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Endocytosis entails selective packaging of cell-surface proteins, such as receptors for cyto-
kines and adhesion components, in cytoplasmic vesicles (endosomes). The series of sorting
events that determines the fate of internalized proteins, either degradation in lysosomes or
recycling back to the plasma membrane, relies on intrinsic sequence motifs, posttranslation-
al modifications (e.g., phosphorylation and ubiquitination), and transient assemblies of both
Rab GTPases and phosphoinositide-binding proteins. This multicomponent process is en-
hanced and skewed in cancer cells; we review mechanisms enabling both major drivers of
cancer, p53 and Ras, to bias recycling of integrins and receptor tyrosine kinases (RTKs).
Likewise, cadherins and other junctional proteins of cancer cells are constantly removed
from the cell surface, thereby disrupting tissue polarity and instigating motile phenotypes.
Mutant forms of RTKs able to evade Cbl-mediated ubiquitination, along with overexpression
of the wild-type forms and a variety of defective feedback regulatory loops, are frequently
detected in tumors. Finally, we describe pharmacological attempts to harness the peculiar
endocytic system of cancer, in favor of effective patient treatment.

Cancer cells are fundamentallysimilar to their
normal counterparts. Their differences lie

in a series of relatively subtle modifications of
normal physiological processes that, when com-
bined, can create markedly altered phenotypes
and behaviors. It has long been suspected that
endocytosis is one such physiological process
that is modified in cancer. Not only do cancer
cells show alterations in the overall appearance
and dynamics of the plasma membrane, but also
the common inability of cancer cells to properly
regulate the function of several types of recep-
tors, including many RTKs, strongly suggests
an inability to internalize, recycle, or degrade
these key cancer drivers. In recent years, there has
been considerable progress made toward under-

standing the breadth and mechanisms of alter-
ations to the endocytic pathway that occur dur-
ing cancer. Although our knowledge remains
incomplete and the pathophysiological contri-
butions of these alterations may not be wholly
understood, this review considers just how pro-
foundly the pathways of endocytosis can be
modified in cancer and what this reveals about
disease mechanisms and normal processes.

Organization of the Endocytic Pathway

Although the basic features of the endocytic
pathway in animal cells were established more
than two decades ago (Mellman 1996a), subse-
quent years have witnessed the accumulation of
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a vast array of new information that has not only
filled out mechanistic details but has also pro-
vided some important new concepts regarding
the role of endosomes and lysosomes in regulat-
ing cell physiology (for a recent review, see Huo-
tari and Helenius 2011). Here, we provide only a
brief introduction to endocytosis by way of con-
text for a consideration of its role in cancer.

By definition, endocytosis is initiated by the
invagination of a segment of plasma membrane.
Typically, this involves the concerted action of
the coat protein clathrin together with its asso-
ciated subunits and regulatory proteins (Brod-
sky 2012), yielding a “clathrin-coated vesicle”
(CCV) of �0.2 mm in diameter. CCVs are im-
portant in cancer because they have the ability
to select receptors intended for entry, the first
step in the process of receptor down-regulation.
CCVs perform this task by decoding specific
recognition sequences found on the cytoplas-
mic domains of many receptors or interacting
with posttranslational modifications such as
ubiquitination, acetylation (Goh et al. 2010),
or lysine methylation of the internalizing recep-
tor (Hsu et al. 2011). Other types of endocytic
vesicles can also form notably small vesicles that
lack clathrin coats, some of which are derived
from plasma membrane “caveolae” that contain
defined-lipid microdomains that are involved
in a variety of signal transduction events (e.g.,
GPI-anchored proteins and some G-protein-
coupled receptors) (see Mayor et al. 2014). Larg-
er vesicles, called “macropinosomes,” can also
form in many cell types with macropinocytosis
occurring either constitutively in some exam-
ples or by induced receptor stimulation or bac-
terial entry in others; typically, macropinocyto-
sis reflects local activation of Cdc42 (Garrett
et al. 2000).

In general, endocytic vesicles fuse with a
population of small vesicles and tubules referred
to as early endosomes (EEs). These structures
are mildly acidic (pH 6.0–6.8) and facilitate the
dissociation of many ligands from their recep-
tors. The newly freed ligands accumulate in the
EE lumen and are transferred to late endosomes
and finally to lysosomes for degradation. Recep-
tors show two fates. First, they can be recycled
back to the plasma membrane by either return-

ing directly from EEs or passing through a pop-
ulation of pericentriolar organelles termed “re-
cycling endosomes.” The kinetics of recycling
vary between these two routes, with the direct
return being manifold faster (1–2 min vs 15–
20 min). One result of passage through recy-
cling endosomes is the formation of a substan-
tial intracellular pool of recycling receptors.

Alternatively, especially in the case of activat-
ed RTKs, recycling can be rendered relatively in-
efficient with the receptors (with or without
bound ligand) being transferred to late endo-
somes and lysosomes for degradation (“down-
regulation”). This pathway is triggered by recep-
tor ubiquitination, with ubiquitin monomers or
oligomers being recognized by a second cytosol-
ic coat termed the endosomal sorting complex
required for sorting (ESCRT) (Henne et al. 2013;
Piper et al. 2014). First described in yeast (Katz-
mann et al. 2001), four such subcomplexes
exist (ESCRT0–3) with proteins Hrs, STAM
(ESCRT0), and Tsg101 (ESCRT1) responsible
for the ubiquitin recognition event. In concert
with ESCRT2–3, already beginning at the level
of EEs, these complexes help to drive the invag-
ination of small segments of endosomal mem-
brane (�0.1 mm) to form the “intralumenal
vesicles” (ILVs) characteristic of late endosomes
and lysosomes, therefore often called “multive-
sicular bodies” (MVBs). RTKs selected for entry
into forming ILVs are therefore sequestered, pre-
vented from recycling, and degraded as the pro-
teolytic environment within the endosome de-
velops, whereas EEs mature to late endosomes
and lysosomes. The ESCRTs, therefore, act as
agents of cargo selection and vesicle formation.
At least under some conditions, Tsg101 may act
as a tumor suppressor and is dysregulated in
cancer (Li and Cohen 1996), although redun-
dancy within the ESCRT system has prevented
a clear assessment of its role (Raiborg and Sten-
mark 2009). As discussed below, c-Cbl is the E3
ligase likely responsible for adding the ubiqui-
tins that are required for sequestration of inter-
nalized RTKs in MVBs (Levkowitz et al. 1998).

Endocytic organelles, therefore, are func-
tionally organized to permit the sorting of re-
cycling receptors from receptors and ligands
destined for degradation. Most of this sorting
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occurs at the level of EEs. It must be empha-
sized, however, that the entire system is incred-
ibly dynamic, handling a bidirectional flux of
membrane components that dwarf each hour
the aggregate surface area of the organelles in-
volved. Therefore, it is most useful to think of
the endocytic pathway as a series of functionally
and biochemically defined organelles that are
intimately interconnected, with a continuous
but highly regulated maturation process me-
diated by the selective insertion and removal
of individual membrane components (Huotari
and Helenius 2011).

