
Fixed-Point Computations over Functions on Integers
with Operations Min, Max and Plus

Yoshinori Tanabe and Masami Hagiya
Dept. of Computer Science, Graduate School of Inform. Science and Technology, University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
tanabe@ci.i.u-tokyo.ac.jp and hagiya@is.s.u-tokyo.ac.jp

Abstract

Various kinds of graph problems, including shortest path computation, proof-number search,
dataflow analysis, etc., can be solved by fixed-point computations over functions defined on natural
numbers or integers. In this paper, we prove that fixed-point computations are possible for the algebra
Z∞ = Z∪{∞,−∞}, which has the operators min, max and plus. Since Z∞ is not well-ordered, we
formulate a kind of acceleration technique to guarantee termination of fixed-point computations.

1 Introduction

Fixed-point computations on various algebraic structures are required in many fields of computer sci-
ence. The simplest example of such an algebraic structure is the boolean algebra, 2 = {0,1}, on which
ordinary boolean operations are defined. Model-checking problems on Kripke structures [3] are reduced
to fixed-point computations over functions from the set of states to 2, where each parameter of a function
corresponds to the value of a propositional variable at a state of the target Kripke structure, which relates
the parameters belonging to one state with those belonging to adjacent states. The µ and ν operators in
the modal µ-calculus [6] correspond to the least and greatest fixed-points of a system of such boolean
functions.

Model-checking problems can be easily generalized by adopting algebraic structures other than 2.
Propositional variables are generalized to variables having value of the adopted algebraic structure, and
boolean operations are replaced with operations on the algebraic structure. The modal µ-calculus can
still be used as a language for expressing fixed-points, if the operators of the calculus are interpreted as
operations on the algebraic structure. In fact, in our previous work [4], we adopted N∞ = N∪{∞}, the
set of natural numbers augmented with infinity, as an algebraic structure, and interpreted the operators ∨
and ∧ as min and plus, respectively, over N∞. The modal operators ♦ and � were also interpreted ac-
cordingly. This kind of algebraic structure having min and plus is well known as min-plus algebra [8, 2].
As the values 0 and ∞ in N∞ naturally correspond to 1 (true) and 0 (false) in 2, respectively, we inter-
preted the µ and ν operators as the greatest and least fixed-points. We then formulated algorithms for
computing fixed-points over generalized Kripke structures.

Interestingly, various kinds of graph problems can be expressed in the above framework, including
shortest path computation, proof-number search [1], dataflow analysis, etc. For example, we can extend
the approach taken by Lacey et al., who used CTL, a sublogic of the modal µ-calculus, to express
complex conditions on a control flow graph for the purpose of program transformation [7]. A control
flow graph is regarded as a Kripke structure. We introduce propositional symbols accessx and updatex,
which hold at a node of the control flow graph if the program variable x is accessed and updated on the
node, respectively. Then we can construct a formula that expresses, for example, the minimum number
of accesses to the variable x after each update of x.

For applications as the above one, it is natural to introduce the max operator in addition to min
and plus. In the above example, it becomes possible to express the maximum number of accesses to a
program variable. As this paper shows, however, fixed-point computations become more involved if max
is introduced.

108

mailto:tanabe@ci.i.u-tokyo.ac.jp
mailto:hagiya@is.s.u-tokyo.ac.jp

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Even in our previous work, fixed-point computations were not trivial. Since N∞ is well-ordered, the
greatest fixed-point can be calculated in a natural way — starting from ∞ and repeat calculating the next
value to obtain a decreasing chain of values. However, this simple strategy cannot be applied to compute
the least fixed-point. In our previous work, we developed a kind of acceleration technique to guarantee
termination.

In this paper, by carefully extending the acceleration technique, we show that fixed-point computa-
tions are also possible for the algebra Z∞ = Z∪{∞,−∞}, which has the operators min, max and plus.
We formulate an algorithm that computes fixed-points of functions defined on Z∞. Our previous work is
subsumed by embedding N∞ into Z∞. The efficiency of fixed-point computations is also improved. In
some cases, the new algorithm is more efficient than the old one.

2 Target Functions

We define the set F of functions that our algorithm targets. Roughly speaking, an element of F is
a function on finite power of Z∞, composed of operations min, max, plus, minus, and fixed-points.
Since we allow the fixed-point operations, the functions need to be monotone with respect to parameters
over which the fixed-point is calculated. Therefore, we need to keep track of positive and negative
parameters. Another small issue is value of operations when operands are ∞ or −∞. While most of them
can be defined naturally, some decision on the value of ∞+(−∞) is needed. We introduce two different
operators +↑ and +↓, and define ∞+↑ (−∞) = (−∞)+↑ ∞ = ∞, and ∞+↓ (−∞) = (−∞)+↓ ∞ =−∞. If
{x,y} 6= {∞,−∞}, then x+↑ y = x+↓ y = x+ y.

