Deep Learning for Time Series Modeling
CS 229 Final Project Report

Enzo Busseti, Ian Osband, Scott Wong

December 14th, 2012

1 Energy Load Forecasting

Demand forecasting is crucial to electricity providers because
their ability to produce energy exceeds their ability to store it.
Excess demand can cause “brown outs,” while excess supply
ends in waste. In an industry worth over $1 trillion in the U.S.
alone [I], almost 9% of GDP [2], even marginal improvements
can have a huge impact. Any plan toward energy efficiency
should include enhanced utilization of existing production.

Energy loads provide an interesting topic for Machine
Learning techniques due to the availability of large datasets
that exhibit fundamental nonlinear patterns. Using data from
the Kaggle competition “Global Energy Forecasting Compe-
tition 2012 - Load Forecasting” [3] we sought to use deep
learning architectures to predict energy loads across different
network grid areas, using only time and temperature data.
Data included hourly demand for four and a half years from
20 different geographic regions, and similar hourly temper-
ature readings from 11 zones. For most of our analysis we
focused on short term load forecasting because this will aide
online operational scheduling.

2 Deep Neural Networks

We successfully implemented deep learning architectures for
forecasting power loads and found that this produced superior
results to both linear and kernelized regression for our given
data. We found that, due to the huge dataset we were able to
implement complex nonlinear models without encountering
much problem of over-fitting. Deep networks allowed us to
add significant complexity to our model without specifying
what forms the variation should take. Many papers extol the
benefits of greedy layer-wise unsupervised training for deep
network initialization [5] [6] [10] (i.e., stacked autoencoders
and restricted boltzmann machines), which was the starting
point for our work (see Appendix C). This is in contrast to the
prohibitive scaling properties of either polynomial regression
or even nonparametric Gaussian Processes, which scale O(m?)
with data [4].

Our most successful iteration was a recurrent neural net-
work with RMSE of 530 kWh/h and 99.6% correlation to test
data(see Table . Figure |1| shows a sample comparison of
actual load demand in blue (from the test data set) and the
recurrent network’s prediction in red. TESLA energy fore-
casting boasts mean absolute percentage error of 0.84-1.56%
[7], suggesting our neural network implementations are begin-
ning to approach the best of the private sector.

Table 1: Results for different learning models

Learning Method RMSE | % RMSE
Kernelized Regression 1,540 8.3%
Frequency NN 1,251 6.7%
Deep Feedforward NN | 1,103 5.9%
Deep Recurrent NN 530 2.8%

Figure 1: Load prediction with recurrent neural network

— Actual
——Predicted

al 4

it 2-Layer Recurrent Network Prediction
4 T T T T T

25 -

Power Load (kWh/h)

| | | | |
1200 1250 1300 1350 1400 1450 1500 1550 16800
Time

3 Review of Existing Techniques

There has been extensive research performed in the area of
energy load forecasting [8], and in particular, the efficacy of
neural networks in the field [9]. Additionally, numerous con-
sultancies offer demand forecasting as a service to producers,
while other producers have taken such analysis in-house. Dif-
ficulties in implementation and lack of transparency of results
have been cited as their main weaknesses. Our hope was that
through implementing a deep architecture as per the UFLDL
tutorials we could successfully unearth complicated under-
lying features without specific oversight from the modelers
perspective.

4 Step 1 - The Linear Model

4.1 Linear models as the degenerate NN

The underlying premise of neural networks is that multi-
ple layers of generalized linear models can combine to pro-
duce non-linear outputs. Linear regression can therefore be
thought of as a special case for a degenerate neural network
with no hidden layers. Neural networks are complicated, with
significant programming challenges and non-convex optimiza-

tions, so we first wanted to establish that they really do pro-
vide some worthwhile reward over simpler models.

After considering some necessary state-space transforma-
tions to our data (Appendix A) we implemented least squares
regressions over a simple linear model. Unsurprisingly, this
suffered from severe high bias as our model was far too sim-
ple. Repeating this exercise for quadratic and cubic features
we were still able to train over the whole dataset, but the
problems of high bias remained still.