Overview of Endocytic Organelle
Signaling Functions

Although it is commonly assumed that most
signaling events occur at the plasma membrane,
there is increasing reason to believe that endo-
cytic organelles may have important roles in
signal transduction, beyond simply supplying
a mechanism to down-regulate RTKs. It is clear
that various lipid kinases together with Ras-re-
lated Rab family GTPases have key roles in reg-
ulating the formation and maturation of endo-
cytic organelles. Beyond generating signals to
regulate their own behavior, however, endo-
cytic organelles may also serve as signaling plat-
forms for the mitogen-activated protein kinase
(MAPK) pathway and possibly transforming
growth factorb (TGF-b) receptor signaling (see
below). In addition, recent evidence has impli-
cated lysosomes—typically only thought of as
end-stage degradative organelles—as key play-
ers in signaling via mTOR. Cellular ATP and
amino acid levels regulate the V-ATPase-medi-
ated assembly of the “Ragulator” complex, com-
prising the RAG family GTPases together with
RHEB GTPase to recruit mTORC1, thereby ac-
tivating an mTOR kinase (Zoncu et al. 2011).
Similarly, the fusion of autophagosomes with
lysosomes is also regulated at least in part by
mTOR activity, further emphasizing a broader
function for lysosomes in cellular homeostasis
relevant to generating or suppressing the cellu-
lar oncogenic phenotype (for reviews, see La-
plante and Sabatini 2012; Jewell et al. 2013).
Inhibiting mTORC1 function has proved to

be an effective therapy in hormone-dependent
breast cancer (Baselga et al. 2012a), emphasiz-
ing a likely relationship between endocytic or-
ganelle function and cancer.

We now turn to a consideration of how the
endocytic pathway is altered or otherwise co-
opted in cancer cells and how these altera-
tions contribute to pathophysiology. The main
themes are vesicular trafficking-mediated for-
mation of specialized cell-surface extensions as
well as cellular processes leading to acquisition
of rapid proliferation or invasive growth (Fig. 1)

BOTH MAJOR DRIVERS OF HUMAN
CANCER, p53 AND RAS, HARNESS
ENDOCYTOSIS

Mutant Forms of p53

Wild-type p53 acts as a transcription factor that
induces cell-cycle arrest, apoptosis, or senes-
cence after stress (Oren and Rotter 2010). In
�50% of human tumors, p53 is either lost or
inactivated by point mutations. Mutant forms
of p53 may act in cancer as trans-dominant in-
hibitors of p53 (Blagosklonny 2000), and studies
performed by Vousden and Norman identified
an endocytosis-related gain of function of p53
mutant that is independent of loss of wild-type
p53 (Muller et al. 2010). Accordingly, certain
mutants drive random migration of cancer
cells by accelerating recycling of b1-integrin.
This function may at least in part depend on
the Rab-coupling protein (RCP), an effector
and binding partner of the Rab11 family of small
GTPases dedicated to the control of vesicle recy-
cling (Mills et al. 2009). In addition to integrins,
two RTKs, EGFR and c-MET, are influenced
by mutant forms of p53; enhanced recycling of
these receptors signals downstream from the
proinvasive kinase Akt, which results in disor-
dered lamellipodia, cell scattering, reduced di-
rectional cell migration, and increased inva-
siveness (Muller et al. 2012). Interestingly, by
recruiting RCP and accelerating receptor recy-
cling, mutants of p53 overcome the metastasis-
inhibitory function of p63, a kin of p53 (Fig. 2).

Coincident with the discovery of a link be-
tween mutant p53 and RCP, a surveyof recurrent
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genomic amplicons and their impact on patient
survival identified RCP as a human breast-can-
cer-promoting gene (Zhang et al. 2009). The
corresponding gene localizes to a region of
chromosome 8 (8p11–12) that is frequently am-
plified in breast cancer. Importantly, amplifica-
tion of 8p11–12 has been observed in 10%–25%
of breast tumor cases and is correlated with poor
patient survival (Letessier et al. 2006). In vitro
studies support the ability of an overexpressed
RCP to confer aggressiveness to mammary tu-
mor, andhave also found that this associateswith
activation of the Ras-Erk MAPK pathway. As de-
scribed below, the plot implicating RCP in ma-

lignant transformation has thickened even fur-
ther by the finding that RCP partners, such as
Rab25, are overexpressed in breast and ovarian
tumors (Cheng et al. 2004), and the RCP-Rab25
complex can promote invasive migration in
three dimensions (Caswell et al. 2007). Thus,
multiple mechanisms maybe used bycancercells
to achieve increased receptor recycling, thereby
enhancing invasiveness.

Mutant Forms of Ras

Like p53, the three Ras family members H-Ras,
K-Ras, and N-Ras acquire oncogenic properties

PNRC

Lysosome MVB EE

CCV
CCP Lamellipodium

Adherens
junctions

Filopodia

Dorsal
ruffle

Invadopodia

Focal
adhesion

Figure 1. Cell-surface structures regulated in tumors by vesicular trafficking. A schematic view of an epithelial
cell, which is in close contact with both a highly polarized neighboring cell, via adherens junctions, and the
underlying extracellular matrix (via focal adhesions). Several actin-filled projections of the plasma membrane
are presented (e.g., a lamellipodium and several filopodia). In addition, ventrally located invadopodia are shown
as actin-filled fingers that perforate the underlying extracellular matrix. Turnover of all presented surface
structures is regulated by vesicular trafficking, which is outlined as a route starting at the clathrin-coated pit
(CCP), leading to EEs, late endosomes, or multivesicular bodies (MVBs), and eventually reaches lysosomes.
Both adhesion molecules, such as integrins and signaling receptors (e.g., EGFR), are transported to lysosomes
through this pathway, but an alternative route recycles receptors back to the cell surface. In the case of integrins,
this latter route involves the perinuclear recycling compartment (PNRC). Note that Figures 2–5 highlight
portions of the general view shown in this scheme.
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by single missense mutations, usually at codon
12 or codon 61 (Pylayeva-Gupta et al. 2011).
Whereas several lines of evidence indicate that
mutants of Ras exploit the endocytic machinery,
the functional significance of these events re-
mains poorly understood. For example, it was
noted early on that microinjection of the H-Ras
protein into fibroblasts increased both surface
ruffles and fluid phase macropinocytosis within
30–60 minutes (Bar-Sagi and Feramisco 1986).
However, although it is clear that Ras can remod-
el the actin cytoskeleton to promote ruffling,

the interaction with vesicle-forming machiner-
ies, along with the contribution of macropino-
cytosis to the transformed phenotype, are less
understood. Another isoform of Ras, K-Ras,
transcriptionally elevates caveolin-1 through a
mechanism involving Akt, and this enhances tu-
mor cell migration (Basu Roy et al. 2012).

Along with macropinocytosis, Ras activa-
tion strongly induces clathrin-dependent en-
docytosis at least in part by regulating the mo-
nomeric GTPase Rab5. Rab5 is known as a
regulator of fusion between EEs. Key players

Lamellipodium

Recycling
endosome

Early
endosome

RCP

Rab 11/25p63

Mutant p53

EGFRα5β1

Lysosome

Figure 2. Involvement of mutant p53 in lamellipodium dynamics and cell migration. To safeguard sustained
forward movement of the leading edge, integrin and RTKs constantly internalize and directionally recycle by
means of vesicular trafficking. A critical player is the RCP, a Rab11 effector, that physically binds with both RTKs
and integrins such as the fibronectin receptor a5b1. This enables cotrafficking of adhesion and signaling
molecules to the forefront of the leading edge. Importantly, the endosomal protein RCP, like its partner,
Rab25, is overexpressed in some tumors and indirectly down-regulated by p63. The latter transcription factor
is a member of a tumor suppressor family that includes also p73 and the wild-type form of p53. Notably,
oncogenic mutant forms of p53, such as R175H and R273H, transcriptionally repress p63. Thus, in cancer cells
expressing p53 mutants, both RTKs and certain integrins evade degradation in lysosomes, thereby enhancing
cell migration and downstream signaling, primarily to the Akt pathway.
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in these events are the Ras-interaction/interfer-
ence (Rin) proteins, Ras effectors that connect
signaling to the control of receptor endocytosis
and actin remodeling (Tall et al. 2001). Via its
Ras association (RA) domain, Rin1 competes
with binding of another Ras effector, Raf, where-
as the Vps9 domain is necessary for binding to
Rab5 and for GDP/GTP exchange activity. In
addition, Rin1 directly binds active EGFRs via
its SH2 domain and uses its own phosphotyro-
sines to bind Abl tyrosine kinases that regulate
actin remodeling. Thus, Rin1 functions as a hub
linking potent proto-oncogenes, such as Raf
and Abl, to the endocytic machinery. Because
Ras potentiates the Rab5 nucleotide exchange
activity of Rin1, this interaction augments
Rab5A-dependent endosome fusion and EGFR-
mediated endocytosis. In contrast, Rin1-Abl
signaling stabilizes EGFR and inhibits macro-
pinocytosis (Balaji et al. 2012).

