
PRIME: A Novel Processing-in-memory Architecture for Neural Network
Computation in ReRAM-based Main Memory

Ping Chi∗, Shuangchen Li∗, Cong Xu†, Tao Zhang‡, Jishen Zhao§, Yongpan Liu¶, Yu Wang¶ and Yuan Xie∗
∗Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA

†HP Labs, Palo Alto, CA 94304, USA; ‡NVIDIA Corporation, Santa Clara, CA 95950, USA
§Department of Computer Engineering, University of California, Santa Cruz, CA 95064, USA

¶Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
∗Email: {pingchi, shuangchenli, yuanxie}@ece.ucsb.edu

Abstract—Processing-in-memory (PIM) is a promising so-
lution to address the “memory wall” challenges for future
computer systems. All proposed PIM architectures put addi-
tional computation logic in or near memory. The emerging
metal-oxide resistive random access memory (ReRAM) has
showed its potential to be used for main memory. Moreover,
with its crossbar array structure, ReRAM can perform matrix-
vector multiplication efficiently, and has been widely studied to
accelerate neural network (NN) applications. In this work, we
propose a novel PIM architecture, called PRIME, to accelerate
NN applications in ReRAM based main memory. In PRIME, a
portion of ReRAM crossbar arrays can be configured as accel-
erators for NN applications or as normal memory for a larger
memory space. We provide concrete microarchitecture and
circuit designs to enable the morphable functions with an in-
significant area overhead. We also design a software/hardware
interface for software developers to implement various NNs
on PRIME. Benefiting from both the PIM architecture and
the efficiency of using ReRAM for NN computation, PRIME
distinguishes itself from all prior work on NN acceleration,
with significant performance improvement and energy saving.
Our experimental results show that, compared with a state-
of-the-art neural processing unit design, PRIME improves
the performance by ∼2360× and the energy consumption by
∼895×, across the evaluated machine learning benchmarks.

Keywords-processing in memory; neural network; resistive
random access memory

I. INTRODUCTION

Conventional computer systems adopt separate processing

(CPUs and GPUs) and data storage components (memory,

flash, and disks). As the volume of data to process has

skyrocketed over the last decade, data movement between

the processing units (PUs) and the memory is becoming

one of the most critical performance and energy bottle-

necks in various computer systems, ranging from cloud

servers to end-user devices. For example, the data transfer

between CPUs and off-chip memory consumes two orders of

magnitude more energy than a floating point operation [1].

Recent progress in processing-in-memory (PIM) techniques

∗Shuangchen and Ping contributed equally to this work.

This work is supported in part by NSF 1461698, 1500848, and 1533933,
and DOE grant DE-SC0013553, and a grant from Qualcomm.

introduce promising solutions to the challenges [2], [3], [4],

[5], by leveraging 3D memory technologies [6] to integrate

computation logic with the memory.

Recent work demonstrated that some emerging non-

volatile memories, such as metal-oxide resistive random

access memory (ReRAM) [7], spin-transfer torque mag-

netic RAM (STT-RAM) [8], and phase change memory

(PCM) [9], have the capability of performing logic and

arithmetic operations beyond data storage. This allows the

memory to serve both computation and memory functions,

promising a radical renovation of the relationship between

computation and memory. Among them, ReRAM can per-

form matrix-vector multiplication efficiently in a crossbar

structure, and has been widely studied to represent synapses

in neural computation [10], [11], [12], [13], [14], [15].

Neural network (NN) and deep learning (DL) have the

potential to provide optimal solutions in various applications

including image/speech recognition and natural language

processing, and are gaining a lot of attention recently.

The state-of-the-art NN and DL algorithms, such as multi-

layer perceptron (MLP) and convolutional neural network

(CNN), require a large memory capacity as the size of NN

increases dramatically (e.g., 1.32GB synaptic weights for

Youtube video object recognition [16]). High-performance

acceleration of NN requires high memory bandwidth since

the PUs are hungry for fetching the synaptic weights [17]. To

address this challenge, recent special-purpose chip designs

have adopted large on-chip memory to store the synaptic

weights. For example, DaDianNao [18] employed a large

on-chip eDRAM for both high bandwidth and data locality;

TrueNorth utilized an SRAM crossbar memory for synapses

in each core [19]. Although those solutions effectively

reduce the transfer of synaptic weights between the PUs and

the off-chip memory, the data movement including input and

output data besides synaptic weights is still a hinderance

to performance improvement and energy saving. Instead

of integrating more on-chip memory, PIM is a promising

solution to tackle this issue by putting the computation logic

into the memory chip, so that NN computation can enjoy the

large memory capacity and sustain high memory bandwidth

via in-memory data communication at the same time.

In this work, we propose a novel PIM architecture for ef-

ficient NN computation built upon ReRAM crossbar arrays,

called PRIME, processing in ReRAM-based main memory.

ReRAM has been previsioned to build the next-generation

main memory [20], and is also a good candidate for PIM

thanks to its large capacity, fast read speed, and computation

capability. In our ReRAM main memory design, a portion of

memory arrays are enabled to serve as NN accelerators be-

sides normal memory. Our circuit, architecture, and software

interface designs allow these ReRAM arrays to dynamically

reconfigure between memory and accelerators, and also to

represent various NNs. The current PRIME design supports

large-scale MLPs and CNNs, which can produce the state-

of-the-art performance on varieties of NN applications, e.g.

top classification accuracy for image recognition tasks. Dis-

tinguished from all prior work on NN acceleration, PRIME

can benefit from both the efficiency of using ReRAM for

NN computation and the efficiency of the PIM architecture

to reduce the data movement overhead, and therefore can

achieve significant performance gain and energy saving. As

no dedicated processor is required, PRIME incurs very small

area overhead. It is also manufacture friendly with low cost,

since it remains as the memory design without requirement

for complex logic integration or 3D stacking.

The contribution of this paper is summarized as follows:

• We propose a ReRAM main memory architecture,

which contains a portion of memory arrays (full func-

tion subarrays) that can be configured as NN accelera-

tors or as normal memory on demand. It is a novel PIM

solution to accelerate NN applications, which enjoys

the advantage of in-memory data movement, and also

the efficiency of ReRAM based computation.

• We design a set of circuits and microarchitecture to

enable the NN computation in memory, and achieve

the goal of low area overhead by careful design, e.g.

reusing the peripheral circuits for both memory and

computation functions.

• With practical assumptions of the technologies of us-

ing ReRAM crossbar arrays for NN computation, we

propose an input and synapse composing scheme to

overcome the precision challenge.

• We develop a software/hardware interface that allows

software developers to configure the full function sub-

arrays to implement various NNs. We optimize NN

mapping during compile time, and exploit the bank-

level parallelism of ReRAM main memory for further

acceleration.

II. BACKGROUND AND RELATED WORK

This session presents the background and related work on

ReRAM basics, NN computation using ReRAM, and PIM.

Top Electrode

Metal Oxide

Bottom Electrode

Voltage

HRS (‘0’)

LRS (‘1’)

SET

RESET

Voltage

Wordline

Cell

(a) (b) (c)
Figure 1. (a) Conceptual view of a ReRAM cell; (b) I-V curve of bipolar
switching; (c) schematic view of a crossbar architecture.

(a) (b)

a1

a2

+ b1
w1,1

w2,1
w1,2

w2,2

w1,1

w2,1

w1,2

w2,2

b1 b2
+ b2

a1

a2

Figure 2. (a) An ANN with one input/output layer; (b) using a ReRAM
crossbar array for neural computation.

A. ReRAM Basics

Resistive random access memory, known as ReRAM,

is a type of non-volatile memory that stores information

by changing cell resistances. The general definition does

not specify the resistive switching material. This work

focuses on a subset of resistive memories, called metal-

oxide ReRAM, which uses metal oxide layers as switching

materials.

Figure 1(a) demonstrates the metal-insulator-metal (MIM)

structure of a ReRAM cell: a top electrode, a bottom elec-

trode, and a metal-oxide layer sandwiched between them [7].

By applying an external voltage across it, a ReRAM cell can

be switched between a high resistance state (HRS) and a low

resistance state (LRS), which are used to represent the logic

“0” and “1”, respectively.

Figure 1(b) shows the I-V characteristics of a typical

bipolar ReRAM cell. Switching a cell from HRS (logic

“0”) to LRS (logic “1”) is a SET operation, and the

reverse process is a RESET operation. To SET the cell, a

positive voltage that can generate sufficient write current

is required. To RESET the cell, a negative voltage with a

proper magnitude is necessary. The reported endurance of

ReRAM is up to 1012 [21], [22], making the lifetime issue

of ReRAM-based memory less concerned than PCM based

main memory whose endurance has been assumed between

106-108 [23].