4.2 Scaling issues with large data

This process of feature creation was wasteful as full polyno-
mial expansion gave many features without statistical signifi-
cance but still necessitated lengthy calculations. Using subset
selection methods (such as forward /backward stepwise or the
LASSO) and only expanding relevant variables helped weed
these out. However, this was only computationally possible
on smaller subsets of the data, which might cause us to lose
valuable training information.

To maintain most of the information of the dataset while
facilitating more complex calculations, we implemented k-
means clustering. Running the algorithm until convergence
was prohibitively slow, however we found good results with
some expedited heuristics. Using different numbers of clus-
ters and performing a naive “nearest centroid” classification
we saw improved results as we increased model complexity
(Figure . We found that clustering was more effective using
feature standardization (mean zero/unit variance).

Figure 2: Cross validation of number of clusters using nearest

neighbor

0.046

—*— Generalization Error
= Training Error

0.044

0.042

0.04

0.035

RMS Etrror

0.036

0.054

|
a00

I I I I I I I
D'US% 200 300 400 500 GO0 T00 G500

Number of Clusters per Geographic Zone

[1]

4.3 Kernel methods add model complexity

In a final bid to add more model complexity, we implemented
a kernelized local regression based upon squared exponential
distance to centroids. We found that our results were im-
proved by additionally considering the number of data points
forming part of each cluster.

Once again, computational expense proved to be our lim-
iting factor and we were only able to complete the kernelized
regression with 400 clusters per geographic zone. This pro-
duced disappointing results as the means over-simplified our
dataset and our kernels were unable to scale to the necessary

data sizes.

5 Step 2 - Neural Nets

Neural networks are a more principled way to add complexity
on large datasets. We implemented feedforward networks to
explore model parameters and then augmented these with
recurrent structure to improve forecasting accuracy.

We chose our model parameters through k-folds validation
on our data, including: sample set size, feature engineering,
anomaly filtering, training algorithms, and network topology.
Due to the computationally intensive nature of this process,
only feedforward networks were considered at this stage. Un-
less otherwise stated, the networks were trained with 70% of
the data, 15% was used for validation stopping, and 15% for
testing (chosen at random). This was repeated 10 times per
experiment to average out sample error.

5.1 Learning Curves

To assess levels of bias and variance in a mid-sized feedfor-
ward network (two hidden layers of 30 and 10 neurons, re-
spectively), we trained the network with varying proportions
of training data and examined the learning curves. Figure
summarizes the results, once again demonstrating a high bias
problem even with this complex neural network. This led us
to focus our work on developing new features and incorporate
increased model complexity.

Figure 3: Learning curves show high bias
2000 B
== Generalization Error
= =Training Error
1800

1600

1400

1200f -+

RMS Error

1000

800

e w
Percent of Data for Training

400
3

5.2 Feature Engineering

While neural networks have the benefit of being able to fit
highly non-linear models, modeler insight of how to represent
the data can be equally important. To determine the im-
pact of feature engineering, we trained feedforward networks
with additional hand engineered features (See Appendix A).

The features were introduced cumulatively, and 10 models
were trained for each feature set. Figure [shows that human
added features can make a significant difference in the overall
performance of the model. In particular, circular seasons and
hours and the day of the week feature decreased RMS error
3.5% and 8.5%, respectively. That being said, models that
can realize more complexity than the mid-sized network (i.e.,
deeper networks and recurrent networks) have had even better
performance, and demonstrate the power of deep learning.

Figure 4: Feature Engineering

— - Generalization Error
= =Training Error

1400 i -

AN
T 4
. N

N ~ 7

1500 1

1450

1350

1300~

1250+

RMS Error

1200} ooen . o . N

1150 : ~ 4

1100

1050~ —

1000 I I 1 I
Criginal Cicular Time LinearDays Day of Week

Cumulative New Features

I I
Weekend Holidays

5.3 Fourier transform Network

To exploit the strong periodicity of the data (see Figure
we tried to predict the power loads in frequency space, using
Modified Discrete Cosine Transforms (Appendix . To per-
form a discrete Fourier transform we first need to fix a time
window size, [, to split the time series. A natural choice is 24
hours, because the daily pattern of power load variation and
temperature are very consistent. We also tried smaller time
windows, down to 2 hours.