The potential functional significance of
Rin1’s interaction with Ras, EGFR, and Abl is
supported by evidence showing that overexpres-
sion of Rin1 suppresses apoptosis in vitro and
correlates with poor prognosis of melanoma
patients (Fang et al. 2012). A similar prognostic
correlation was reported in non-small-cell lung
cancer and in gastric tumors (Wang et al. 2012).
In colorectal tumors, Rin1 expression correlated
not only with poor prognosis but also with ve-
nous invasion (Senda et al. 2007). Congruent
with growth-factor-driven invasiveness and me-
tastasis, studies performed on lung cancer cell
lines suggested that Rin1 regulates cell prolifer-
ation through EGFR (Tomshine et al. 2009).
These observations suggest that the interactions
between Rin1 and Abl are favored in tumors
more so than the alternative actions of Rin1
on Rab5 and Raf.

Yet more complexity has been introduced by
reports on ubiquitination of Ras and Rho fam-
ily members and potential relevance to tumor-
igenesis (de la Vega et al. 2011). The group of
Bar-Sagi reported that H-Ras is subject to ubiq-
uitin conjugation (Jura and Bar-Sagi 2006). In-
terestingly, ubiquitin attachment to H-Ras is
mediated by another Rab5 GEF—an E3 ligase
and an ubiquitin-binding protein called Rabex-
5. Ubiquitination stabilizes the association of

H-Ras with endosomes an inhibits its ability
to activate Raf (Xu et al. 2010). Moreover, Rin1
is required for Rabex-5-dependent H-Ras ubiq-
uitination, suggesting a feedback mechanism by
which H-Ras activates Rin1 and the latter re-
cruits Rabex-5 to ubiquitinate, thereby inacti-
vating H-Ras. A different model was proposed
by a study of K-Ras ubiquitination. This mod-
ification enhanced, rather than weakened, cou-
pling to downstream effectors such as Erk and
PI3K (Sasaki et al. 2011), raising the possibility
that endocytosis of K-Ras activates signaling,
but internalization of H-Ras inhibits down-
stream signals. It is worthwhile to note that
that earlier observations concluded that H-Ras
signaling and K-Ras signaling are differentially
dependent on endocytosis (Roy et al. 2002).
Moreover, EGFR signaling results in the recruit-
ment of K-Ras to late endosomes and lyso-
somes, an event that does not occur in the
case of H-Ras or N-Ras (Lu et al. 2009).

ONCOGENIC MUTANTS OF GROWTH
FACTOR RECEPTORS ARE ENDOCYTOSIS
IMPAIRED

The canonical pathway that clears from the
cell-surface-activated forms of RTKs, along
with their bound growth factor molecules (Sor-
kin and von Zastrow 2009), is often avoided by
growth factor receptors of cancer cells, either
because they carry oncogenic mutations or they
are otherwise aberrantly expressed (Mosesson
et al. 2008; Parachoniak and Park 2012). Recep-
tor internalization is mediated by clathrin-de-
pendent and -independent, routes (Sigismund
et al. 2005), eventually delivering cargoes to EEs.
Within endosomes, activated RTKs are either
transferred to late endosomes and lysosomes
for degradation, or they are recycled, providing
sustained signaling (Parachoniak et al. 2011).
Multiple factors regulate sorting at the endo-
some and they include receptor autophosphor-
ylation, ligand affinity and its sensitivity to pH,
ubiquitination by Cbl and other ubiquitin ligas-
es, and several adaptor proteins such as Grb2
and ubiquitin binders. Oncogenic tricks that
manipulate RTK sorting are reviewed below by
focusing on two subfamilies of RTKs (Fig. 3).
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The EGFR/ErbB Family

Four transmembrane receptor RTKs comprise
the ErbB family, of which EGFR is the proto-
type. The 11 mammalian EGF-like ligands dis-
play wide variation in terms of receptor specif-
icity, binding affinities, and dependence on pH.

Likewise, multiple EGF-like ligands are encoded

by smallpox viruses and, like the mammalian

growth factors, they differ in their rate of clear-

ance by means of receptor-mediated endocyto-

sis (Tzahar et al. 1998). Ligands that are either

sensitive to the low pH of endocytic compart-

RTK endocytosis

EGFR

EGF

CCP

EE

P P

P

Cbl Dep1
Cezanne1
Src
Cool1
AIP4
Alix
Tula

Ralt
Lrig 1
Grb 2
Cin85
Numb

Clathrin-
independent
endocytosis

MVB

Rab5

Degradation Recycling

Rab4
Rab11Rab7

Hip1

Figure 3. Protein complexes regulating endosomal sorting of RTKs. Following ligand-induced phosphorylation
of RTKs, such as the EGF-receptor (EGFR), RTKs are internalized via clathrin-dependent and -independent
pathways in a manner dependent on several accessory proteins, as listed. These pathways merge at the EE and
feed multivesicular bodies (MVBs). Receptor sorting into internal vesicles of the MVB likely precedes delivery to
lysosomes for degradation. Alternatively, receptors that remain confined to the limiting membrane of MVBs
often recycle back to the plasma membrane, thereby engaging in repeated cycles of activation. Rab proteins,
phosphatidylinositol modifying enzymes, and posttranslational modifications of both RTKs and endocytic
adaptors, for example, phosphorylation (denoted as P), ubiquitination (Ub), and neddylation (conjugation
of Nedd8), have critical roles in endosomal sorting. Specific players of each trafficking branch are indicated. Note
that aberrant expression of some players, in a way that skews recycling, has been associated with human cancer
(see list in Table 1).
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ments (e.g., transforming growth factor a) or
that bind EGFR with low affinity (e.g., epiregu-
lin) are generally more sustained stimulants,
and they often associate with human malignan-
cies (Normanno et al. 2001). Conceivably, their
ability to dissociate in EE favors receptor recy-
cling, as opposed to transport to late endocytic
compartments. Such factors are often autocrine
in nature (Sporn and Todaro 1980), and provide
one common mechanism that underlays con-
stitutive proliferation by providing a sustained
source of ligands that do not promote RTK
down-regulation. Several additional mecha-
nisms, which are briefly described below, may
help cancer cells to evade regulation by RTK
endocytosis.

Receptor Overexpression

Head and neck, brain, and other tumors often
overexpress ErbB family members as a result of
gene amplification or other mechanisms (Hynes
and MacDonald 2009). This represents another
mode that prolongs signaling; owing to the
limited internalization capacity of the clath-
rin-coated pit and unbalanced ratio of cargoes
versus endocytic adaptors, internalization of
overexpressed EGFRs is either inhibited or pref-
erentially followed by recycling (Wiley 1988;
French et al. 1994). At the plasma membrane,
overexpression also promotes the collision fre-
quency of EGFR monomers, yielding the forma-
tion of dimers that are primed for ligand binding
and signaling (Chung et al. 2010). Importantly,
the four ErbB proteins form both homodimers
and heterodimers, and each receptor com-
bination follows different routing caused by
the receptor’s intrinsic internalization signals,
association with ubiquitin ligases, and sensitiv-
ity of the ligand-receptor complex to low pH.
The closest kin of EGFR, an oncogenic corecep-
tor called HER2 or ErbB-2, is frequently overex-
pressed in some tumors, including 15%–20% of
breast and gastric tumors. HER2 effectively es-
capes the endocytic pathway, because it binds no
known ligand, lacks characteristic internaliza-
tion signals, or HER2 molecules associate with
heparin sulfate proteoglycans or plasma mem-
brane microdomains that retain HER2 (Baulida

et al. 1996; Pinkas-Kramarski et al. 1996). When
HER2 is internalized, however, it rapidly recycles
(Austin et al. 2004). In addition, when overex-
pressed, HER2 forms heterodimers with EGFR,
which enhances recycling of both receptors
(Lenferink et al. 1998; Worthylake et al. 1999),
in part by reducing receptor ubiquitination
(Levkowitz et al. 1996; Muthuswamyet al. 1999).

