
ResNet on Tiny ImageNet

Lei Sun
Stanford University

450 Serra Mall, Stanford, CA
sunlei@stanford.edu

Abstract

Deep neural networks have shown their high perfor-
mance on image classification tasks but meanwhile more
training difficulties. Due to its complexity and vanishing
gradient, it usually takes a long time and a lot of compu-
tational resources to train deeper neural networks. Deep
Residual networks (ResNets), however, can make the train-
ing process easier and faster. And at the same time, it
achieves better accuracy compared to their equivalent neu-
ral networks. Deep Residual Networks have been proven to
be a very successful model on image classification.

In this project, we will train our own ResNets for the Tiny
ImageNet Visual Recognition Challenge - an image classi-
fication task based on a subset of the ImageNet. We first
implemented a vanilla version of ResNets with 34 layers.
Then its performance and accuracy is shown, followed by
some detailed debugging and analysis on how to improve
it. After that, an improved model with stochastic depth
and data augmentation is developed as baseline. Its per-
formance is compared with the vanilla model, as well as
many other variants of Residual Networks. At last, a final
model with heavy image augmentations is developed aiming
the Leaderboard of the Challenge.

1. Introduction
Image classification is a fundamental problem in com-

puter version and machine learning. It has been attracting
a lot of researches on it. In recent years, there are many
successful breakthroughs in the field of image classifica-
tion. Around 2011, a good ILSVRC classification error
rate was 25%. In 2012, AlexNet[8] was invented. It is
the first convolutional neural network (CNNs) based model
with 8 layers. AlexNet achieved 16% error rate on the Im-
ageNet challenge. In the next couple of years, with more
and more layers in neural networks, VGG19[10] with 19
layers and GoogleNet[11] with 22 layers reduced the error
rates to a few percent. Although CNNs have made some
breakthrough on the accuracy, they are hard to train for two

reasons. First, the so called vanishing gradient problem - the
effect of multiplying n of those small numbers from activa-
tion function to compute gradients in an n-layer network,
meaning that the gradient (error signal) decreases exponen-
tially with n, thus the front layers train very slowly. Second,
CNNs usually have even more parameters in their models,
introducing more complexity, so takes longer to train.

And finally in 2015 comes the ResNet[4]. The main dif-
ference in ResNets is that they have shortcut connections
parallel to their normal convolutional layers. These shortcut
are always alive and gradients can easily propagate through
them, resulting in faster training. ResNet with 152 layers
achieves the best results of 3% error rate, which is even bet-
ter than human judges[9]. To study this state-of-art model
in image classification, in this project, we will implement
and experiment various types of ResNet, together with other
widely-used techniques. And then we will discuss how to
prevent overfitting with small dataset.

1.1. Tiny ImageNet

The ImageNet[1] challenge (ILSVRC) is one of the most
famous benchmarks for image classification. The data set
has a total of 1,200,000 labeled images from 1000 different
categories in the training set and 150,000 labeled images in
the validation and test set.

For this experiment, however, we will use the Tiny Im-
ageNet - a subset of ILSVRC. It follows the same princi-
ple, though on a much smaller scale. This Tiny ImageNet
only contains 200 different categories. Each category has
500 training images (100,000 in total), 50 validation images
(10,000 in total), and 50 test images (10,000 in total). In ad-
ditional, the images are re-sized to 64x64 pixels (256x256
pixels in standard ImageNet).

If the models described in papers perform well on the
original ImageNet, it is supposed to have similar perfor-
mance on Tiny ImageNet as well. The test accuracy will
be evaluated on a test server when the training and tuning
processes are all done.

1



Figure 1. Sample images from Tiny ImageNet

2. Related Work
Researchers have hypothesized and mathematically

proven that deeper neural networks have more representa-
tional power[12]. Deeper nets gain this power from hier-
archically composing shallower feature representations into
deeper representations. For instance, in face recognition,
pixels make edges and edges make corners. Corners define
facial features such as eyes, noses, mouths and chins. Facial
features compose to define faces[2].

Figure 2. Residual learning: a building block

Unfortunately, deep CNNs are hard to train due to van-
ishing gradients in the long forward feed and backward
propagate process. A residual neural network, on the other
hand, has shortcut connections parallel to the normal con-
volutional layers. Mathematically, A ResNet layer approx-
imately calculates y = f(x) + id(x) = f(x) + x. Those
shortcuts act like highways and the gradients can easily flow
back, resulting in faster training and much more layers. The
winner model that Microsoft used in ImageNet 2015 has
152 layers, nearly 8 times deeper than best CNN.