The transformed dataset is made of samples (&(*),§(")
where (") is the transform of the i-th time window of the
temperature time series for all 11 zones, plus the date, and
9 is the transform of the i-th time window of the power
loads time series. This reduces the number of samples by a
factor I. Each (" € R"*!*+1 and each g e RL

We used a network topology with two hidden layers, the
first had the same number of nodes of the input #(* and the
second the same of the output §(?). To speed up computation
and reduce risk of overfitting we applied PCA to () and
worked on the first 95% of the total variance, significantly
reducing dimensionality.

The resulting RMSE of the network for different sizes of the
time window of the transform are shown in Figure |5l As we
increase the size of the time window we (1) reduce the number
of samples in the dataset and (2) increase the dimensionality
of each sample by ~ [. The complexity of the model thus
increases while simultaneously the dataset becomes smaller.

We expected better results from the Fourier transform net-
work model than the non-transformed model, since it should
help the network find repeating patterns, however this was
not the case. This was in contrast to the more elementary

transforms in Figure [4| and Appendix A. Our conclusion was
that, except for the most basic transforms, it is better to allow
the neural network to find the nonlinear relationships itself.

10 MDCT Network Results
: | I : 2200
18¢ 1; _
‘ om0 =
16+ |II | -
W H ;
@ 14 \ _ :
3 X Jiamn o
SRED A Jieo 8
7] % i
3. tlr {1600 g
o \ :
0 08r \ Lo | :
g \ 1400
0s e _ 8
=4 _ B :
o :
n4r ~— 1] :
e s ds
nzr]f, i I .% % ----------------- _

1000
i} 8 10 15 20 25

Time window size

Figure 5: The right axis shows RMSE of the network in trans-
formed space with various sizes of the time window of the
transform. The left axis shows the number of samples in the
dataset. Training stops when the backpropagation algorithm
reaches a minimum or we complete 1000 iterations. Perfor-
mance is evaluated against 15% test data.

5.4 Anomaly Filtering

Literature [8] suggests that filtering time series data for
anomalies may reduce error for neural networks. We use a
mixture of gaussians to estimate the least likely data, and
label it as anomalous. We fit ten through 100 multi-variate
gaussians to the data in 18-dimensional feature space (from
Feature Engineering), and identified the lowest 1%, 5%, and
10% likelihood data with “anomaly features.” Neural net-
works were then trained in this new feature space, however
there was no discernible improvement in the generalization
error of these models.

Diving deeper into the data, Figure [f] shows the anomalous
data points identified by mixture of gaussians in red (em-
bedded in 2-D with PCA) and how it maps to the time se-
ries. Mixture of gaussians identified peaks in demand in the
summer and winter, which were not particularly anomalous.
Gaussian methods also failed to identify known outlier data,
such as the huge power outages experienced on January 5,
2005 (marked in green in Figure @ Although we might hope
these green points are flagged as outliers, they were actually
probable data points in the gaussian model, as you can see by
mapping to the first two principal components. It is possible
that alternative methods could provide modeling gains, but
we decided this was not worth pursuing.

5.5 Training algorithm

Neural networks, and in particular deep neural networks, are
notoriously difficult to train due to their non-convex objective
functions. We examined five training algorithms to determine
the best and fastest solution. Levenberg-Marquardt (“LM”,
a combined quasi-Newton and gradient ascent algorithm) was

Figure 6: Anomaly Filtering

2-D PCA Embedding of Training Data

4 T T T

Second Component

-10 -8 B 4 2 a 2 4 B8 a8 10
First Component

+ AllData
+ Mixture of Gaussian Outliers

Actual Outliers

Potential Outliers
T

@

Power Load (kWh/h)

found to converge fastest and almost always produce the best
error. BFGS (quasi-Newton), Scaled Conjugate Gradient,
and Conjugate Gradient with Polak-Ribire updates were all
slower and had worse error than LM. LM with Bayesian Reg-
ularization produced the lowest error with 2-layer networks
(though, not with 4), but convergence time was prohibitively
long to be useful. Table [2] summarizes RMS error for the
different algorithms on different sized networks.