Deletion Mutants of EGFR

Approximately 50% of glial tumors harbor
EGFR gene amplification (Wong et al. 1987),
and a large fraction of these also present EGFR-
vIII (Jeuken et al. 2009), a deletion mutant lack-
ing exons 2–7, including a portion of the ligand-
binding cleft. EGFRvIII molecules are basally
dimerized and activated in the absence of ligand
binding, thus conferring high tumorigenic po-
tential (Nagane et al. 1996). In contrast to EGFR,
EGFRvIII is inefficiently internalized and de-
graded, and after internalization it is recycled
rather than delivered to lysosomes (Grandal
et al. 2007). EGFRvIII binds the ubiquitin ligase
c-Cbl via Grb2, whereas binding via phosphor-
ylated tyrosine residue 1045, the direct binding
site of Cbl, is limited, probably because EGFR-
vIII’s tyrosine 1045 is hypophosphorylated
(Han et al. 2006). Carboxy-terminal deletion
mutants, collectively termed EGFRvIV, were also
identified in brain tumors. Interestingly, the on-
cogenic function of both EGFRvIII and EGFRs
harboring carboxy-terminal deletions depends
on the chaperoning function of heat shock pro-
tein 90 (HSP90) (Lavictoire et al. 2003; Pines
et al. 2010), and this feature is shared by another
endocytosis-defective receptor, namely, HER2
(Citri et al. 2002; Neckers and Ivy 2003).

Kinase Domain Mutants of EGFR

Approximately 10% to 30% of tumors from
patients with non-small-cell lung cancer (NS-
CLC) harbor somatic activating mutations in
the gene encoding EGFR (Lynch et al. 2004;
Paez et al. 2004; Pao et al. 2004). All mutations
are restricted to the tyrosine kinase domain of
EGFR. The most frequent point mutation is a
substitution of an arginine for leucine at posi-
tion 858 (L858R). Yet other mutants carry in-
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frame short deletions. Differential patterns of
autophosphorylation resulting in enhanced
Akt and Stat signaling have been associated
with EGFR mutants (Sordella et al. 2004). Along
with pathway-selective activation by EGFR mu-
tants, their ligand-induced autophosphoryla-
tion decays relatively slowly (Lynch et al. 2004),
raising the possibility that the mutant recep-
tors evade degradation. Analyses of several mu-
tants, including a double-mutant L858R/T790-
M, which is resistant to tyrosine kinase inhib-
itors such as gefitinib and erlotinib, uncovered a
defect in Cbl-mediated ubiquitination and deg-
radation of EGFR (Shtiegman et al. 2007). The
defect was attributed to a propensity of the mu-
tants to heterodimerize with HER2, thereby
evading c-Cbl-mediated ubiquitination. Con-
sistent with this model, chromosomal analysis
of lung tumors revealed that HER2 was ampli-
fied in 12% of tumors with acquired resistance
to kinase inhibitors, versus only 1% of untreat-
ed patients with lung adenocarcinomas (Take-
zawa et al. 2012). Thus, activating mutants of
EGFR in lung cancer exploit endocytosis-relat-
ed mechanisms to reduce rapid inactivation by
internalization and MVB sorting, further en-
hancing their oncogenic properties.

Evasion of EGFR Feedback Regulators
by Cancer Cells

A major source of information on negative ErbB
signals arises from developmental genetics of
invertebrate organisms such as Caenorhabditis
elegans and Drosophila. In C. elegans, loss of
Sli-1, the ortholog of Cbl in mammals, leads
to excessive vulva formation, and naturally oc-
curring aberrant forms of c-Cbl are oncogenic
in mammals (Thien and Langdon 2001; Kales
et al. 2010). For example, DNA sequencing of
leukemic bone marrow revealed a case with a
c-Cbl point mutation (Cbl-R420Q) that inhibits
internalization and ubiquitination of the Flt re-
ceptor (Sargin et al. 2007). In addition, muta-
tions of Cbl-binding tyrosine in the cytoplasmic
domain of the human-colony-stimulating fac-
tor-1 (CSF-1) receptor were found in children
with secondary myelodysplasia and secondary
acute myeloid leukemia (Ridge et al. 1990).

Similar to Cbl proteins, a group of negative
EGFR regulators in insects undergo transcrip-
tional up-regulation following activation of
EGFR. For example, kekkon-1, which encodes
a transmembrane protein, physically binds to
and inhibits EGFR molecules (Ghiglione et al.
1999). Although the multiple Kekkon proteins
of insects have no clear orthologs in mammals,
the three mammalian LRIG proteins share do-
main organization with Kekkons. Moreover,
LRIG1 physically associates with all four ErbB
proteins of mammals and its up-regulation is
followed by enhanced ubiquitination and deg-
radation of EGFR. The underlying mechanism
involves recruitment of c-Cbl, which simultane-
ously ubiquitinates EGFR and LRIG1, and sorts
them for degradation (Gur et al. 2004; Laeder-
ich et al. 2004). In line with growth suppression,
LRIG1 expression correlates with good progno-
sis of breast, cutaneous squamous cell carcino-
ma (SCC), and other types of cancer (Tanemura
et al. 2005; Hedman and Henriksson 2007; Krig
et al. 2011).

Like LRIG1, Mig6/RALT interacts with all
ErbB members, along with additional RTKs,
and blocks downstream signaling (Anastasi
et al. 2003). Crystal structures of complexes be-
tween the EGFR kinase domain and a fragment
of Mig6 showed binding to the distal surface of
the C-lobe of the kinase domain (Zhang et al.
2007). Although the kinase region within such
complexes is inactive, Mig6 nevertheless targets
EGFR to endocytosis and degradation by re-
cruiting a set of endocytic adaptors (e.g., AP-2
and intersectins) (Frosi et al. 2010). Presumably,
Mig6 evolved as a suppressorof the inactive form
of EGFR as a result of the scaffold, kinase-inde-
pendent functions of EGFR and other RTKs.
Interestingly, high-resolution genomic profiles
of glial tumors identified a highly recurrent fo-
cal 1p36 deletion encompassing Mig6 (Ying
et al. 2010), and high Mig6 expression in papil-
lary thyroid cancer is associated with favor-
able outcomes (Ruan et al. 2008). In summary,
the integration of in vitro lines of evidence and
data from cancer patients attributes growth-
suppressive functions to RTK endocytosis,
but diverse and multiple aberrations weaken
this mechanism in tumors. More examples of
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endocytosis-related proteins, which are aber-
rantly expressed in human tumors, are shown
in Table 1.

c-Met (Hepatocyte Growth Factor Receptor)