An area-efficient array organization for ReRAM is cross-

bar structure as shown in Figure 1(c) [24]. There are two

common approaches to improve the density and reduce the

cost of ReRAM: multi-layer crossbar architecture [25], [26],

[27], [28] and multi-level cell (MLC) [29], [30], [31]. In

MLC structure, ReRAM cells can store more than one bit of

information in a single cell with various levels of resistance.

This MLC characteristic can be realized by changing the

resistance of ReRAM cell gradually with finer write control.

Recent work has demonstrated 7-bit MLC ReRAM [32].

Due to crossbar architecture’s high density, ReRAM has

been considered as a cost-efficient replacement of DRAM to

build next-generation main memory [20]. The read latency

of ReRAM can be comparable to that of DRAM while its

write latency is significantly longer than that of DRAM (e.g.
5×). Several architectural techniques were proposed [20] to

improve the write performance, bridging the performance

gap between the optimized ReRAM and DRAM within 10%.

In this work, we adopt a similar performance optimized

design of the ReRAM based main memory [20] .

B. Accelerating NNs in Hardware

Artificial neural networks (ANNs) are a family of machine

learning algorithms inspired by the human brain structure.

Generally, they are presented as network of interconnected

neurons, containing an input layer, an output layer, and

sometimes one or more hidden layers. Figure 2(a) shows

a simple neural network with an input layer of two neurons,

an output layer of two neurons, and no hidden layers. The

output bj is calculated as,

bj = σ(
∑

∀i
ai · wi,j), (1)

where ai are input data, wi,j is synaptic weights, and σ is

a non-linear function, for i = 1, 2, and j = 1, 2.

In the era of big data, machine learning is widely used

to learn from and make predictions on a large amount of

data. With the advent of deep learning, some neural network

algorithms such as convolutional neural networks (CNNs)

and deep neural networks (DNNs) start to show their power

and effectiveness across a wide range of applications [17],

[18]. Researchers have also utilized NNs to accelerate ap-

proximate computing [33], [34], [35].

Prior studies [19], [36], [37] strive to build neuromorphic

systems with CMOS-based neurons and synapses. However,

doing so introduces substantial design challenges due to

the huge area occupied by thousands of transistors used to

implement numerous neurons and synapses. Alternatively,

ReRAM is becoming a promising candidate to build area-

efficient synaptic arrays for NN computation [10], [11], [12],

[13], as it emerges with crossbar architecture. Recently, Pre-

sioso et al. fabricated a 12× 12 ReRAM crossbar prototype

with a fully operational neural network, successfully classi-

fying 3× 3-pixel black/white images into 3 categories [12].

Figure 2(b) shows an example of using a 2 × 2 ReRAM

crossbar array to execute the neural networks in Figure 2(a).

The input data ai is represented by analog input voltages on

the wordlines. The synaptic weights wi,j are programmed

into the cell conductances in the crossbar array. Then the

current flowing to the end of each bitline is viewed as the

result of the matrix-vector multiplication,
∑

i ai ·wi,j . After

sensing the current on each bitline, the neural networks adopt

a non-linear function unit to complete the execution.

Implementing NNs with ReRAM crossbar arrays requires

specialized peripheral circuit design. For example, digital-to-

analog converters (DACs) and analog-to-digital converters

(ADCs) are needed for analog computing. Also, a sigmoid

unit as well as a substraction unit is required, since matrices

with positive and negative weights are implemented as two

separated crossbar arrays.

There are a lot of studies on using ReRAM for NN

computation, from stand-alone accelerator [10], [14], [15],

co-processor [11], to many-core or NoC [38] architecture.

Recently, a full-fledged NN accelerator design based on

ReRAM crossbars have been proposed, named ISAAC [39].

Most prior work exploits ReRAM either as DRAM/flash

replacement [20], [28], [40] or as synapses for NN com-

putation [10], [11], [12], [13], [38]. In this work, PRIME

is a morphable ReRAM based main memory architecture,

where a portion of ReRAM crossbar arrays are enabled

with the NN computation function, referred as full function

subarrays. When NN applications are running, PRIME can

execute them with the full function subarrays to improve

performance or energy efficiency; while no NN applications

are executed, the full function subarrays can be freed to

provide extra memory capacity.

There are also many other studies on accelerating NNs

on the platforms of GPU [16], [41], [42], FPGA [43],

[44], [45] and ASIC [17], [18], [19], [36], [37], [46]. The

DianNao series [17], [18], [46] are good examples of ASIC-

based NN accelerators; furthermore, the first instruction set

architecture for NN accelerators has been proposed, called

DianNaoYu [47]. Distinguished from the existing work on

accelerating NNs in hardware, PRIME proposes a PIM

solution for the first time to our best knowledge. Most prior

work focused on the co-processor architecture, in which data

are accessed from main memory in a conventional way, as

shown in Figure 3(a). Since many NN applications require

high memory bandwidth to fetch large-size input data and

synaptic weights, the data movement between memory and

processor is both time-consuming and energy-consuming.

As reported, DRAM accesses consume 95% of the total

energy in DianNao design [17]. To address this challenge,

some recent work on ASIC put more memory on chip for

synaptic weight storage [18], [19], [36], [37]. However, the

issue still exists due to the transfer of input and output

data. In this work, we propose to accelerate NNs in a PIM

architecture, moving the computing resources to the memory

side by adapting a portion of ReRAM crossbar arrays in

the main memory as NN accelerator. It takes advantage

of the large internal bandwidth of the main memory, and

makes the data movement minimal. Recently, we see a lot

of work that focused on spiking neural networks (SNNs),

e.g. TrueNorth [19], [36], [37]. ReRAM can also implement

SNN [13]. Making PRIME support SNN is our future work.

C. Processing-in-memory (PIM)

PIM is not a new concept, and there has been a lot of work

on it since 1990s, e.g., IRAM [48], [49] and DIVA [50].

Early efforts explored integrating simple ALU [51], vector-

ization [48], SIMD [52], general-purpose processors [53],

and FPGA [54] with DRAM. Unfortunately, the idea of inte-

grating performance-optimized logic with density-optimized

memory aroused a lot of criticism from the cost-sensitive

memory industry [55]. Recently, driven by the data intensive

applications and the 3D-stacking technology, PIM or near

data computing (NDC) is resurgent, with lots of industry

effort (e.g., IBM [56], AMD [4], and Samsung [57]). Recent

efforts [2], [3], [4], [5], [58] decouple logic and memory

designs in different dies, adopting 3D stacked memories with

a logic layer that encapsulates processing units to perform

computation, as shown in Figure 3(b). This architecture de-

sign is compatible with the hybrid memory cube (HMC) [59]

and high bandwidth memory (HBM) [60].

PRIME is a distinct solution from either early or recent

PIM work. Instead of adding logic to memory, PRIME

utilizes the memory arrays themselves for computing, hence

area overhead is very small. The add-on hardware in PRIME

to enable the computation function consist of simple modifi-

cations of the existing memory peripheral circuits, which are

more manufacture friendly than integrating complex logic

into the memory die. Moreover, PRIME does not rely on 3D-

stacking technology, exempt from its high cost and thermal

problems. Also, while previous work focused on database

and graph processing applications [3], [5], PRIME aims at

accelerating NN applications.

Recent work also employs nonvolatile memory technolo-

gies (ReRAM, PCM, and STT-RAM) to build ternary con-

tent addressable memories (TCAMs), which exploits mem-

ory cells to perform associative search operations [61], [62],

[63]. However, to support such search operations, it requires

a redesign of their memory cell structures which makes

the cell sizes larger and inevitably increases the memory

cost. Compared to these TCAM designs, PRIME obviates

memory cell redesign, and can support more sophisticated

computation than TCAMs.

III. PRIME ARCHITECTURE

We propose processing in ReRAM-based main mem-

ory, PRIME, which efficiently accelerates NN computation

by leveraging ReRAM’s computation capability and the

PIM architecture. Figure 3(c) depicts an overview of our

design. While most previous NN acceleration approaches

require additional processing units (PU) (Figure 3(a) and

(b)), PRIME directly leverages ReRAM cells to perform

computation without the need for extra PUs. To achieve this,

as shown in Figure 3(c), PRIME partitions a ReRAM bank

into three regions: memory (Mem) subarrays, full function

(FF) subarrays, and Buffer subarrays.

The Mem subarrays only have data storage capability (the

same as conventional memory subarrays). Their microarchi-

tecture and circuit designs are similar to a recent design

of performance-optimized ReRAM main memory [20]. The

FF subarrays have both computation and data storage ca-

pabilities, and they can operate in two modes. In memory

CPU

Memory

CPU

CPUPU
(a) Processor-Coprocessor Arch.