Table 2: Training Algorithms

RMSE
Training Algorithm 2-Layer 4-Layer
Levenberg-Marquardt 1,392 1,263
BFGS Quasi-Newton 1,506 2,602
Bayesian Regulation 1,290 1,887
Scaled Conjugate Gradient 1,781 1,681
Conjugate Gradient 1,596 1,593

5.6 Recurrent Neural Networks

Using a purely feedforward network we ignore some of the
temporal structure time series data presents. In particular,
this structure can be exploited through the use of recurrent
neural networks where we explicitly construct a sequential
representation of our data.

Recurrent neural networks may have multiple types of feed-
back loops. The two that were employed here were input
delays and feedback delays. Each type of delay effectively in-
creases the number of input nodes by providing the network
with delayed information along with current information. In
the case of input delays, multiple consecutive time steps of
the input features are presented to the network simultane-
ously. For feedback delays, the output of the model is pro-
vided to input nodes, along with previous data. This can
either be done with “open” loops, where the known output
is provided as an input, or with “closed” loops, which con-
nects the network output to the input directly. Here, we have
trained and forecasted one-step-ahead with with open loops.
To predict farther ahead, closed loops need to be used. Briefly
experimenting with closed loops, error increased ~10% due to
“clipping” of peak and trough demand.

5.7 Network Topology

Performance of the networks varies highly depending on the
number of hidden layers and neurons per layer. Figure [7] il-
lustrates network performance as a function of complexity
(number of weights). Feedforward network achieve near op-
timal performance around 2,700 weights (3-layers of 50, 30,
and 10 neurons, respectively), with RMS error of 1,269. Ad-
ditional complexity through more neurons did not improve
performance, but deeper networks occasional produced bet-
ter results (however, performance was erratic due to finding
local-non-global optimum).

Figure 7: Topology Selection

2000
< FF Generalization Error
& FF Training Error
1800 ® Recurrent Generalization Error
® Recurrent Training Error
1600
1a00- % B e B .
5 A
&
5 9 ORGP oo
& 1o00f N o
w 08
@ R,
S ool 00 %0%6%
i <& 0@ o
<
800} .. 3 ;
.
s o * . . : ¢
* %
a00l PRTY ey .

200
0

I I 1 I I |
2000 4000 6000 8000 10000 12000 14000

Complexity (Network Weights)

Recurrent neural networks performed drastically better for
comparable complexity. All recurrent networks shown in Fig-
ure [7] are 2-layers — we experimented with deeper networks,
however training time increased rapidly (i.e., >8 hours per
model). Best 2-layer results were achieved with 50 and 25
neurons per layer, respectively, one input tap delay, and one
through 48 hours of feedback tap delay (~4,500 weights).

6 Conclusion

Deep neural networks are able to accurately gauge electricity
load demand across our grid. It is clear from Table [I] that
recurrent neural networks outperformed all of our competing
methods by a significant margin. We believe that, in general,
deep learning architectures are well suited to the problems of
power load forecasting since we have large availability of rel-
evant data with complicated nonlinear underlying processes.

We were disappointed with our output using competing
nonlinear kernelized methods, and perhaps using pre-built
SVM packages would have produced superior results. Due to
their poor scaling properties we did not pursue our initial work
in Gaussian process modeling. However, potential for sparse
computational approximations might provide interesting fu-
ture avenues of research [10] [T1]. We believe that within deep
learning, cutting edge techniques such as restricted boltzmann
machines might allow us to train more complex models effi-
ciently.

Appendix

A Transformation of Variables

Within our dataset, it was important to frame our feature
variables in ways that were conducive to sensible models, and
exploiting natural symmetries. For example, each training
example was taken from one of 20 distinct geographical zones.
Since we had no idea, a priori, of how these zones relate we
found better results modeling zone z € R?° than naively z €
{1,2,..,20}.

On the other hand, much of the observed structure to the
data was found to be periodic in nature (daily, weekly, sea-
sonal). With that in mind we took care, particularly for
our linear models, to reflect this a priori symmetry in our
data. For variables with inherent symmetry present (hours:24,
months:12 etc) we transformed to polar coordinates via a
(sin,cos) pair of variables to seek solutions of given period-
icity.