In analogy to EGFR, c-Met is implicated in the
growth, survival, and spread of various human
cancers (Blumenschein et al. 2012). Overexpres-
sion of c-Met and autocrine HGF signaling are
considered to be the two major aberrations of
the HGF-Met axis in cancer, although rare mu-
tations affecting several domains of the receptor
have been documented that affect its behavior
during endocytosis. For example, overexpres-
sion was observed in NSCLC, breast, renal,
and ovarian cancer, and this has been associated
with poor prognosis. Similarly, mutations in c-
Met were found in lymph-node metastases of
head and neck squamous cell carcinomas, im-
plying that the mutations are selected during
metastatic spread (Di Renzo et al. 2000). Impor-
tantly, the juxtamembrane domain regulates li-
gand-dependentc-Met internalizationby means
of tyrosine-1003 phosphorylation in response
to HGF binding, leading to c-Met ubiquitina-
tion and degradation (Abella et al. 2005). Thus,
when an exon 14 deletion occurs, such as in
lung and gastric cancer, the loss of Y1003 results
in c-Met accumulation at the cell surface and
persistent HGF stimulation, leading to tumor-
igenesis. Cbl’s binding tyrosine is missing in
another oncogenic mutant of c-Met, namely,
the Tpr-Met fusion protein generated following
a carcinogen-induced chromosomal rearrange-
ment. As expected, this mutant is stable and
cytoplasmic, undergoes no ubiquitination, and
shows strong tumorigenesis (Mak et al. 2007).
Differential ubiquitination and recruitment of
Cbl proteins might underlie relatively strong
signaling and transforming potential of other
RTKs and their derivatives, such as Ret (Scott
et al. 2005) and Flt-1 (Kobayashi et al. 2004).

REDOX-REGULATED TRAFFICKING OF RTKS

Aggressive cancer cells have high oxidative stress
as a result of their acidic environment, which
enhances the formation of reactive oxygen

species (ROS) (Riemann et al. 2011). Another
source of ROS is intrinsic; excessive activity of
RTKs is known to produce free radicals (Lan-
der 1997). Early observations found that hydro-
gen peroxide enhances EGFR phosphorylation
on tyrosines (Gamou and Shimizu 1995) by a
mechanism distinct from ligand-induced stim-
ulation, in that no kinase activation is needed
and phosphorylation is insensitive to EGFR
kinase inhibitors (Filosto et al. 2011). Impor-
tantly, ROS-activated receptors undergo no
ubiquitination or degradation. Instead, they
translocate to a perinuclear location (most like-
ly recycling endosomes) that permits sustained
signaling (Khan et al. 2007). Evasion of receptor
degradation, through mechanisms that likely
involve Src activation and degradation of Cbl
(Bao et al. 2003), seems to be common in tu-
mors. Furthermore, it was shown that the gas
phase of cigarette smoke contains hydrogen
peroxide at doses sufficient to affect RTK func-
tion (Khan et al. 2007). Interestingly, under
hypoxia, RTK signaling is commonly enhanced
through transcription- or translation-mediated
mechanisms. For instance, hypoxic microenvi-
ronments and activation of hypoxia-inducible
factor (HIF) 2a in the core of solid tumors lead
to overexpression of EGFR by increasing trans-
lation of the respective mRNA (Franovic et al.
2007). In addition, hypoxia prolongs the acti-
vation of EGFR because of lengthened receptor
half-life and retention in the endocytic pathway.
This is caused by the attenuation of Rab5-me-
diated EE fusion, via HIF-dependent down-reg-
ulation of a critical Rab5 effector, rabaptin-5,
at the level of transcription (Wang et al. 2009).
In conclusion, severe environmental conditions
enhance RTK signaling by shunting receptor en-
docytosis, thereby enhancing signaling, cell sur-
vival, and tumorigenesis.

THE SIGNALING ENDOSOME HYPOTHESIS

Several lines of evidence support the possibility
that RTKs and other receptors might generate
signals while en route. Early studies identified
active EGFRs and specific components of the
Ras pathway in endosomes isolated from EGF-
stimulated livers (Di Guglielmo et al. 1994).
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Table 1. Endocytosis-regulating proteins aberrantly acting in human tumors

Protein Normal function Defective function Aberrations in human tumors References

Ack1 Binds clathrin, ubiquitin, and Cdc42;
promotes EGFR degradation.

The S985N mutant enhances proliferation and
stabilizes EGFR. Overexpression increases
metastasis.

Gene amplification and overexpression in
lung ovarian and prostate cancers. Several
somatic and germline mutations.

van der Horst et al.
2005; Chua
et al. 2010

Caveolin 1 Major coat protein of caveolae.
Invaginates lipid raft domains. Binds

with and enhances action of tumor
suppressor DLC1.

Normally, caveolin inhibits several RTKs; deletion
of the fragile 7q31.1 locus of caveolin 1 or gene

ablation enhances cell proliferation.

Down-regulation and sporadic mutations
(e.g., P132 L) in breast, ovarian, and liver

cancer; up-regulated in kidney and
esophageal cancers.

Goetz et al. 2008;
Du et al. 2012

Cbl An E3 ubiquitin ligase of several RTKs. Causes mutations in RING and linker domains,
deletions and insertion that inhibit receptor

ubiquitination. Aviral short form is oncogenic.

Mutant forms in myeloid neoplasias. Sargin et al. 2007;
Kales et al. 2010

Clathrin Major component of the coat of
membrane invaginations that mediate

endocytosis.

Constitutive activation of fusion partners such as
the Alk kinase.

A fusion protein found in inflammatory
myofibroblastic tumors.

Bridge et al. 2001

Cortactin Links endocytosis to the actin
cytoskeleton by binding with actin and
dynamin and activating Arp2/3.

When overexpressed, inhibits EGFR
ubiquitination and endocytosis.

Chromosomal amplification of 11q13 leads
to overexpression in some tumors.
Overexpression in breast, head and neck,

colorectal, liver, kidney, and brain tumors.

Cai et al. 2010

Disabled 2
(Dab2)

Cargo-selective clathrin adaptor that
binds Eps15 and intersectin; recruits
myosin VI to clathrin-coated structure.
Enables endocytosis of b integrins.

Acts as a tumor suppressor by dictating tumor cell
TGF-b responses. Regulates EMT and recycling
of TGF-b receptors.

Down-regulated in ovarian, bladder, prostate,
colorectal, and breast cancers. DAB2
promoter hypermethylation found in
nasopharyngeal tumors.

Karam et al. 2007;
Hannigan et al.
2010

Dynamin A large GTPase involved in endocytosis
and cell migration.

Dynamin 2 might be involved in preventing
metastasis in carcinoma of the cervix, but in
pancreatic cells, dynamin 2 potentiates
metastasis.

Increased expression in tumors of the
pancreas, but low expression correlates
with lymph-node metastasis of cervix
cancer.

Lee et al. 2010;
Eppinga et al.
2012

Endophilin Induces membrane curvature during
synaptic vesicle formation. Binds
dynamin and synpatojanin.

The fusion protein containing a portion of
endophilin, MLL-EEN, is nuclear rather than
cytoplasmic; may interact with the Ras pathway.

Chromosomal translocation positions
endophilin next to MLL (mixed lineage
leukemia). The fusion protein is found in

acute myeloid leukemia.

So et al. 1997

Eps15 Endocytic adaptor for clathrin; promotes
endocytosis.

The coiled coil domain of Eps15 mediates
oligomerization of a histone methyltransferase
called MLL and enhances self-renewal of
hematopoietic progenitors.

A fusion protein, Eps15-MLL is present in
childhood leukemia.

Rogaia et al. 1997
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Table 1. Continued

Protein Normal function Defective function Aberrations in human tumors References

GEP100 A guanine-nucleotide exchange factor of
Arf6; binds active EGFRs.

Mediates metastasis in animal models. Overexpressed in invasive ductal carcinomas
of breast origins. Co-overexpression with

HER2 predicts nodal metastasis in primary
lung adenocarcinomas.