(b) PIM with 3D integration

(c) PRIME

FF subarrays

Buffer subarray

Mem subarrays

 ReRAM

Memory
PU

Banks

Figure 3. (a) Traditional shared memory based processor-coprocessor
architecture, (b) PIM approach using 3D integration technologies, (c)
PRIME design.

mode, the FF subarrays serve as conventional memory; in

computation mode, they can execute NN computation. There

is a PRIME controller to control the operation and the

reconfiguration of the FF subarrays. The Buffer subarrays

serve as data buffers for the FF subarrays, and we use the

memory subarrays that are closest to the FF subarrays as

Buffer subarrays. They are connected to the FF subarrays

through private data ports, so that buffer accesses do not

consume the bandwidth of the Mem subarrays. While not

being used as data buffers, the Buffer subarrays can also

be used as normal memory. From Figure 3(c), we can find

that for NN computation the FF subarrays enjoy the high

bandwidth of in-memory data movement, and can work in

parallel with CPU, with the help of the Buffer subarrays.

This section describes the details of our microarchitecture

and circuit designs of the FF subarrays, the Buffer subarrays,

and the PRIME controller. These designs are independent of

the technology assumptions for ReRAM based computation.

For generality, we assume that the input data have Pin bits,

the synaptic weights have Pw bits, and the output data have

Po bits. With practical assumptions, the precision of ReRAM

based NN computation is a critical challenge. We discuss

the precision issue and propose a scheme to overcome

it in Section III-D. Finally, more details are given about

implementing NN algorithms with our hardware design.

A. FF Subarray Design

The design goal for FF subarray is to support both storage

and computation with a minimum area overhead. To achieve

this goal, we maximize the reuse of peripheral circuits for

both storage and computation.

1) Microarchitecture and Circuit Design: To enable the

NN computation function in FF subarrays, we modify de-

coders and drivers, column multiplexers (MUX), and sense

amplifiers (SA) as shown in Figure 4.

Decoder and Driver. We add several components in de-

coders and drivers marked as light blue in Figure 4 A .

First, we attach multi-level voltage sources to the wordlines

to provide accurate input voltages. NN computation requires

that all input data are simultaneously fed into the corre-

sponding wordline. Therefore, we add a latch to control the

G
lo

ba
l R

ow
 D

ec
od

er

Global IO Row Buffer D
at

a

A
dr

Bank

FF Subarray

ReRAM
Crossbar

ReRAM
Crossbar

SA

ReRAM
Crossbar

ReRAM
Crossbar

M
em

 Subarray

D Connection

Controller E

A

Sub

Sigmoid

BG
W

L Mat

Buffer Subarray
GWL: Global Word Line, WDD: Wordline
Decoder and Driver, SA: Sense Amplifier,
GDL: Global Data Line, AMP: Amplifier,
SW: Switches, Vol.: Voltage Sources

E
data
flow
contr.

Vol.

Latch

Vread

VwriteWD

SW
en

Col Mux.

0

m
sb

CMD Dec.

Timing Ctrl

G
lo

ba
l D

ec
.

Mat

Mux

Buffer
Subarray

Reg..…..

DLD

0

m
sbCounter

SWVol.
Comp.

Output Reg.
en

IV conv.

C

SA

Reg.

Precision Ctr. ReLU

current
from
negative
array

Data to/from FF

Current from B Max pool

w
in

-c
od

e Reg. 1

Fr
om

 B
uf

 ...

Reg. 4

en

en

en

en

data
path
config.

Cmd Adr

AMP

: add-on hardware

C
A

SA

Ctrl
from

Ctrl
from

Data from
Buffer

Ctrl
from

E

E

E

Ctrl from E Ctrl
 from

E

Ctrl from E

Ctrl from E

col Mux. col Mux.

col Mux. col Mux. B
W

D
D

Vol.Vol. GDL

: mem. data flow
: comp. data flow

W
D

D

W
D

D
W

D
D

Glossary:

Figure 4. The PRIME architecture. Left: bank structure. The blue and red bold lines represent the directions of the data flow for normal memory and for
computation, respectively. Right: functional blocks modified/added in PRIME. (A) Wordline driver with multi-level voltage sources; (B) column multiplexer
with analog subtraction and sigmoid circuitry; (C) reconfigurable SA with counters for multi-level outputs, and added ReLU and 4-1 max pooling function
units; (D) connection between the FF and Buffer subarrays; (E) PRIME controller.

input voltage. The control signals determine the combination

of voltage sources that provide the demanding input voltage.

Second, to drive the analog signals transferring on the

wordlines, we employ a separate current amplifier on each

wordline. Third, rather than two voltage levels used in the

memory mode (for read and write, respectively), NN com-

putation requires 2Pin levels of input voltages. We employ

a multiplexer to switch the voltage driver between memory

and computation modes. Finally, we employ two crossbar

arrays store positive and negative weights respectively, and

allow them to share the same input port.

Column Multiplexer. In order to support NN computation,

we modify the column multiplexers in ReRAM by adding

the components marked in light blue in Figure 4 B .

The modified column multiplexer incorporates two analog

processing units: an analog subtraction unit and a non-

linear threshold (sigmoid) unit [64]. The sigmoid unit can

be bypassed in certain scenarios, e.g. when a large NN is

mapped to multiple crossbar arrays. In addition, in order

to allow FF subarrays to switch bitlines between memory

and computation modes, we attach a multiplexer to each

bitline to control the switch. Since a pair of crossbar arrays

with positive and negative weights require one set of such

peripheral circuits, we only need to modify half of the

column multiplexers. After analog processing, the output

current is sensed by local SAs.

Sense Amplifier. Figure 4 C shows the SA design with the

following modifications as marked in light blue in the figure.

First, NN computation requires SAs to offer much higher

precision than memory does. We adopt a Po-bit (Po≤8)

precision reconfigurable SA design that has been tested

through fabrication [65]. Second, we allow SA’s precision

to be configured as any value between 1-bit and Po-bit,

controlled by the counter as shown in Figure 4 C . The

result is stored in the output registers. Third, we allow low-

precision ReRAM cells to perform NN computation with

a high-precision weight, by developing a precision control

circuit that consists of a register and an adder. Fourth, we

add a hardware unit to support ReLU function, a function in

the convolution layer of CNN. The circuit checks the sign

bit of the result. It outputs zero when the sign bit is negative

and the result itself otherwise. Finally, a circuit to support

4-1 max pooling is included. More details are discussed in

Section III-E.

Buffer Connection. Figure 4 D shows the communication

between the FF subarrays and the Buffer subarrays. We

enable an FF subarray to access any physical location in

a Buffer subarray to accommodate the random memory

access pattern in NN computation (e.g., in the connection

of two convolutional layers). To this end, extra decoders

and multiplexers are employed in the buffer connection unit.

Additionally, we allow the data transfer to bypass the Buffer

subarray in certain scenarios, e.g. when the output of one

mat is exactly the input of another. After bypassing the

Buffer subarrays, we employ a register as an intermediate

data storage.

Benefits of Our Design are two-fold. First, our design

efficiently utilizes the peripheral circuits by sharing them

between memory and computation functions, which signifi-

cantly reduces the area overhead. For example, in a typical

ReRAM-based neuromorphic computing system [10], DACs

and ADCs are used for input and output signal conversions;

in a ReRAM-based memory system, SAs and write drivers

are required for read and write operations. Yet, SAs and

Global Row Buffer

Buffer subarray

Global Row Buffer

Mem Mem
Latch

Sub Sigmod

mLatch

SA

Latch

Sub Sigmod

m

m

SA

SubSigmod SA

SA

Positive
Weight

Negative
Weight

Buffer subarray

SubSigmod

Latchm

(a) (b)

B

C

C

B

A

A

C

A

B
B

C

A

Figure 5. An example of the configurations of FF subarrays. (a)
Computation mode; (b) memory mode.

ADCs serve similar functions, while write drivers and DACs

do similar functions. In PRIME, instead of using both,

we reuse SAs and write drivers to serve ADC and DAC

functions by slightly modifying the circuit design. Second,

we enable the FF subarrays to flexibly and efficiently morph

between memory and computation modes.

2) Morphing Between Two Modes: Figure 5 shows two

FF subarrays that are configured into computation and

memory modes, respectively. The black bold lines in the

figure demonstrate the data flow in each configuration. As

shown in Figure 5(a), in computation mode, the FF subarray

fetches the input data of the NN from the Buffer subarray

into the latch of the wordline decoder and driver. After

the computation in the crossbar arrays that store positive

and negative weights, their output signals are fed into the

subtraction unit, and then the difference signal goes into the

sigmoid unit. The analog output is converted to digital signal

by the SA is written back to the Buffer subarray. As shown

in Figure 5(b), in memory mode, the input comes from the

read/write voltage selection (denoted by an m box), and the

output bypasses the subtraction and sigmoid units.

