNUspool API

PV_OTHERP Can use other printers from default
ALLPRIVS A combination of all of the above

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to view the default privileges on the host machine:

int fd, ret;
struct apisphdr res;

fd = gspool_open("myhost", (char *) 0, 0);
if (fd < 0) { /* error handling */
 ...
}

ret = gspool_getspd(fd, &res);
if (ret < 0) { /* error handling */
 ...
}

if (res.sph_flgs & PV_HALTGO)
 printf("users cannot stop and start printers\n");
printf("the default maximum priority is %s\n", res);
gspool_close(fd);

6.4.3 gspool_putspu

int gspool_putspu(const int fd,
 const char *user,
 struct apispdet *newp)

The gspool_putspu function is used to set privileges for a user. The calling user must
have write administration file privilege, or must be the same as the specified user and
be only trying to change the default form type or priorities (with the appropriate
privilege for that).

Fd is a file descriptor previously returned by gspool_open.

User is a pointer to the user name, for which the details are being updated.

Newp is a pointer to a structure containing the new user privileges.

The struct apispdet is defined int the file gspool.h. The fields of the structure are
as defined for gspool_getspu in section 6.4.1.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to give a user permission to add and delete printers

int fd, ret;
struct apispdet new_privs;

fd = gspool_open("myhost", (char *)0, 0);

Page 33

GNUspool API

if (fd < 0) { /* error handling */
 ...
}

ret = gspool_getspu(fd, "helen", &new_privs);
if (ret < 0) { /* error handling */
 ...
}

if (!(new_privs.spu_flgs & PV_ADDDEL))
 new_privs.spu_flgs |= PV_ADDDEL;

gspool_close(fd);

6.4.4 gspool_putspd

int gspool_putspd(const int fd,
 struct apisphdr *ret)

The gspool_putspd function is used to set the default user privileges on the local host.

Its parameters are as follows:

Fd is a file descriptor previously returned by gspool_open.

Res points to a structure which contains the privileges. The struct apisphdr is
defined in the file gspool.h, as described for gspool_getspd in section 6.4.2.

The function returns 0 if successful otherwise one of the error codes as listed in
section 3.1.

An example to give all new users the permission to add and delete printers:

int fd, ret;
struct apisphdr new_privs;
fd = gspool_open("myhost", (char *)0, 0);
if (fd < 0) { /* error handling */
 ...
}
/* get the current permissions */
ret = gspool_getspd(fd, &new_privs);
if (ret < 0) { /* error handling */
 ...
}
if (!(new_privs.sph_flgs & PV_ADDDEL))
 new_privs.sph_flgs |= PV_ADDDEL;
ret = gspool_putspd(fd, &new_privs);
if (ret < 0) { /* error handling */
 ...
}
gspool_close(fd);

Page 34

GNUspool API

7 Example API program

The following program is an example program to provide for an "alternative printer" to
be activated when a machine running the main printer is or goes offline. The program
runs on the "secondary" machine:

/*
 * altprin.c: created by John Collins.
 */

#include <stdio.h>
#include <sys/types.h>
#include "gspool.h"
#include <unistd.h>
#include <netdb.h>
#include <string.h>

int had_prod;
char *primary, /* Primary host name */
 secondary, / Secondary host name */
 primary_prin, / Primary printer name */
 secondary_prin; / Secondary printer name */

netid_t prim_hostid, sec_hostid;

int xtfd;

/*
 * Routine to call when printer event occurs.
 * Just set flag and let the main loop look at it
 * when it is ready.
 */

void prodder(const int fd)
{
 had_prod++;
}

void process(void)
{
 /*
 * Say we want to know about events affecting printers.
 */

 gspool_ptrmon(xtfd, prodder);

 gotpri:
 for (;;) {
 int nump, cnt, ret;
 slotno_t *slp;
 struct apispptr res;

 /*
 * Wait until something interesting happens to a printer.
 */

Page 35

GNUspool API

 pause();
 if (!had_prod) /* Huh??? */
 continue;
 had_prod = 0;

 /*
 * Get list of printers "slot numbers" into "slp", number
 * into "nump".
 * We don't really need to do this on each loop if printer
 * slot numbers don't change too much, which they don't
 */

 if (gspool_ptrlist(xtfd, 0, &nump, &slp) < 0)
 exit(255);