Figure 8: Transformation of Variables
Transforming data of known period

Figure 9: & — [y1,92] = [sin(2Z), cos(222)] we show x as

a red dot mapped to y in blue. We can then fit the desired
relationship as linear in R? for the new circular y features

B Frequency Space Transform

More generally, we might want to exploit the periodicity in the
data (Figur when we are not sure about the exact period.
For example, we know there are pattens around the work-
ing day which might be more easily seen in the transformed
Fourier space. We implemented the Modified Discrete Cosine
Transform (MDCT) [12] which performs a discrete transform
over fixed size windows returning real coefficients and well-
behaved edges.

The time windows overlap by half of their length. For ex-
ample in case of 24 hours time windows the first sample starts
at 0 and ends at 24 of the first day, the second sample from 12
to 12 of the second day, the third from 0 to 24 of the second

day, and so on. The original signal is recovered by summing
the overlapping parts of each inverse transform (time-domain
aliasing cancellation). It is well known that minimizing error
in the frequency space is equivalent to the original problem.
We were motivated by mp3 compression, which uses similar
techniques, to use this to express our data in a more efficient
manner.

C Stacked Autoencoder

Building on the literature [10] we trained feed forward neural
networks with stacked autoencoders. Greedy layer-wise train-
ing [5] [6] has been shown to improve network performance
in scenarios where large amounts of unlabeled data is avail-
able, but minimal labeled data. While all of the data used
in this paper are labeled, it was our hope that greedy layer-
wise training would help avoid local-non-global minima in the
optimization problem. However, results with this technique
were discouraging, with no significant performance gain but
added computational complexity.

References

[1] http://www.eia.gov/totalenergy/data/annual/
pdf/sec3_11.pdf

[2] http://www.bea.gov/itable/error_NIPA.cfm

[3] http://www.kaggle.com/c/

global-energy-forecasting-competition-2012-load-forec

[4] Gaussian Processes for Machine Learning - Rasmussen
and Williams

[5] Y. Bengio, “Learning Deep Architectures for AI”, Foun-
dations and Trends in Machine Learning, vol 2. , no. 1,
2009.

[6] Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.
(2007). Greedy layer-wise training of deep networks. In
Scholkopf, B., Platt, J., & Hoffman, T. (Eds.), Advances
in Neural Information Processing Systems 19 (NIPS’06),
pp- 153-160. MIT Press.

[7] http://www.teslaforecast.com/

[8] J. Connor, R.D. Martin, and L.E. Atlas, “Recurring Neu-
ral Networks and Robust Time Series Prediction”, IEEE
Transactions on Neural Networks, vol. 5, no. 2, March
1994.

[9] http://repository.lib.ncsu.edu/ir/bitstream/
1840.16/6457/1/etd.pdf

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast
learning algorithm for deep belief nets. Neural computa-
tion, 18(7), 1527-1554.

http://arxiv.org/pdf/1106.5779v1. pdf.

Malvar, Henrique S. Signal processing with lapped trans-
forms. Artech House, Inc., 1992.

http://www.eia.gov/totalenergy/data/annual/pdf/sec3_11.pdf
http://www.eia.gov/totalenergy/data/annual/pdf/sec3_11.pdf
http://www.bea.gov/itable/error_NIPA.cfm
http://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting
http://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting
http://www.teslaforecast.com/
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/6457/1/etd.pdf
http://repository.lib.ncsu.edu/ir/bitstream/1840.16/6457/1/etd.pdf
 http://arxiv.org/pdf/1106.5779v1.pdf

	Energy Load Forecasting
	Deep Neural Networks
	Review of Existing Techniques
	Step 1 - The Linear Model
	Linear models as the degenerate NN
	Scaling issues with large data
	Kernel methods add model complexity

	Step 2 - Neural Nets
	Learning Curves
	Feature Engineering
	Fourier transform Network
	Anomaly Filtering
	Training algorithm
	Recurrent Neural Networks
	Network Topology

	Conclusion
	Transformation of Variables
	Frequency Space Transform
	Stacked Autoencoder