The morphing between memory and computation modes

involves several steps. Before the FF subarrays switch from

memory mode to computation mode, PRIME migrates the

data stored in the FF subarrays to certain allocated space

in Mem subarrays, and then writes the synaptic weights to

be used by computation into the FF subarrays. When data

preparations are ready, the peripheral circuits are reconfig-

ured by the PRIME controller, and the FF subarrays are

switched to computation mode and can start to execute the

mapped NNs. After completing the computation tasks, the

FF subarrays are switched back to memory mode through a

wrap-up step that reconfigures the peripheral circuits.

B. Buffer Subarrays

The goal of the Buffer subarrays is two-fold. First,

they are used to cache the input and output data for the

FF subarrays. Benefiting from the massive parallelism of

matrix-vector multiplication provided by ReRAM crossbar

structures, the computation itself takes a very short time.

Moreover, the data input and output may be serial, and

their latencies become potential bottlenecks. Therefore, it

is necessary to cache the input and output data. Second, the

FF subarrays can communicate with the Buffer subarrays

directly without the involvement of the CPU, so that the

CPU and the FF subarrays can work in parallel.

We choose to configure the adjacent memory subarray to

the FF subarrays as the Buffer subarray, which is close to

both the FF subarrays and the global row buffer so as to

minimize the delay. We do not utilize the local row buffer

because it is not large enough to serve typical NNs. We do

not implement the buffer with low-latency SRAM due to its

large area and cost overhead.

As described in Section III-A1, the Buffer subarray and

the FF subarrays are connected by the connection unit

which enables the FF subarrays to access any data in the

buffer. To fetch data for the FF subarrays, the data are first

loaded from a Mem subarray to the global row buffer, and

then they are written from the row buffer to the Buffer

subarray. These two steps have to be done in serial due

to the resource conflict, i.e. the global data lines (GDL).

The communication between the Buffer subarray and the FF

subarrays is independent with the communication between

the Mem subarray and the globe row buffer. Therefore,

when PRIME is accelerating NN computation, CPU can still

access the memory and work in parallel. To write the data

from the Buffer subarray to memory, the data go through

the global row buffer to the corresponding Mem subarray.

C. PRIME Controller

Figure 4 E illustrates the PRIME controller that decodes

instructions and provides control signals to all the peripheral

circuits in the FF subarrays. A key role of the controller is

to configure the FF subarrays in memory and computation

modes. Table I lists the basic commands used by the con-

troller. The left four commands generate control signals for

the multiplexers in Figure 4, including the function selection

of each mat among programming synaptic weights, compu-

tation, and memory, and also the input source selection for

computation, either from the Buffer subarray or from the

output of the previous layer. These commands are performed

once during each configuration of the FF subarrays. The

right four commands in Table I control the data movement.

They are applied during the whole computation phase.
Table I

PRIME CONTROLLER COMMANDS

Datapath Configure Data Flow Control
prog/comp/mem [mat adr][0/1/2] fetch [mem adr] to [buf adr]

bypass sigmod [mat adr] [0/1] commit [buf adr] to [mem adr]

bypass SA [mat adr][0/1] load [buf adr] to [FF adr]

input source [mat adr][0/1] store [FF adr] to [buf adr]

D. Overcoming the Precision Challenge

The precision issue is one of the most critical challenges

for ReRAM based NN computation. It contains several

aspects: input precision, synaptic weight (or cell resistance)

precision, output (or analog computation) precision, and

their impacts on the results of NN applications (e.g. the

classification accuracy of image recognition tasks).

Previous work has employed 1-bit to 12-bit synaptic

weights for ReRAM based NN computation [11], [12], [13].

There have been active research going on with improving the

resistance precision of MLC ReRAM cells. With a simple

feedback algorithm, the resistance of a ReRAM device can

be tuned with 1% precision (equivalent to 7-bit precision)

for a single cell and about 3% for the cells in crossbar

arrays [32], [66].

The latest results of the Dot-Product Engine project from

HP Labs reported that, for a 256×256 crossbar array, given

full-precision inputs (e.g. usually 8-bit for image data), 4-

bit synaptic weights can achieve 6-bit output precision, and

6-bit synaptic weights can achieve 7-bit output precision,

when the impacts of noise on the computation precision of

ReRAM crossbar arrays are considered [67].

We evaluated the impacts of input and synaptic weight

precisions on a handwritten digit recognition task us-

ing LeNet-5, a well-known CNN, over the MNIST

database [68]. We adopt the dynamic fixed point data

format [69], and apply it to represent the input data and

synaptic weights of every layer. From the results as shown

in Figure 6, for this NN application, 3-bit dynamic fixed

point input precision and 3-bit dynamic fixed point synaptic

weight precision are adequate to achieve 99% classification

accuracy, causing negligible accuracy loss compared with

the result of floating point data format. The results indicate

that NN algorithms are very robust to the precisions of input

data and synaptic weights.

Our PRIME design can be adapted to different assump-

tions of input precision, synaptic weight precision, and

output precision. According to the state-of-the-art technolo-

gies used in ReRAM based NN computation, one prac-

tical assumption is that: the input voltage have only 3-

bit precision (i.e. 8 voltage levels), and the ReRAM cells

can only represent 4-bit synaptic weights (i.e. 16 resistance

levels), and the target output precision is 6-bit. The data

format we use is dynamic fixed point [69]. To achieve high

computation accuracy with conservative assumptions, we

propose an input and synapse composing scheme, which can

use two 3-bit input signals to compose one 6-bit input signal

and two 4-bit cells to represent one 8-bit synaptic weight.

1) Input and Synapse Composing Scheme: We present

the input and synapse composing algorithm first, and then

present the hardware implementation. Table II lists the

notations.
If the computation in a ReRAM crossbar array has full

accuracy, the result should be

Rfull =

2PN∑

i=1

(

Pin∑

k=1

Iik2
k−1 ·

Pw∑

k=1

W i
k2

k−1), (2)

65

70

75

80

85

90

95

100

2 3 4 5 6 7 8

A
cc

ur
ac

y
(%

)

Weight (cell) bits

Input 1bit Input 2bit Input 3bit Input 4bit

Input 5bit Input 6bit Input 7bit Input 8bit

Figure 6. The precision result.

Table II
NOTATION DESCRIPTION.

Pin, Po, Pw the number of bits for input/output/synaptic weights

PN the number of inputs to a crossbar array is 2PN

Iik , W i
k the kth bit of the ith input signal/synaptic weight

Ihi
k , Ilik the kth bit of HIGH/LOW-bit part of the ith input

Whi
k , Wlik the kth bit of HIGH/LOW-bit part of the ith weight

which has (Pin + Pw + PN)-bit full precision. Since the
target output is Po-bit, we will take the highest Po-bit of
Rfull. Then, the target result is denoted as shifting Rfull to
the right by (Pin + Pw + PN − Po) bits:

Rtarget = Rfull � (Pin + Pw + PN − Po). (3)

Now each input signal and synaptic weight are composed of
two parts: high-bit part and low-bit part. We have,

input:

Pin∑

k=1

Iik2
k−1 =

Pin/2∑

k=1

(Ihi
k2

k−1 · 2Pin/2 + Ilik2
k−1) (4)

weight:

Pw∑

k=1

W i
k2

k−1 =

Pw/2∑

k=1

(Whi
k2

k−1 · 2Pw/2 +Wlik2
k−1). (5)

Then, Rfull will contain four parts (i.e., HH-part, HL-part,
LH-part, and LL-part),

Rfull =

2PN∑

i=1

{ 2
Pw+Pin

2 ·
Pin/2∑

k=1

Ihi
k2

k−1
Pw/2∑

k=1

Whi
k2

k−1

HH−part

+ 2
Pw
2 ·

Pin/2∑

k=1

Ilik2
k−1

Pw/2∑

k=1

Whi
k2

k−1

HL−part

(6)

+ 2
Pin
2 ·

Pin/2∑

k=1

Ihi
k2

k−1
Pw/2∑

k=1

Wlik2
k−1

LH−part

+

Pin/2∑

k=1

Ilik2
k−1

Pw/2∑

k=1

Wlik2
k−1

LL−part

}.

(7)

Here, we rewrite Rfull as

Rfull = 2
Pw+Pin

2 ·RHH
full + 2

Pw
2 ·RHL

full + 2
Pin
2 ·RLH

full +RLL
full. (8)

We can also denote Rtarget with four parts:

Rtarget = RHH
tar +RHL

tar +RLH
tar +RLL

tar . (9)

In equation (8), if the output of each Rfull part is only Po-bit,

then,

• RHH
tar : take all the Po bits of RHH

full result

• RHL
tar : take the highest Po − Pin

2 bits of RHL
full result

• RLH
tar : take the highest Po − Pw

2 bits of RLH
full result

• RLL
tar : take the highest Po − Pin+Pw

2 bits of RLL
full.