After the the success of ResNet, more related work has
been done. The original authors of ResNet proposed an
improved version of their models by adding more direct
identity connections to the network[5]. Another interesting

Figure 3. Identity Mappings in ResNet

idea is to use stochastic depth in training deep networks[6],
which is a modified version of the classic dropout. But it
drops the whole layers out randomly in training instead of
some nodes within the layers. During training, the depth of
the network can be much smaller than normal. This results
in fewer calculations and more efficient training throughput.
Those promising techniques will also be experimented and
analyzed in my project.

3. Technical Approaches
One feasible approach is to fine-tune some pre-trained

Resnet models. Some variants such as ResNet-50, ResNet-
101, and ResNet-152 are released for Caffe[3]. Even if
this approach is adopted, those models cannot be used di-
rectly on Tiny ImageNet - there are only 200 categories in
Tiny ImageNet. Some re-train process needs to be applied
on them. The standard practice would be the two phase
fine-tuning method. First, add a new FC layer with output
layer of size 200, train this layer exclusively for a couple
of epochs. And then, re-train the full network for another
couple of epochs.

One problem with fine-tuning is that we have limited
model configurations to test on. But this project is more
interested in the comparison among different variants, as
well as how to achieve better performance by adding fea-
tures and techniques step by step on base model. As such
here we investigate in training models from scratch.

3.1. TensorFlow and Performance Tuning

Because of its wide application for both research and
production on deep learning, TensorFlow will be used
throughout this project and all the results are thus obtained
from it.

All the programs run a cloud machine armed with K80
GPU on Microsoft Windows Azure. 100,000 training im-
ages are divided into 1000 mini-batches, with 100 images
in each. In order to speed up the training process, a series

2



Before After
GPU (Percentage) 82% 99%
Speed (sec/iteration) 2.45 2.74

Table 1. Tensorflow perforance tuning result

of performance features are added to the model. They are
able to utilize GPU resources more efficiently, thus reduces
the run time from 2.74 seconds per iteration to 2.45, more
than 10% less than before, as shown in Table 1. These
performance improvement include but not limit to:

• Pre-process images on CPU
Placing preprocessing operations on CPU can avoid
the data bouncing back and forth between CPU and
GPU.

• Support both image data format
NCHW images performs better when using the
NVIDIA cuDNN library. So my implementation sup-
ports both formats such that it can be migrated easily
from CPU to GPU.

• Use fused batch normalization.
The non-fused batch norm does computations using
several individual operations. Fused batch norm com-
bines the individual operations into a single kernel,
which runs faster.

4. Vanilla Model
The original authors introduced several structures for

ResNets[4]. They are different in terms of the number of
layers, the number of convolutional layers in each residual
block, and the filter sizes in each layer, as shown in Figure 4

A vanilla Resnet-34 is first implemented and tested,
whose results are shown in Figure 5. This model shows the
learning power of ResNet, without too much babysitting on
the learning process, we achieved 48% error rate on valida-
tion set, and 49% on test data, with only 15000 iterations.

But on the other hand, the accuracy is still 20% higher
than what is shown in the original paper. By looking at the
curves, we noticed that, the train error quickly approached
to zero after the learning rate annealing at iteration 10000,
but the validation loss and error did not change at all, which
shows a typical overfitting!

Although undesired, this overfitting is very expected,
there are only 500 training images in each category. For ev-
ery 10000 iterations, we feed exactly the same set of train-
ing images into the network and our ResNet sees them and
learns from them over and over again. On the other hand, to
make this challenge a fair game, we are not allowed to get
more training data. Therefore by far, the biggest challenge
in this project becomes how to improve our model and make
better use of the training data to avoid overfitting.

Figure 4. Residual network structures

Figure 5. Result of vanilla model

5. Improved Model and Result

5.1. Stochastic Depth

Stochastic Depth is the first feature introduced in this
project to fight against overfitting. It has similar idea with
the classic drop-out technique, acting as a regularizer in
the networks. The classic Dropout randomly drops hidden
nodes or connections by multiplying activation output with
an independent Bernoulli random variable. So it reduces the
effect known as ”co-adaptation” of hidden nodes collabo-
rating in groups instead of independently producing useful
features[6]. Similarly, stochastic depth can be interpreted
as training as ensemble of networks. It randomly bypasses

3



No Drop-out With Drop-out
Avg Blocks 16 12.3
Avg Depths 34 26.6
Avg Runtime 2.45 2.13

Table 2. Performance improvement with stochastic depth

one or more ResNet blocks, thus makes the network shorter
instead of thinner, as shown in Figure 6.