 /*
 * Search list for primary printer.
 * If found, all is ok, and we go back to sleep.
 */

 for (cnt = 0; cnt < nump; cnt++) {
 if (gspool_ptrread(xtfd,
 GSPOOL_FLAG_IGNORESEQ,
 slp[cnt],
 &res) < 0)
 exit(254);
 if (res.apispp_netid != prim_hostid)
 continue;
 if (strcmp(res.apispp_ptr, primary_prin) == 0)
 goto gotpri;
 }

 /*
 * We didn't find primary printer, so we start up the
 * secondary printer. First find the thing.
 */

 for (cnt = 0; cnt < nump; cnt++) {
 if (gspool_ptrread(xtfd,
 GSPOOL_FLAG_IGNORESEQ,
 slp[cnt],
 &res) < 0)
 exit(254);
 if (res.apispp_netid != sec_hostid)
 continue;
 if (strcmp(res.apispp_ptr, secondary_prin) == 0)
 goto gotsec;
 }
 fprintf(stderr, "Cannot find secondary printer, %s\n",
secondary_prin);
 exit(200);

 /*
 * Found secondary printer, print a warning message
 * if already running.
 */

Page 36

GNUspool API

gotsec:
 if (res.apispp_state >= API_PRPROC) {
 fprintf(stderr,
 "I think that the secondary printer is already running\n");
 exit(0);
 }

 /*
 * Tell the world, start it up, and exit
 */

 fprintf(stderr, "Activating secondary printer
 %s:%s\n", secondary, secondary_prin);

 if ((ret = gspool_ptrop(xtfd, GSPOOL_FLAG_IGNORESEQ, slp[cnt],
PRINOP_PGO)) < 0) {
 printf("Error starting printer - %d\n", ret);
 exit(0);
 }
}

int main(int argc, char **argv)
{
 extern intoptind;
 extern char *optarg;
 int ch;
 struct hostent*hp;
 char *cp;
 static char myname[256];

 /*
 * Get "my" host name.
 */

 myname[sizeof(myname) - 1] = '\0';
 gethostname(myname, sizeof(myname) - 1);
 if (!(hp = gethostbyname(myname))) {
 fprintf(stderr, "Who am I???\n");
 return 10;
 }

 /*
 * Get arguments giving primary and secondary printers.
 */

 while ((ch = getopt(argc, argv, "p:s:")) != EOF) {
 switch (ch) {
 default:
 fprintf(stderr,
 "Usage: altprin -p primary -s secondary\n");
 return 1;
 case 'p':
 primary = optarg;
 break;
 case 's':
 secondary = optarg;
 break;

Page 37

GNUspool API

 }
 }

 if (!primary) {
 fprintf(stderr, "No primary host:printer name given\n");
 return 2;
 }
 if (!secondary) {
 fprintf(stderr, "No secondary host:printer name given\n");
 return 3;
 }

 /*
 * Split host:printer names into separate strings.
 * If not host name, tack on "my" name.
 */

 if (cp = strchr(primary, ':')) {
 *cp = '\0';
 primary_prin = cp+1;
 }
 else {
 primary_prin = primary;
 primary = myname;
 fprintf(stderr, "Primary printer on local host?\n");
 }
 if (cp = strchr(secondary, ':')) {
 *cp = '\0';
 secondary_prin = cp+1;
 }
 else {
 secondary_prin = secondary;
 secondary = myname;
 }

 if (strcmp(primary, secondary) == 0) {
 fprintf(stderr, "Sorry both printers on the same host\n");
 return 4;
 }

 /*
 * Get host ids, used in scanning printer list.
 */

 if (!(hp = gethostbyname(primary))) {
 fprintf(stderr, "Sorry, unknown primary host name %s\n",
 primary);
 return 5;
 }
 else
 prim_hostid = *(netid_t *) hp->h_addr;

 if (!(hp = gethostbyname(secondary))) {
 fprintf(stderr, "Sorry, unknown secondary host name %s\n",
 secondary);
 return 6;
 }

Page 38

GNUspool API

 else
 sec_hostid = *(netid_t *) hp->h_addr;

 /*
 * Open API link.
 */

 if ((xtfd = gspool_open(secondary, (char *) 0, 0)) < 0) {
 fprintf(stderr,
 "Sorry, cannot open connection to secondary host\n");
 return 7;
 }

 /*
 * Fork off to leave a daemon process.
 * (You might want to set process group, ignore
 * signals and/or reconnect
 * stdout/stderr).
 */

 if (fork() != 0)
 return 0;

 /*
 * Do the business (no return).
 */

 process();
}

Page 39