According to our assumptions, we have Pin = 6 (com-

posed of two 3-bit signals), Pw = 8 (composed of two

4-bit cells), and Pout = 6 (enabled by 6-bit precision

reconfigurable sense amplifiers). The target result should be

the summation of three components: all the 6 bits of RHH
full

output, the highest 3 bits of RHL
full output, and the highest 2

bits of RLH
tar output.

To implement synapse weight composing, Pin is loaded

to the latch in the WL driver as shown in Figure 4 A .

According to the control signal, the high-bit and low-bit

parts of the input are fed to the corresponding crossbar

array sequentially. To implement synapse composing, the

high-bit and low-bit parts of the synaptic weights are stored

in adjacent bitlines of the corresponding crossbar array. As

shown in Equation (9), Rtarget consists of four components.

They are calculated one by one, and their results are ac-

cumulated with the adder in Figure 4 C . The right shift

operation, i.e. taking the highest several bits of a result,

can be implemented by the reconfigurable SA. To take the

highest n-bit of a result, we simply configure the SA as an

n-bit SA.

E. Implementing NN Algorithms

MLP/Fully-connected Layer: Matrix-vector Multiplica-
tion. Matrix-vector multiplication is one of the most

important primitives in NN algorithms, as shown in Figure 2

and Equation (1). The ReRAM crossbar arrays are used

to implement it: the weight matrix is pre-programmed in

ReRAM cells; the input vector is the voltages on the

wordlines driven by the drivers (as shown in Figure 4 A);

the output currents are accumulated at the bitlines. The

synaptic weight matrix is separated into two matrices: one

storing the positive weights and the other storing the negative

weights. They are programmed into two crossbar arrays. A

subtraction unit (as shown in Figure 4 B) is used to subtract

the result of the negative part from that of the positive part.

MLP/Fully-connected Layer: Activation Function. Our

circuit design supports two activation functions: sigmoid

and ReLU. Sigmoid is implemented by the sigmoid unit in

Figure 4 B , and ReLU is implemented by the ReLU unit

in Figure 4 C . These two units can be configured to bypass

in some scenarios.

Convolution Layer. The computation of the convolution

layer is described as follows,

f out
i = max(

nin∑

j=1

f in
j ⊗ gi,j + bi, 0), 1 ≤ i ≤ nout, (10)

where f in
j is the j-th input feature map, and f out

i is the i-th
output feature map, gi,j is the convolution kernel for f in

j and

f out
i , bi is the bias term, and nin and nout are the numbers

of the input and output feature maps, respectively.

To implement the summation of nin convolution opera-

tions (f in
j ⊗ gi,j) plus bi, all the elements of j convolution

kernels gi,j are pre-programmed in the ReRAM cells of one

BL or more BLs if they cannot fit in one, and the elements

of f in
j are performed as input voltages. We also write bi in

ReRAM cells, and regard the corresponding input as ”1”.

Each BL will output the whole or part of the convolution

result. If more BLs are used, it takes one more step to

achieve the final result. Next, the max(x, 0) function is

executed by the ReLU logic in Figure 4 C .

Pooling Layer. To implement max pooling function, we

adopt 4:1 max pooling hardware in Figure 4 C , which

is able to support n:1 max pooling with multiple steps for

n > 4. For 4:1 max pooling, first, four inputs {ai} are

stored in the registers, i = 1, 2, 3, 4; second, we execute

the dot products of {ai} and six sets of weights [1,-

1,0,0], [1,0,-1,0], [1,0,0,-1], [0,1,-1,0], [0,1,0,-1], [0,0,1,-1]

by using ReRAM to obtain the results of (ai − aj), i �= j;

next, the signs of their results are stored in the Winner

Code register; finally, according to the code, the hardware

determines the maximum and outputs it. Mean pooling is

easier to implement than max pooling, because it can be

done with ReRAM and does not require extra hardware.

To perform n:1 mean pooling, we simply pre-program the

weights [1/n, · · · , 1/n] in ReRAM cells, and execute the

dot product of the inputs and the weights to obtain the mean

value of n inputs.

Local Response Normalization (LRN) Layer. Currently,

PRIME does not support LRN acceleration. We did not add

the hardware for LRN, because state-of-the-art CNNs do

not contain LRN layers [70]. When LRN layers are applied,

PRIME requires the help of CPU for LRN computation.

IV. SYSTEM-LEVEL DESIGN

In this section, we present the system-level design of

PRIME. The software-hardware interface framework is de-

scribed. Then, we focus on the optimization of NN mapping

and data allocation during compile time. Next, we introduce

the operating system (OS) support for switching FF subar-

rays between memory and computation modes at run time.

A. Software-Hardware Interface

Figure 7 shows the stack of PRIME to support NN

programming, which allows developers to easily configure

the FF subarrays for NN applications1. From software pro-

gramming to hardware execution, there are three stages:

programming (coding), compiling (code optimization), and

code execution. In the programming stage, PRIME provides

application programming interfaces (APIs) so that they allow

developers to: 1) map the topology of the NN to the FF

subarrays, Map Topology, 2) program the synaptic weights

1Due to the space limit, we only depict the key steps at high level while
the design details of the OS kernel, compiler, and tool chains are left as
engineering work.

Target Code
Segment

Offline Training

Stage 1: Program

NN param. file

Opt. I: NN Map
Opt. II: Data Place

Map_Topology ();
Program_Weight ();
Config_Datapath ();
Run(input_data);
Post_Proc();

Modified Code:

PRIME

Stage 3: ExecuteStage 2: Compile

Controller Mat …

ReRAM

FF Subarray

 Synaptic Weights Mapping

 Datapath Config (Table 2 left)

 Data Flow Ctrl (Table 2 right)

Figure 7. The software perspective of PRIME: from source code to execution.

into mats, Program Weight, 3) configure the data paths of

the FF subarrays, Config Datapath, 4) run computation,

Run, and 5) post-process the result, Post Proc. In our work,

the training of NN is done off-line so that the inputs of each

API are already known (NN param.file). Prior work explored

to implement training with ReRAM crossbar arrays [71],

[72], [73], [74], [75], [12], and we plan to further enhance

PRIME with the training capability in future work.

In the compiling stage, the NN mapping to the FF subar-

rays and the input data allocation are optimized (as described

in Section IV-B). The output of compiling is the metadata

for synaptic weights mapping, data path configuration, and

execution commands with data dependency and flow control.

The metadata is also the input for the execution stage. In

the execution stage, PRIME controller writes the synaptic

weights to the mapped addresses in the FF subarrays; then

it (re-)configures the peripheral circuits according to the

Datapath Configure commands (Table I left) to set up the

data paths for computation; and finally, it executes Data
Flow Control commands (Table I right) to manage data

movement into or out of the FF subarrays at runtime.

B. Compile Time Optimization

1) NN Mapping Optimization: The mapping of the NN

topology to the physical ReRAM cells is optimized during

compile time. For different scales of NNs, we have different

optimizations.2

Small-Scale NN: Replication. When an NN can be mapped

to a single FF mat, it is small-scale. Although we can simply

map a small-scale NN to some cells in one mat, the other

cells in this mat may be wasted. Moreover, the speedup for

very small NNs is not obvious, because the latency of the

peripheral circuits may overwhelm the latency of matrix-

vector multiplication on ReRAM cells. Our optimization is

to replicate the small NN to different independent portions

of the mat. For example, to implement a 128 − 1 NN,

we duplicate it and map a 256 − 2 NN to the target mat.

This optimization can also be applied to convolution layers.

Furthermore, if there is another FF mat available, we can

also duplicate the mapping to the second mat, and then the

two mats can work simultaneously, as long as the Buffer

subarray has enough bandwidth.

2In our technical report [76], we provide a detailed NN mapping example:
how to map CNN-1 in Table III to PRIME.

Medium-Scale NN: Split-Merge. When an NN cannot be

mapped to a single FF mat, but can fit to the FF subarrays of

one bank, it is medium-scale. During the mapping at compile

time, a medium-scale NN has to be split into small-scale

NNs, and then their results are merged. For example, to im-

plement a 512−512 NN on PRIME with 256−256 mats, it is

split into four 256−256 parts ([M1,1,M1,2;M2,1,M2,2]) and

mapped to four different mats. After they finish computation,

the results of M1,1 and M2,1 are added to get the first 256

elements of the final result, and the sum of the results of

M1,2 and M2,2 forms the second 256 elements of the final

result.