Figure 6. Structure of stochastic depth

Mathematically, the output of each ResBlock becomes:

Hl = ReLU(blfl(Hl−1) + id(Hl−1))

where bl ∈ {0, 1}, representing a Bernoulli random vari-
able, which indicates if the lth ResBlock is active or inac-
tive. And the survival probability of ResBlock l is pl =
Pr(bl = 1). Therefore the ResNet fall back to the origi-
nal ResNet structure when bl = 1, and it becomes identity
function when bl = 0. As suggested in the paper, I also set
the survival probabilities as

pl = 1− l

L
(1− pL)

One more thing to note is the output is re-calibrated a little
bit on testing time

HTest
l = ReLU(plfl(H

Test
l−1 ;Wl) + id(HTest

l−1 ))

Stochastic depth works well as expected on our ResNet.
As shown in Table 2, it reduces the networks depth by
23.12%, very close to the theoretical value 25% mentioned
in the paper, resulting in around 25% less training time.

5.2. Image Augmentation

At this stage, we include some basic image augmenta-
tions to ”cheat” our ResNet, letting it think we have more
training data. First, subtract the global mean from each im-
age. Second, randomly flip the image with probability 0.5
as illustrated in Figure 7. A lot more image augmentation
will be introduced in detail in the next section.

5.3. Result

From the training process shown in Figure 8, the stochas-
tic depth and image augmentation did provide some help

Figure 7. Left-Right flip an image

on preventing overfit. The training loss and error never go
much lower than validation loss and error. It takes a few
more epochs to converge, the first pleatu stops at around
60%, the final error rate stops at 43%. On the test data,
this improved model achieves an error rate as low as 45.1%,
nearly 5% improvement from the base model.

Figure 8. Result of improved model

5.4. Variants and Comparison

Due to its popularity and success on image classification,
ResNet attracted a lot of attention and research on it. Many
variants of ResNet are proposed. In this section, we take our
improved model as baseline and compare its performance
with some of its variants.

In the original paper, the author proposed 5 different
structures of ResNet, ResNet-18, ResNet-34, ResNet-50,
ResNet-101 and ResNet-152, as shown in Figure 4. Among
these 5 structures, only ResNet-18, ResNet-34 and ResNet-
50 are included in this comparison since ResNet-101 and
ResNet-152 do not fit my GPU resources.

Besides the different structures, different layer setup are
also available within each ResBlock, as shown in Figure 9.
Due to the time limit of this project and their similarity of
the performance[5], only configuration (c) and configura-
tion (e) are tested.

Figure 10 shows the comparison of the performance of
these variants. First, the accuracy are very similar. Config-
uration (e) have slightly lower error rate than configuration
(c) on average. We estimate that the similarity between all
these variants are also due to the limited number of training
images we have - even simple models can easily find the

4



Figure 9. Different configurations for each ResBlock

patterns from the training data, and complex models have
no opportunities to demonstrate their power.

So in order to achieve even lower error rate, we need
more techniques to overcome the difficulty caused by small
dataset. And ResNet-34 with configuration (e) is selected
by us for further improvement due to the balance of its high
accuracy and lower training time.

Figure 10. Error rates comparion among different structures

6. Heavy Image Augmentation
Upon the completion of all the experiments and compar-

ison on ResNet variants, we chose our ResNet-34 with full
pre-activation for further improvement, and take that model
to hit the Leaderboard.

In order to make the model more capable of generaliz-
ing, we need even more image augmentations. With the
help of two python packages, imgaug[7] and cv2, we did
a sequence of random transformation every time we feed a
mini-batch into the network. A total of 12 transformations

are selected, including flipping, cropping, scaling, shifting
and etc. Some of them are shown in Figure 11. For one
image augmentation operation, a random selection of sev-
eral transformations are applied to each image, and the in-
tensity of each transformation is also randomly determined
within a specified range. These range parameters are manu-
ally pre-defined with the criteria that the augmented images
have to be obvious to humans eyes, otherwise they will be
too strong for our networks.

Figure 11. Example of data augmentation

Figure 12. Sample augmented images

Figure 12 shows 15 sample images picked from the out-
put of data augmentation. On one hand, we can easily tell
that these are the same items, but on the other hand, their
edges, colors or even positions are different enough for net-
works to treat them as different images. The final result
shows that this image augmentation is the most helpful fea-
ture for boosting accuracy performance.