Morishige et al.
2008; Menju

et al. 2011

HAX1 A multifunctional protein regulating
calcium homeostasis, cell migration,
and apoptosis. Binds with the tail of

avb6.

In carcinoma cells, HAX1 enables cell invasion by
regulating endocytosis of integrin avb6.

Up-regulation in melanoma, lung cancer, and
breast cancer. Mutations cause
neutropenia.

Ramsay et al. 2007;
Trebinska et al.
2010

HIP1 Coordinates actin remodeling during
formation of clathrin-coated vesicles.
Binds phosphoinositides, AP-2, and
clathrin.

Induces cytokine-independent growth. Up-
regulates several RTKs.

Overexpressed in gliomas and carcinomas of
the breast and prostate. A fusion protein,
HIP1-PDGFBR is found in CMML.

Rao et al. 2003

Mdm2 A proto-oncogene that regulates p53
stability and ubiquitinates b arrestins,
mediators of internalization of G-
protein-coupled receptors.

Likely regulates endocytosis of chemokine and
other seven transmembrane receptors, along
with negative feedback of p53.

Acquires oncogenicity through increased
expression in a range of common tumors
(e.g., bladder cancer).

Shenoy et al. 2001

NDRG1 A Rab4a effector protein that localizes to

sorting vesicles by binding to
phophatidylinositol 4-phosphate.
Involved in recycling of E-cadherin.

Acts as a metastasis suppressor in animal models.

Down-regulated by N-Myc.

Down-regulated in prostate, breast, and

pancreatic cancers.

Bandyopadhyay

et al. 2003

Numb A multifunctional regulator of signaling
by Notch, Hedgehog, and p53.

Involved in endocytosis,
determination of polarity, and
migration.

Normally, Numb acts as an antagonist of Notch
and a stabilizer of p53. In its absence, these

pathways are altered and cells acquire malignant
features.

Down-regulated in breast and lung cancers. Pece et al. 2004

Rab25 A rab11 family member that physically

interacts with b1 integrin and rescues
lysosomally targeted integrins.

Forced overexpression of Rab25 increases

aggressiveness of cancer cells by activating the
Akt pathway.

Amplification of 1q22, centered on rab25,

increases expression of Rab25 in breast
(and ovarian) cancer and correlates with
lymph-node metastasis.

Cheng et al. 2004;

Yin et al. 2012

RCP A Rab11 effector protein that associates
with a5b1 integrin and guides

recycling of integrins and EGFR.

Recycling of EGFR and integrin a5b1 is normally
inhibited by transcriptionally active TAp63, but

this is relieved when mutant p53 is expressed.

Overexpressed in breast, ovarian, and head/
neck tumors. The respective 8p11–12 locus

is frequently amplified in breast cancer.

Zhang et al. 2009
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This implied that receptor endocytosis fulfills
roles other than desensitization, in line with
the decrease in Erk activation observed in cells
expressing a dominant-negative mutant of dy-
namin (Vieira et al. 1996) as well as a loss of
active Mek, the Erk-specific kinase, in cells lack-
ing expression of an endosomal scaffold com-
plex (MP1-p14) (Teis et al. 2002). Yet, cells ex-
pressing a mutant of dynamin showed enhanced
DNA synthesis (Vieira et al. 1996), but a low-
molecular-weight inhibitor of dynamin inhib-
ited, rather than enhanced, in vivo tumorigen-
esis of cells expressing a mutant form of c-Met
thar led to the proposition that endosomal sig-
naling enhances oncogenicity of c-Met (Joffre
et al. 2011). Another inhibitory compound,
of EGFR’s kinase, was used to arrest EGFR in
endosomes and derive evidence in support of
endosomal signaling (Wang et al. 2002). Where-
as it is widely accepted that signaling endosomes
containing neurotrophins and their receptors
are retrogradely transported along microtu-
bules back to neuronal cell bodies, where they
control transcriptional events (Howe and Mob-
ley 2005), endosome signaling by EGFR and
other receptors has received diverse interpre-
tations. For example, spatially restricted phos-
phatases might regulate intracellular signaling.
Accordingly, internalization of EGFR and sig-
naling at sites in close proximity to the endo-
plasmic reticulum enable PTP1B-catalyzed de-
phosphorylation (Haj et al. 2002), whereas
DEP-1, a transmembrane tyrosine phosphatase
encoded by a tumor suppressor gene (Ruiven-
kamp et al. 2002), can prevent EGFR signaling at
the plasma membrane, yet cannot inhibit en-
dosomal signals (Tarcic et al. 2009). According
to an alternative interpretation, EGFRs inter-
nalized via clathrin-mediated endocytosis are
recycled to the cell surface, thus enabling EGF-
dependent DNA synthesis, but clathrin-inde-
pendent internalization preferentially commits
the receptor to degradation (Sigismund et al.
2008). Conceivably, better understanding of dif-
ferential routings, along with heterogeneity at
the level of EEs and selective engagement of en-
dosomal scaffold proteins would throw light on
intracellular signaling and its currently unclear
contribution to tumor progression.

ABERRANT INTEGRIN TRAFFICKING
IN TUMORS

Efficient cell migration requires constant endo-
cytosis and recycling of integrins rather than
their degradation. Accordingly, it was estimated
that the plasma membrane pool of integrins is
recycled through the endosomal system once in
30 min (Roberts et al. 2001), and this flux of
integrins correlates with both migration speed
(Teckchandani et al. 2009) and the overall dy-
namics of the plasma membrane (Mellman
1996a). Because integrin recycling is also im-
portant for cell division (cytokinesis) (Caswell
et al. 2009), and integrins have major roles in
tumor-stroma interactions, aberrant recycling
of the 25 different integrin heterodimers is in-
volved in tumor growth, invasion, metastasis,
and evasion of apoptosis (Mosesson et al. 2008).
One critical aspect of integrins’ “outside-in sig-
naling” is their ability to influence the manner
in which RTKs respond to their ligands. For
example, recycling of EGFR and integrin a5b1
is coordinated and this promotes cell migration
in 3D matrices (Caswell et al. 2008).

The cycle of integrin endocytosis–exocyto-
sis may initiate on inducible polymerization of
tubulin, a well-known target for cancer thera-
pies (Fig. 4). The growing tips of microtubules
disintegrate focal adhesions and instigate dyna-
min-dependent endocytosis of some integrin
heterodimers, in a mechanism that also requires
the adaptor Dab2 and the kinase Fak (Ezratty
et al. 2005). Internalized integrins follow three
alternative routes: a short, Rab4-dependent re-
cycling loop, a longer loop that depends on
Rab11 family members and translocates cargoes
to the perinuclear recycling endosomes, and a
pathway leading to degradation in lysosomes.
Although the details of the sorting process that
takes place in dedicated vesicles located just be-
hind the leading lamella (Pierini et al. 2000) are
incompletely understood, it is clear that these
routes are linked to tumor progression. For ex-
ample, growth factors can shunt integrin avb3
to the short recycling loop (Roberts et al. 2001)
through a mechanism that requires PKD-medi-
ated phosphorylation of rabaptin, a binding
partner of both Rab4 and Rab5 (Woods et al.
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2004; Christoforides et al. 2012). Likewise, an-
other kinase, Akt/PKB, controls recycling of the
a5b1 integrin through several downstream tar-
gets, including an Arf6-specific GTPase activat-
ing protein (GAP), ACAP1, which is needed for
clathrin coat assembly (Li et al. 2005; 2007).