Large-Scale NN: Inter-Bank Communication. A large-

scale NN is one NN that cannot be mapped to the FF

subarrays in a single bank. Intuitively, we can divide it

into several medium-scale trunks and map each trunk to

the same bank serially in several stages. This naive solution

requires reprogramming the FF subarrays at every stage,

and the latency overhead of reprogramming may offset the

speedup. Alternatively, PRIME allows to use multiple banks

to implement a large-scale NN. These banks can transfer

data to each other and run in a pipelined fashion to improve

the throughput. Like prior work [77], the inter-bank data

movement is implemented by exploiting the internal data

bus shared by all the banks in a chip. PRIME controller

manages the inter-bank communication, and can handle

arbitrary network connections. If all the banks are used

to implement a single NN, PRIME can handle a maximal

NN with ∼2.7×108 synapses, which is larger than the

largest NN that have been mapped to the existing NPUs

(TrueNorth [36], 1.4×107 synapses). In Section V, we

implement an extremely large CNN on PRIME, VGG-D [70]

which has 1.4×108 synapses.

2) Bank-level Parallelism and Data Placement: Since

FF subarrays reside in every bank, PRIME intrinsically

inherits bank-level parallelism to speed up computation. For

example, for a small-scale or medium-scale NN, since it

can be fitted into one bank, the FF subarrays in all the

banks can be configured the same and run in parallel. If

the FF subarrays in each bank is regarded as an NPU,

PRIME contains 64 NPUs in total (8 banks×8 chips) so that

64 images can be processed in parallel. To take advantage

of the bank-level parallelism, the OS is required to place

one image in each bank and to evenly distribute images to

all the banks. As current page placement strategies expose

memory latency or bandwidth information to the OS [78],

[79], PRIME exposes the bank ID information to the OS, so

that each image can be mapped to a single bank. For large-

scale NNs, they can still benefit from bank-level parallelism

as long as we can map one replica or more to the spare

banks.

C. Run Time Optimization

When FF subarrays are configured for NN applications,

the memory space is reserved and supervised by the OS

so that it is invisible to other user applications. However,

during the runtime, if none or few of their crossbar ar-

rays are used for computation, and the page miss rate

is higher than the predefined threshold (which indicates

the memory capacity is insufficient), the OS is able to

release the reserved memory addresses as normal memory.

It was observed that the memory requirement varies among

workloads, and prior work has proposed to dynamically

adjust the memory capacity by switching between SLC and

MLC modes in PCM-based memory [80]. The page miss rate

curve can be tracked dynamically by using either hardware

or software approaches [81]. In our design, the granularity

to flexibly configure a range of memory addresses for

either computation or memory is crossbar array (mat): when

an array is configured for computation, it stores multi-bit

synaptic weights; when an array is used as normal memory,

it stores data as single-bit cells. The OS works with the

memory management unit (MMU) to keep all the mapping

information of the FF subarrays, and decides when and how

much reserved memory space should be released, based on

the combination of the page miss rate and the utilization of

the FF subarrays for computation.

V. EVALUATION

In this section, we evaluate our PRIME design. We first

describe the experiment setup, and then present the perfor-

mance and energy results and estimate the area overhead.

A. Experiment Setup

Benchmark. The benchmarks we use (MlBench) com-

prise six NN designs for machine learning applications, as

listed in Table III. CNN-1 and CNN-2 are two CNNs, and

MLP-S/M/L are three multilayer perceptrons (MLPs) with

different network scales: small, medium, and large. Those

five NNs are evaluated on the widely used MNIST database

of handwritten digits [68]. The sixth NN, VGG-D, is well

known for ImageNet ILSVRC[70]. It is an extremely large

CNN, containing 16 weight layers and 1.4×108 synapses,

and requiring ∼ 1.6× 1010 operations.

PRIME Configurations. There are 2 FF subarrays and

1 Buffer subarray per bank (totally 64 subarrays). In FF

subarrays, for each mat, there are 256×256 ReRAM cells

and eight 6-bit reconfigurable SAs; for each ReRAM cell, we

assume 4-bit MLC for computation while SLC for memory;

Table III
THE BENCHMARKS AND TOPOLOGIES.

MlBench MLP-S 784-500-250-10

CNN-1 conv5x5-pool-720-70-10 MLP-M 784-1000-500-250-10

CNN-2 conv7x10-pool-1210-120-10 MLP-L 784-1500-1000-500-10

VGG-D

conv3x64-conv3x64-pool-conv3x128-conv3x128-pool

conv3x256-conv3x256-conv3x256-pool-conv3x512

conv3x512-conv3x512-pool-conv3x512-conv3x512

conv3x512-pool-25088-4096-4096-1000

Table IV
CONFIGURATIONS OF CPU AND MEMORY.

Processor 4 cores; 3GHz; Out-of-order

L1 I&D cache Private; 32KB; 4-way; 2 cycles access;

L2 cache Private; 2MB; 8-way; 10 cycles access;

ReRAM-based
Main Memory

16GB ReRAM; 533MHz IO bus;

8 chips/rank; 8 banks/chip;

tRCD-tCL-tRP-tWR 22.5-9.8-0.5-41.4 (ns)

Table V
THE CONFIGURATIONS OF COMPARATIVES.

Description Data path Buffer

pNPU-co
Parallel NPU [17] 16×16 multiplier 2KB in/out

as co-processor 256-1 adder tree 32KB weight

pNPU-pim PIM version of parallel NPU, 3D stacked to each bank

the input voltage has 8 levels (3-bit) for computation while

2 levels (1-bit) for memory. With our input and synapse

composing scheme, for computation, the input and output

are 6-bit dynamic fixed point, and the weights are 8-bit.

Methodology. We compare PRIME with several counter-

parts. The baseline is a CPU-only solution. The configu-

rations of CPU and ReRAM main memory are shown in

Table IV, including key memory timing parameters for sim-

ulation. We also evaluate two different NPU solutions: using

a complex parallel NPU [17] as a co-processor (pNPU-co),

and using the NPU as a PIM-processor through 3D stacking

(pNPU-pim). The configurations of these comparatives are

described in Table V.

We model the above NPU designs using Synopsys Design

Compiler and PrimeTime with 65nm TSMC CMOS library.

We also model ReRAM main memory and our PRIME

system with modified NVSim [82], CACTI-3DD [83] and

CACTI-IO [84]. We adopt Pt/TiO2-x/Pt devices [66] with

Ron/Roff = 1kΩ/20kΩ and 2V SET/RESET voltage. The

FF subarray is modeled by heavily modified NVSim, ac-

cording to the peripheral circuit modifications, i.e., write

driver [85], sigmoid [64], and sense amplifier [65] cir-

cuits. We built a trace-based in-house simulator to evaluate

different systems, including CPU-only, PRIME, NPU co-

processor, and NPU PIM-processor.

B. Performance Results

The performance results for MlBench are presented in

Figure 8. MlBench benchmarks use large NNs and require

high memory bandwidth, and therefore they can benefit

from PIM. To demonstrate the PIM advantages, we evaluate

8.
2

6.
0

4.
0 5.
5 8.
5

1.
7 5.

0

42
.4

33
.3 55

.1 88
.4 14

7.
5

8.
5

45
.3

27
16

21
29 35

27 56
58 94
40

54
5 28

9951
01

58
24

17
66

5

44
04

3

73
23

7

15
96

11
80

2

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmean

Sp
ee

du
p

N
or

m
. t

o
C

PU

222

pNPU-co pNPU-pim-x1 pNPU-pim-x64 PRIME

Figure 8. The performance speedups (vs. CPU).

0%

10%

20%

30%

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E
CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

La
te

nc
y

N
or

m
. t

o
pN

PU
-c

o Compute + Buffer Memory
100%

Figure 9. The execution time breakdown (vs. pNPU-co).

two pNPU-pim solutions: pNPU-pim-x1 is a PIM-processor

with a single parallel NPU stacked on top of memory;

and pNPU-pim-x64 with 64 NPUs, for comparison with

PRIME which takes advantages of bank-level parallelism

(64 banks). By comparing the speedups of pNPU-co and

pNPU-pim-x1, we find that the PIM solution has a 9.1×
speedup on average over a co-processor solution. Among

all the solutions, PRIME achieves the highest speedup over

the CPU-only solution, about 4.1× of pNPU-pim-x64’s.

PRIME achieves a smaller speedup in VGG-D than other

benchmarks, because it has to map the extremely large VGG-
D across 8 chips where the data communication between

banks/chips is costly. The performance advantage of PRIME

over the 3D-stacking PIM solution (pNPU-pim-x64) for NN

applications comes from the efficiency of using ReRAM for

NN computation, because the synaptic weights have already

been pre-programmed in ReRAM cells and do not require

data fetches from the main memory during computation.

In our performance and energy evaluations of PRIME, we

do not include the latency and energy consumption of

configuring ReRAM for computation, because we assume

that once the configuration is done, the NNs will be executed

for tens of thousands times to process different input data.