5



7. Final Result
As expected, the heavy image augmentation helps us

boost the accuracy significantly. At the same time, it also
takes much more time for training - 40,000 iterations to get
to the first error rate plateau and totally 70,000 iterations
to stabilize the trainable variables. The long training time
is also expected, after all, the networks need to get famil-
iar with all transformed images. At the end of the training
process, we achieve the final error rate of 34.68%, which is
very close to fine-tuned models.

Figure 13. Results of final model

8. Error Analysis
We visualize some interesting examples of top-1 errors

made by our final model, shown in Figure 14. In overall,
these errors are generally due to the low resolution of the
images, the misunderstanding of the main entity in the im-
age, or just the confusion by similar items.

First of all, since all the images are only 64x64 pixels,
it is hard to tell which class the image belongs to without
the details in the picture. Some of them are even too hard
to humans. The [pill bottle] is mis-classified to [Christmas
stocking] because of their similar shape, and the colorful
strips on its body. The [stop watch] and [compass] have
very similar appearance, even humans cannot tell which one
it is without more details such as the needles or the numbers
on it.

Another type of error is caused by the misunderstand-
ing of the intent of the image. The plate of fruits is classi-
fied to [banana] simply because there is indeed a banana in
it, however, the official label is [orange]. A plate of food
is supposed to be categorized to [meatloaf], but our model
says that is a [plate], which is perfectly reasonable. These
kind of errors are impossible to fix. There are often more
than entities in a single image, our network interprets the
images correctly, but does not interprets what we want cor-
rectly, and even sometime, I believe there is some judging

noise in the data set.
At last, we see some errors are due to the reason that the

categories are too close to each other, sometimes there are
even some overlap between each other. [Convertible] cars
are misclassified to [sports car], but in reality, a large part
of [convertible] cars are also [sports cars]. We won’t get too
much objection if we claim the red car in our example is a
sport car. Similarly, our ResNet successfully finds a bottle
in the image, but it is not that obvious to tell [pop bottle]
from [beer bottle].

In summary, although more than 30% of the images are
not classified correctly, a large number of the errors are rea-
sonable, some of them are even un-blamable. We will ob-
tain more accuracy if the training data have higher resolu-
tion.

Figure 14. Examples of mis-classified images

9. Conclusion

In this project, we approached the Tiny ImageNet Chal-
lenge by training our ResNet from scratch. We first imple-
mented a base model of 34 layers. The curves in the training
process and the performance on validation set shows there
is a strong sign of overfitting. Then a couple of features,
such as stochastic depth and image augmentation, are added
to the model to fight against overfitting. The error rate is
43.7% for the improved model. Taking this performance as
baseline, we also compare it with more than 5 variants of

6



ResNet, including different number of layers, different or-
der of layers in each ResBlock and etc. Finally, to hit the
Leaderboard of this Tiny ImageNet Challenge, we trained a
final model with heavy image augmentation, which helped
us achieve error rate of 34.68%, reducing the error rate by
more than 10%. At last, some basic error analysis are con-
ducted to see what kinds of errors are made by the model.

References
[1] ImageNet. http://www.image-net.org/.
[2] R. Dionne. Residual neural networks are an exciting area

of deep learning research. https://blog.init.ai/,
2016.

[3] S. Gross and M. Wilber. Training and investigating Resid-
ual Nets. http://torch.ch/blog/2016/02/04/
resnets.html, 2016.

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. CoRR, abs/1502.01852, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. CoRR, abs/1603.05027, 2016.

[6] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Wein-
berger. Deep networks with stochastic depth. CoRR,
abs/1603.09382, 2016.

[7] A. Jung. Image augmentation for machine learning ex-
periments. https://github.com/aleju/imgaug,
2016.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[9] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,
A. C. Berg, and F. Li. Imagenet large scale visual recognition
challenge. CoRR, abs/1409.0575, 2014.

[10] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[11] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. CoRR, abs/1409.4842,
2014.

[12] M. Telgarsky. Benefits of depth in neural networks. CoRR,
abs/1602.04485, 2016.

7

http://www.image-net.org/
https://blog.init.ai/
http://torch.ch/blog/2016/02/04/resnets.html
http://torch.ch/blog/2016/02/04/resnets.html
https://github.com/aleju/imgaug