As already discussed, accelerated recycling
of certain integrins characterizes cancer cells ex-

pressing mutant forms of p53, and this involves
the Rab-coupling protein (RCP) (Muller et al.
2012). Another driver of both integrin recy-
cling and cancer is the epithelial member of
the Rab11 family, Rab25. Early observations re-
vealed overexpression of the respective gene
in hepatocellular cancer (He et al. 2002) and
later studies by the laboratory of Gordon Mills

Focal adhesions

MTOC

PNRC
(Rab11)

Lysosome

EE
(Rab5)

F-actin

Recycling
(Rab4)

Microtubule

DAB2

FAK

FAK

Dynamin

α1/2/3
β1

Figure 4. Endosomal sorting regulates integrin-based focal adhesions. Focal adhesions containing active con-
formers of integrin b1 establish strong, yet dynamic, contacts between the ventral aspect of migrating cells and
the underlying extracellular matrix. Both actin filaments and microtubules projecting from the microtubule-
organizing center (MTOC) regulate cell adhesion. The latter polymers dissolve focal adhesions once they
approach the plasma membrane. This requires protein kinases, such as FAK, and recruitment of both dynamin
2 and disabled 2 (Dab2), a clathrin adaptor, which directly binds with the cytoplasmic tails of integrin b-
subunits. Once internalized by activated dynamin, the formed clathrin-coated vesicles mature to integrin-
loaded EEs. These organelles are transported backward along microtubules to reach the PNRC and the recycling
pathway, or these EEs deliver their cargo to lysosomes for degradation. These alternative itineraries are regulated
by specific Rab proteins. Note that the flux of integrins through the endocytic pathway, rather than their surface
levels, dictates migration speed. Accordingly, the levels of both Dab2 and dynamin display broad variation in
several types of carcinomas (see Table 1).
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showed that amplification of 1q22, centered on
rab25, increases expression of the GTPase in
�50% of ovarian and breast cancers (Cheng
et al. 2004). Furthermore, forced expression of
Rab25 markedly increased anchorage-inde-
pendent cell proliferation and enhanced aggres-
siveness of cancer cells in vivo. Other studies
confirmed these observations (Brusegard et al.
2012) and also linked Rab25 to the group of
androgen-responsive ovarian tumors (Sheach
et al. 2009). These observations are consistent
with the reported ability of Rab25 to physically
interact with b1 integrin (Caswell et al. 2007)
and rescue lysosomally targeted integrins (Do-
zynkiewicz et al. 2012). Interestingly, the latter
function involves a chloride channel, CLIC3,
which is a marker for invasive, poor prognosis
tumors of the pancreas. Thus, the wealth of cur-
rently available lines of information identifies
vesicular transport of integrins as an important
determinant of tumor progression.

EMT AND ENDOCYTOSIS-MEDIATED
DISRUPTION OF EPITHELIAL POLARITY
IN TUMORS

Epithelial-mesenchymal transition (EMT) rep-
resents the loss of cell–cell adhesions and api-
cal-basal polarity, along with concomitant de-
velopment of a motile phenotype (Thiery et al.
2009). Epithelial sheets acquire such pheno-
types in the context of normal physiology,
such as in embryogenesis and during tissue re-
pair, as well as under pathological conditions
that include organ fibrosis and metastasis for-
mation (Kalluri and Weinberg 2009). To sustain
EMT, cells apply a myriad of switches, both
transcription-independent events such as vesic-
ular trafficking as well as transcriptional switch-
es involving newly synthesized macromolecules.
The inducers of the switches are often soluble
polypeptides, namely, chemokines and growth
factors. The latter include HGF, Wnt, PDGF
(platelet-derived growth factor), Notch ligands,
and transforming growth factors. Importantly,
both tight junctions and adherens junctions are
lost during EMT. This is mediated by the sup-
pression of junctional complexes (e.g., E-cad-
herin, ZO-1, occludins, and specific claudins)

and components of polarity complexes, such
as LGL2 (Fig. 5). The crucial part played by
junctional complexes in cancer progression is
exemplified by the frequent occurrence of ge-
netic alterations in the epithelial cadherin (E-
cadherin) in breast, gastric, colon, and other
types of cancer (Paredes et al. 2012). Vesicular
trafficking critically regulates junctional com-
plexes by means of its polarizing function. For
example, clathrin knockdown experiments
performed with epithelial cells resulted in mis-
localization of basolateral proteins, whereas
the apical surface remained unaltered (Deborde
et al. 2008). Polarity-maintaining trafficking is
critically regulated by Cdc42 and the Par (par-
titioning-defective) group of proteins altered in
cancer. For example, EGF was shown to regulate
tight junction assembly by phosphorylation of
Par3 (Wang et al. 2006), whereas HER2 disrupts
epithelial polarity by binding to Par6 (Aranda
et al. 2006).

The best understood components of adhe-
rens junctions are E-cadherins and their part-
ners, the catenins. The exocytic pathway con-
trols delivery of newly synthesized E-cadherin
in complex with b-catenin, and this is regulated
by sorting nexin 1 (SNX1) and Rab11 (Lock and
Stow 2005). Additionally, the endocytic path-
way controls E-cadherin, and this is regulated
by Arf6, tyrosine kinases, and p120-catenin, the
most potent inhibitor of E-cadherin endocyto-
sis. The importance of E-cadherin trafficking is
dual: At the surface, E-cadherin mediates cell-
to-cell homophilic interactions, but it also traps
b-catenin. Loss of this interaction enables b-
catenin to translocate to the nucleus, where it
acts as an activator of the Wnt pathway. Hence,
it comes as no surprise that multiple mecha-
nisms regulate endocytosis of E-cadherin, and
this bears clinical implications in oncology. The
active form of Arf6, Arf6-GTP, recruits Nm23-
H1, a nucleoside diphosphate kinase that en-
hances fission of coated vesicles and causes
internalization of E-cadherin (Palacios et al.
2002). In the same vein, EGFR interacts specif-
ically with GEP100/BRAG2, an Arf6 guanine
nucleotide exchange factor, to promote Arf6
activation and consequent E-cadherin inter-
nalization (Morishige et al. 2008). Interestingly,
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co-overexpression of HER2 and GEP100 in lung
tumors predicts metastasis in patients (Menju
et al. 2011). Tyrosine kinases, such as Src or
RTKs, also regulate trafficking of E-cadherin.
Ubiquitination and trafficking to lysosomes of
phosphorylated E-cadherin are mediated by
Hakai, a Cbl-like E3 ubiquitin ligase. Hakai in-
duces monoubiquitination of E-cadherin in re-
sponse to Src activation (Fujita et al. 2002). Ad-
ditionally, the viral form of Src stimulates Rab5
and Rab7, which target E-cadherin to lysosomes
(Palacios et al. 2005). Along with phosphoryla-

tion and regulation by growth factors, E-cad-
herin stability is strongly regulated by p120-
catenin (p120-ctn), which binds to the cyto-
plasmic portion of cadherins and inhibits their
endocytosis. This is mediated by a dual-func-
tion motif consisting of three highly conserved
acidic residues that serve as a p120-binding in-
terface and an endocytic signal (Nanes et al.
2012).

Predictably, similarly detailed understand-
ing of the endocytosis of other cell-to-cell ad-
hesion molecules will not only deepen the way

Occludin

Claudin

E-cadherin

p120-
Catenin

Lysosome

αβ

Adherens junctions

F-actin

Src (P)

Hakai (Ub)

P
Ub

Figure 5. Endocytosis-mediated control of cell-to-cell junctions. Intact tight junctions and adherens junctions
are essential for the integrity and polarity of epithelial sheets; their turnover is regulated by means of vesicular
trafficking. Shown are two major components of tight junctions, occludin and claudin, and the epithelial
cadherin, E-cadherin, the major component of adherens junctions. E-cadherin maintains calcium-dependent
adhesion by means of homophilic extracellular interactions as well as association of the cytoplasmic tails with
the actin cytoskeleton. This involves several types of catenins, including p120-catenin, an inhibitor of E-cadherin
endocytosis. Tyrosine kinases such as Src have major roles in the disruption of adherens junctions; one mech-
anism involves inactivation of p120-catenin. Alternatively, tyrosine phosphorylation (denoted as P) of E-cad-
herin enables recognition by a Cbl-like ubiquitin ligase called Hakai that ubiquitinates (denoted as Ub) and sorts
E-cadherin molecules to lysosomal degradation. Low expression of E-cadherin, attributable to genetic and other
reasons, characterizes a broad spectrum of advanced tumors.
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we conceive EMT but unravel molecules bearing
prognostic value. It seems increasingly likely that
maintenance of cell polarity may serve as one of
the final brakes that suppress tumorigenesis.