Figure 9 presents the breakdown of the execution time

normalized to pNPU-co. To clearly show the breakdown, we

evaluate the results of pNPU-pim with one NPU, and PRIME

without leveraging bank parallelism for computation. The

execution time is divided into two parts, computation and

memory access. The computation part also includes the time

spent on the buffers of NPUs or the Buffer subarrays of

PRIME in managing data movement. We find that pNPU-

pim reduces the memory access time a lot, and PRIME

further reduces it to zero. Zero memory access time does not

imply that there is no memory access, but it means that the

memory access time can be hidden by the Buffer subarrays.

1.
2

7.
3 9.
4 12
.6 19
.3

16
5.

9

12
.1

1.
8

11
.2 56

.1

79
.0 12
4.

6 18
69

.0

52
.633

5

38
01 11

74
4

23
92

2

32
54

8

13
89

84

10
83

4

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG gmeanEn
er

gy
 S

av
e

N
or

m
. t

o
C

PU

pNPU-co pNPU-pim-x64 PRIME

Figure 10. The energy saving results (vs. CPU).

0%

25%

50%

75%

100%

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

pN
PU

-c
o

pN
PU

-p
im

PR
IM

E

CNN-1 CNN-2 MLP-S MLP-M MLP-L VGG-D

En
er

gy
 N

or
m

. t
o

pN
PU

-c
o

Compute Buffer Memory

Figure 11. The energy breakdown (vs. pNPU-co).

C. Energy Results

The energy saving results for MlBench are presented in

Figure 10. Figure 10 does not show the results of pNPU-pim-

x1, because they are the same with those of pNPU-pim-x64.

From Figure 10, PRIME shows its superior energy-efficiency

to other solutions. pNPU-pim-x64 is several times more

energy efficient than pNPU-co, because the PIM architecture

reduces memory accesses and saves energy. The energy

advantage of PRIME over the 3D-stacking PIM solution

(pNPU-pim-x64) for NN applications comes from the energy

efficiency of using ReRAM for NN computation.

Figure 11 provides the breakdown of the energy consump-

tion normalized to pNPU-co. The total energy consumptions

are divided into three parts, computation energy, buffer en-

ergy, and memory energy. From Figure 11, pNPU-pim-x64

consumes almost the same energy in computation and buffer

with pNUP-co, but saves the memory energy by 93.9% on

average by decreasing the memory accesses and reducing

memory bus and I/O energy. PRIME reduces all the three

parts of energy consumption significantly. For computation,

ReRAM based analog computing is very energy-efficient.

Moreover, since each ReRAM mat can store 256 × 256
synaptic weights, the cache and memory accesses to fetch

the synaptic weights are eliminated. Furthermore, since each

ReRAM mat can execute as large as a 256−256 NN at one

time, PRIME also saves a lot of buffer and memory accesses

to the temporary data. From Figure 11, CNN benchmarks

consume more energy in buffer and less energy in memory

than MLP benchmarks. The reason is that the convolution

layers and pooling layers of CNN usually have a small

number of input data, synaptic weights, and output data,

and buffers are effective to reduce memory accesses.

6%
11%

15%

8%

23%

29%

8%

60%
1

decoder (& mux)
drive (WL, BL)
output (SA, etc)
misc (precharge, etc)
Add-on: drivers
Add-on: sigmod, SA, etc
Add-on: contrl, etc

Figure 12. Area Overhead of PRIME.

D. Area Overhead

Given two FF subarrays and one Buffer subarray per

bank (64 subarrays in total), PRIME only incurs 5.76%

area overhead. The choice of the number of FF subarrays

is a tradeoff between peak GOPS and area overhead. Our

experimental results on Mlbench (except VGG-D) show

that the utilities of FF subarrays are 39.8% and 75.9%

on average before and after replication, respectively. For

VGG-D, the utilities of FF subarrays are 53.9% and 73.6%

before and after replication, respectively. Figure 12 shows

the breakdown of the area overhead in a mat of an FF

subarray. There is 60% area increase to support computation:

the added driver takes 23%, the subtraction and sigmoid

circuits take 29%, and the control, the multiplexer, and etc.

cost 8%.

VI. CONCLUSION

This paper proposed a novel processing in ReRAM-based

main memory design, PRIME, which substantially improves

the performance and energy efficiency for neural network

(NN) applications, benefiting from both the PIM architecture

and the efficiency of ReRAM based NN computation. In

PRIME, part of the ReRAM memory arrays are enabled with

NN computation capability. They can either perform com-

putation to accelerate NN applications or serve as memory

to provide a larger working memory space. We present our

designs from circuit-level to system-level. With circuit reuse,

PRIME incurs an insignificant area overhead to the original

ReRAM chips. The experimental results show that, PRIME

can achieves a high speedup and significant energy saving

for various NN applications using MLP and CNN.

REFERENCES

[1] S. W. Keckler et al., “GPUs and the future of parallel
computing,” IEEE Micro, vol. 31, no. 5, pp. 7–17, 2011.

[2] B. Akin et al., “Data reorganization in memory using 3D-
stacked DRAM,” in Proc. ISCA, 2015.

[3] J. Ahn et al., “A scalable processing-in-memory accelerator
for parallel graph processing,” in Proc. ISCA, 2015.

[4] D. Zhang et al., “TOP-PIM: Throughput-oriented pro-
grammable processing in memory,” in Proc. HPDC, 2014.

[5] S. H. Pugsley et al., “NDC: Analyzing the impact of 3D-
stacked memory+ logic devices on mapreduce workloads,” in
Proc. ISPASS, 2014.

[6] J. T. Pawlowski, “Hybrid memory cube: breakthrough DRAM
performance with a fundamentally re-architected DRAM sub-
system,,” in Proc. of Hot Chips Symposium, 2011.

[7] H.-S. Wong et al., “Metal-oxide RRAM,” Proc. of the IEEE,
vol. 100, no. 6, pp. 1951–1970, 2012.

[8] A. Vincent et al., “Spin-transfer torque magnetic memory as
a stochastic memristive synapse,” in Proc. ISCAS, 2014.

[9] G. Burr et al., “Experimental demonstration and tolerancing
of a large-scale neural network (165,000 synapses), using
phase-change memory as the synaptic weight element,” in
Proc. IEDM, 2014.

[10] M. Hu et al., “Hardware realization of BSB recall function
using memristor crossbar arrays,” in Proc. DAC, 2012.

[11] B. Li et al., “Memristor-based approximated computation,” in
Proc. ISLPED, 2013.

[12] M. Prezioso et al., “Training and operation of an integrated
neuromorphic network based on metal-oxide memristors,”
Nature, vol. 521, no. 7550, pp. 61–64, 2015.

[13] Y. Kim et al., “A reconfigurable digital neuromorphic pro-
cessor with memristive synaptic crossbar for cognitive com-
puting,” J. Emerg. Technol. Comput. Syst., vol. 11, no. 4,
pp. 38:1–38:25, 2015.

[14] Z. Chen et al., “Optimized learning scheme for grayscale
image recognition in a RRAM based analog neuromorphic
system,” in Proc. IEDM, 2015.

[15] G. W. Burr et al., “Large-scale neural networks imple-
mented with non-volatile memory as the synaptic weight
element: Comparative performance analysis (accuracy, speed,
and power),” in Proc. IEDM, 2015.

[16] A. Coates et al., “Deep learning with COTS HPC systems,”
in Proc. ICML, 2013.

[17] T. Chen et al., “DianNao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in Proc. ASP-
LOS, 2014.

[18] Y. Chen et al., “DaDianNao: A machine-learning supercom-
puter,” in Proc. MICRO, 2014.

[19] P. Merolla et al., “A digital neurosynaptic core using embed-
ded crossbar memory with 45pJ per spike in 45nm,” in Proc.
CICC, 2011.

[20] C. Xu et al., “Overcoming the challenges of crossbar resistive
memory architectures,” in Proc. HPCA, 2015.

[21] M.-J. Lee et al., “A fast, high-endurance and scalable non-
volatile memory device made from asymmetric Ta2O5-
x/TaO2-x bilayer structures,” Nature Materials, vol. 10, no. 8,
pp. 625–630, 2011.

[22] C.-W. Hsu et al., “Self-rectifying bipolar TaOx/TiO2 RRAM
with superior endurance over 1012 cycles for 3D high-density
storage-class memory,” in Proc. VLSIT, 2013.

[23] M. K. Qureshi et al., “Enhancing lifetime and security of
PCM-based main memory with Start-Gap wear leveling,” in
Proc. MICRO, 2009.

[24] D. Niu et al., “Design trade-offs for high density cross-point
resistive memory,” in Proc. ISLPED, 2012.

[25] A. Kawahara et al., “An 8Mb multi-layered cross-point
ReRAM macro with 443MB/s write throughput,” in Proc.
ISSCC, 2012.

[26] T. Y. Liu et al., “A 130.7mm2 2-layer 32Gb ReRAM memory
device in 24nm technology,” in Proc. ISSCC, 2013.