IMPLICATIONS OF DERAILED
ENDOCYTOSIS TO CANCER THERAPY

In theory, forced removal of endocytosis-defec-
tive oncogenic proteins, such as aberrant forms
of certain receptors for growth factors, might
inhibit tumor progression. This paradigm has
been addressed using inhibitors of the heat
shock protein 90 (HSP90), which stabilizes some
oncogenic receptors at the cell surface, and
one inhibitor, 17-allylamino-17-demethoxygel-
danamycin (17-AAG, tanespimycin) has shown
clinical activity in HER2-positive breast cancer
(Neckers and Workman 2012). Similarly, kinase
inhibitors that can specifically and covalently
bind with HER2 and disassemble the HER2-
HSP90 complex, are able to target HER2 to
degradation by the 26S proteasome, thereby
curtailing the transformed phenotype (Citri et
al. 2002, 2004).

In contrast, monoclonal antibodies, by vir-
tue of their intrinsic bivalence, might accelerate
sorting of surface proteins to degradation in
lysosomes, rather than in proteasomes. It is
notable that recombinant antibodies targeting
specific surface antigens of cancer cells are rap-
idly becoming the mainstay drugs in specific
diseases, such as lymphoma and breast cancer
(Ben-Kasus et al. 2007). Therapeutic antibodies
almost invariably induce endocytosis of their
antigens, and this attribute is already harnessed
as a strategy to deliver cytotoxic payloads into
cancer cells. For example, trastuzumab emtan-
sine (T-DM1) is an antibody-drug conjugate
incorporating the HER2-targeted antitumor
properties of trastuzumab with the cytotoxic
activity of the microtubule-inhibitory agent
DM1. This drug significantly prolonged pro-
gression-free and overall survival of patients
with HER2-positive advanced breast cancer
(Verma et al. 2012). Importantly, the drug is
designed to dissociate within the acidic endo-
somal compartment; hence, it acts as a Trojan
horse that delivers chemotherapy.

Interestingly, combinations of monoclonal
antibodies, each engaging a distinct epitope of
the same antigen, synergistically induce re-
ceptor degradation and correspondingly col-
laborate in tumor inhibition. The underlying
mechanism might comprise enhanced tumor
cytotoxicity mediated by NK cells or macro-
phages that are engaged by the Fc tail of the
antibodies (Spiridon et al. 2002). Alternatively,
synergy might be the result of accelerated deg-
radation of the antigen in lysosomes, a common
consequence of receptor cross-linking (Mell-
man 1996b) as shown for HER2 (Friedman et al.
2005; Ben-Kasus et al. 2009) and EGFR (Peder-
sen et al. 2010; Koefoed et al. 2011). A study
performed with combinations of antibodies
to EGFR concluded that antibody pairs shunt
internalized receptors from recycling to the
degradative pathway (Spangler et al. 2010). Yet
another study concluded that the endocytic
pathway, although involving receptor ubiquiti-
nation, differs from the canonical ligand-in-
duced route of RTK degradation (Ferraro et al.
2013). Notably, a combination of chemothera-
py along with trastuzumab and another an-
tibody to HER2 (pertuzumab), which binds
with a nonoverlapping epitope, significantly
prolonged progression-free survival of HER2-
positive breast cancer patients (Baselga et al.
2012b). Whether or not combinations of epi-
tope-distinct antibodies to other surface anti-
gens required for survival of cancer cells (e.g.,
c-Met and the receptor for insulin-like growth
factor 1) will show similar synergy is an intrigu-
ing question that relates to the yet unclear en-
docytic route taken by immunocomplexes as
well as the immunological differences between
monoclonal and oligoclonal antibodies.

CONCLUDING REMARKS AND
FUTURE CHALLENGES

It seems highly likely that derailed endocytosis
can make major contributions to several hall-
marks of cancer (Hanahan and Weinberg 2011).
These include not only sustained proliferation
of cancer cells, but also enhanced invasiveness
and avoidance of apoptosis. In this vein, the
effects of ROS on receptor endocytosis might
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translate to survival advantages while tumors
undergo radiotherapy, chemotherapy, or angio-
genesis therapy, but only a few studies have ad-
dressed these issues so far. This, along with the
emerging multiplicity of cancer-related alter-
ations of intracellular trafficking, underscore
the absence of a universal model able to inte-
grate the known sorting alterations with the
wealth of currently available information on the
stepwise accumulation of genetic aberrations
during tumor progression. A systems biology
approach to vesicular trafficking might delin-
eate the required overarching model (Zwang
and Yarden 2009). Accordingly, a hubcentric
network controls cargo endocytosis. The typi-
cal hub contains a membrane-anchoring phos-
phoinositide-binding domain, a Rab protein, a
ubiquitin-binding module that recruits ubiqui-
tinated cargo, and machinery enabling homo-
assembly. Scheduled hub transitions, as well as
membrane bending machineries, define points
of commitment to vesicle budding and to uni-
directional trafficking. Thus, to derail traffick-
ing in a balanced way, oncogenic mechanisms
might target Rab proteins as well as ubiquitin
ligases and the overall homeostasis of phospho-
lipids. Especially attractive are 30-phosphatidy-
linositol lipids, because several enzymes in-
volved in phosphatidylinositol metabolism are
mutationally altered in cancer. For example,
PI3K and PTEN, which respectively increase
and decrease intracellular levels of 30 phosphoi-
nositides, display oncogenic aberrations in a
broad spectrum of tumors (Wong et al. 2010).

We propose that mutational effects on phos-
phoinositide lipids alter GTP loading of Rho
and Rab proteins, and thereby finely bias endo-
cytosis of RTKs and integrins in favor of recy-
cling, rather than sorting for intracellular deg-
radation. This is exemplified by the mechanism
that activates Rac1:Rab5-mediated endocytosis
positions Rac1 in endosomes, where it meets
the GTP-exchange factor Tiam1 and later recy-
cles to the plasma membrane in its active, GTP-
loaded form (Palamidessi et al. 2008). A similar
trafficking mechanism that involves Arf6 local-
izes active Cdc42 at the cell leading edge, after
GTP loading occurs within endosomes by the
GEF called bPIX (Osmani et al. 2010). Thus,

future studies will likely describe endosomes
as a nexus that permits oncogenic signals to
tune endocytosis and recycle cargoes to specific
domains of the cell surface. Endosomes already
emerge as important signaling platforms, capa-
ble of controlling the amplitude and duration
of oncogenic signals. Moreover, according to a
recently proposed theory, by assembling alter-
native complexes of endocytic adaptors (e.g.,
Appl1 and SARA), endosomes might allow
cross talk between distinct signaling pathways,
such as the EGFR and the TGF-b pathways (Os-
mani et al. 2010). Endosomal signaling and
cross talk, along with trafficking-dependent ac-
tivation of small GTPases and the putative piv-
otal roles of phosphoinositides, await in-depth
understanding. High-resolution knowledge of
the endosomal sorting-cancer interface may
yet yield trafficking nodes amenable for thera-
peutic interception, but even if not, enhanced
understanding will reveal how even subtle
changes to the endocytic pathway can contrib-
ute disproportionately to the pathophysiology
of cancer cells.
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