[27] S. Yu et al., “3D vertical RRAM - scaling limit analysis and
demonstration of 3D array operation,” in Proc. VLSIT, 2013.

[28] C. Xu et al., “Architecting 3D vertical resistive memory for
next-generation storage systems,” in Proc. ICCAD, 2014.

[29] S. Yu et al., “Investigating the switching dynamics and
multilevel capability of bipolar metal oxide resistive switching
memory,” Applied Physics Letters, vol. 98, p. 103514, 2011.

[30] M.-C. Wu et al., “A study on low-power, nanosecond opera-
tion and multilevel bipolar resistance switching in ti/zro2/pt
nonvolatile memory with 1t1r architecture,” Semiconductor
Science and Technology, vol. 27, p. 065010, 2012.

[31] L. Zhang et al., “SpongeDirectory: Flexible sparse directories
utilizing multi-level memristors,” in Proc. PACT, 2014.

[32] F. Alibart et al., “High precision tuning of state for memristive
devices by adaptable variation-tolerant algorithm,” Nanotech-
nology, vol. 23, no. 7, p. 075201, 2012.

[33] H. Esmaeilzadeh et al., “Neural acceleration for general-
purpose approximate programs,” in Proc. MICRO, 2012.

[34] R. St. Amant et al., “General-purpose code acceleration with
limited-precision analog computation,” in Proc. ISCA, 2014.

[35] T. Moreau et al., “SNNAP: Approximate computing on
programmable socs via neural acceleration,” in Proc. HPCA,
2015.

[36] S. K. Esser et al., “Cognitive computing systems: Algorithms
and applications for networks of neurosynaptic cores,” in
Proc. IJCNN, 2013.

[37] J. Seo et al., “A 45nm CMOS neuromorphic chip with
a scalable architecture for learning in networks of spiking
neurons,” in Proc. CICC, 2011.

[38] T. M. Taha et al., “Exploring the design space of specialized
multicore neural processors,” in Proc. IJCNN, 2013.

[39] A. Shafiee et al., “ISAAC: A convolutional neural network
accelerator with in-situ analog arithmetic in crossbars,” in
Proc. ISCA, 2016.

[40] M. Jung et al., “Design of a large-scale storage-class RRAM
system,” in Proc. ICS, 2013.

[41] D. C. Cireşan et al., “Flexible, high performance convo-
lutional neural networks for image classification,” in Proc.
IJCAI, 2011.

[42] J. Schmidhuber, “Multi-column deep neural networks for
image classification,” in Proc. CVPR, 2012.

[43] S. Sahin et al., “Neural network implementation in hardware
using FPGAs,” in Neural Information Processing, vol. 4234,
pp. 1105–1112, 2006.

[44] C. Farabet et al., “Cnp: An FPGA-based processor for con-
volutional networks,” in Proc. FPL, 2009.

[45] J.-Y. Kim et al., “A 201.4 GOPS 496 mW real-time multi-
object recognition processor with bio-inspired neural percep-
tion engine,” JSSC, vol. 45, no. 1, pp. 32–45, 2010.

[46] D. Liu et al., “Pudiannao: A polyvalent machine learning
accelerator,” in Proc. ASPLOS, 2015.

[47] S. Liu et al., “An instruction set architecture for neural
networks,” in Proc. ISCA, 2016.

[48] C. Kozyrakis et al., “Scalable processors in the billion-
transistor era: IRAM,” Computer, vol. 30, no. 9, pp. 75–78,
1997.

[49] D. Patterson et al., “Intelligent ram (iram): The industrial
setting, applications, and architectures,” in Proc. ICCD, 1997.

[50] J. Draper et al., “The architecture of the DIVA processing-
in-memory chip,” in Proc. ICS, 2002.

[51] M. Gokhale et al., “Processing in memory: The terasys
massively parallel PIM array,” Computer, vol. 28, no. 4,
pp. 23–31, 1995.

[52] D. Elliott et al., “Computational RAM: The case for SIMD
computing in memory,” in Workshop on Mixing Logic and
DRAM at ISCA, 1997.

[53] T. Yamauchi et al., “A single chip multiprocessor integrated
with DRAM,” in Workshop on Mixing Logic and DRAM at
ISCA, 1997.

[54] M. Oskin et al., “Active pages: a computation model for
intelligent memory,” in Proc. ISCA, 1998.

[55] R. Balasubramonian et al., “Near-data processing: Insights
from a micro-46 workshop,” Micro, IEEE, vol. 34, no. 4,
pp. 36–42, 2014.

[56] R. Nair et al., “Active memory cube: A processing-in-memory
architecture for exascale systems,” IBM Journal of Research
and Development, vol. 59, no. 2/3, pp. 17:1–17:14, 2015.

[57] Z. Guz et al., “Real-time analytics as the killer application
for processing-in-memory,” in Proc. WoNDP, 2014.

[58] N. S. Mirzadeh et al., “Sort vs. hash join revisited for near-
memory execution,” in Proc. ASBD, 2015.

[59] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM
architecture increases density and performance,” in Proc.
VLSIT, 2012.

[60] D. U. Lee et al., “A 1.2V 8Gb 8-channel 128GB/s high-
bandwidth memory (HBM) stacked DRAM with effective
microbump I/O test methods using 29nm process and TSV,”
in Proc. ISSCC, 2014.

[61] F. Alibart et al., “Hybrid CMOS/nanodevice circuits for high
throughput pattern matching applications,” in Proc. AHS,
2011.

[62] Q. Guo et al., “A resistive TCAM accelerator for data-
intensive computing,” in Proc. MICRO, 2011.

[63] Q. Guo et al., “AC-DIMM: Associative computing with STT-
MRAM,” in Proc. ISCA, 2013.

[64] B. Li et al., “RRAM-based analog approximate computing,”
TCAD, vol. 34, no. 12, pp. 1905–1917, 2015.

[65] J. Li et al., “A novel reconfigurable sensing scheme for
variable level storage in phase change memory,” in Proc.
IMW, 2011.

[66] L. Gao et al., “A high resolution nonvolatile analog memory
ionic devices,” in Proc. NVMW, 2013.

[67] M. Hu et al., “Dot-product engine: Programming memristor
crossbar arrays for efficient vector-matrix multiplication,” in
ICCAD’15 Workshop on “Towards Efficient Computing in the
Dark Silicon Era”, 2015.

[68] Y. Lecun et al., “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[69] M. Courbariaux et al., “Low precision storage for deep
learning,” CoRR, vol. abs/1412.7024, 2014.

[70] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proc. ICLR,
2015.

[71] F. Alibart et al., “Pattern classification by memristive crossbar
circuits using ex situ and in situ training,” Nature communi-
cations, vol. 4, 2013.

[72] M. Hu et al., “BSB training scheme implementation on
memristor-based circuit,” in Proc. CISDA, 2013.

[73] B. Li et al., “Training itself: Mixed-signal training accelera-
tion for memristor-based neural network,” in Proc. ASP-DAC,
2014.

[74] B. Liu et al., “Digital-assisted noise-eliminating training for
memristor crossbar-based analog neuromorphic computing
engine,” in Proc. DAC, 2013.

[75] B. Liu et al., “Reduction and IR-drop compensations tech-
niques for reliable neuromorphic computing systems,” in
Proc. ICCAD, 2014.

[76] P. Chi et al., “Processing-in-memory in ReRAM-based main
memory,” SEAL-lab Technical Report, no. 2015-001, 2015.

[77] V. Seshadri et al., “RowClone: Fast and energy-efficient in-
DRAM bulk data copy and initialization,” in Proc. MICRO,
2013.

[78] B. Verghese et al., “Operating system support for improv-
ing data locality on CC-NUMA compute servers,” in Proc.
ASPLOS, 1996.

[79] N. Agarwal et al., “Page placement strategies for GPUs within
heterogeneous memory systems,” in Proc. ASPLOS, 2015.

[80] M. K. Qureshi et al., “Morphable memory system: A robust
architecture for exploiting multi-level phase change memo-
ries,” in Proc. ISCA, 2010.

[81] P. Zhou et al., “Dynamic tracking of page miss ratio curve
for memory management,” in Proc. ASPLOS, 2004.

[82] X. Dong et al., “Nvsim: A circuit-level performance, energy,
and area model for emerging nonvolatile memory,” TCAD,
vol. 31, no. 7, pp. 994–1007, 2012.

[83] K. Chen et al., “CACTI-3DD: Architecture-level modeling
for 3D die-stacked DRAM main memory,” in Proc. DATE,
2012.

[84] N. P. Jouppi et al., “CACTI-IO: CACTI with off-chip power-
area-timing models,” in Proc. ICCAD, 2012.

[85] C. Xu et al., “Understanding the trade-offs in multi-level cell
ReRAM memory design,” in Proc. DAC, 2013.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