We introduce some notations. Let n,m,k ∈ N. The set {n + 1,n + 2, . . . ,n + m} is denoted by In,m,
and I0,n is denoted by In. The constant function on Z∞

n that takes value c∈Z∞ is denoted by γn
c . The pro-

jection function on Z∞
n to T = {t1, . . . , tk} ⊆ In is denoted by πn

T , i.e., πn
T : Z∞

n → Z∞
k, πn

T (x1, . . . ,xn) =
(xt1 , . . . ,xtk). We write πn

{m} as πn
m. The superscript n of γ and π is often omitted if no confusion occurs.

For function f , function πT f is defined by (πT f)(x) = πT (f (x)). If x = (x1, . . . ,xn) and y = (y1, . . . ,yk),
then (x1, . . . ,xn,y1, . . . ,yk) is denoted by (x,y). We intentionally abuse this notation: if (T,S) is a partition
of In, y = πT x, and z = πSx, then we write (y,z) to express x, if T and S are clear from the context. For
functions f : Z∞

n →Z∞
m and g : Z∞

n →Z∞
k, (f ,g) : Z∞

n →Z∞
m+k is defined by (f ,g)(x) = (f (x),g(x)).

For c ∈ Z∞, the n-tuple of c, i.e., x ∈ Z∞
n such that πix = c for all i ∈ In, is also denoted by c.

For n,k ∈ N and c ∈ Z∞, let zn
k,c ∈ Z∞

n be defined by πkzn
k,c = c and πizn

k,c = 0 for all i ∈ In \{k}.
For x,y∈Z∞

n, we write x≤ y if πix≤ πiy for all i∈ In. If x≤ y and x 6= y, we write x < y. If πix < πiy
for all i ∈ In, we write x � y. If (T,S) is a partition of In, x ≤ y, and πSx = πSy, we write x ≤T y. A
function f : Z∞

n → Z∞
m is monotone (or monotone increasing) w.r.t. T if x ≤T y implies f (x) ≤ f (y),

and monotone decreasing w.r.t. T if x ≤T y implies f (x)≥ f (y).
For f : Z∞

n → Z∞
n, the k-th repetition of f is denoted by f (k). I.e., f (k) : Z∞

n → Z∞
n, f (0)(x) = x,

and f (k+1)(x) = f (f (k)(x)).
We define the set F as the least set that satisfies the following conditions, together with the set P(f)

and N(f) of positive and negative parameter indices of f ∈F , respectively.

• γc ∈F and P(γc) = N(γc) = ∅.

• πT ∈F , P(πT) = T , and N(πT) = ∅.

• If f ∈F , then − f ∈F , P(− f) = N(f), and N(− f) = P(f).

• If f ,g ∈ F , P = P(f)∪P(g), N = N(f)∪N(g), and P∩N = ∅, then h = (f ,g), f +↑ g, f +↓ g,
min(f ,g), max(f ,g) ∈F , P(h) = P, and N(h) = N.

109

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

• If f : Z∞
n+m → Z∞

m, f ∈F , and In,m∩N(f) = ∅, then h = LFP(f),GFP(f) ∈F , P(h) = P(f)\
In,m, and N(h) = N(f), where LFP(f) : Z∞

n → Z∞
m is defined so that for any x ∈ Z∞

n, LFP(f)(x)
is the least y ∈ Z∞

m such that f (x,y) = y. GFP(f) is defined similarly as the largest such y.

The existence of LFP and GFP in the definition can be proved by simultaneous induction with the
fact that for all f ∈ F , f is monotone increasing w.r.t. P(f) and monotone decreasing w.r.t. N(f). For
LFP, starting with z0 = −∞ ∈ Z∞

k, an increasing sequence (zα)α of Z∞
k, indexed by ordinal numbers,

is defined by zα+1 = f (x,zα) for α = 0,1, It is clear that we have zα+1 = zα for some α ≤ ωk and
LFP(f)(x) = zα . However, to complete the computation with finite repetitions, we need some accelera-
tion technique, which is the main topic of this paper.

Because LFP and GFP are dual, we mainly concentrate on LFP. Assume f ∈ F , f : Z∞
m → Z∞

m,
c ∈ Z∞

m, and f (c) ≥ c. There exists the least y such that y ≥ c and f (x,y) = y. This y is denoted by
LFPc(f). For LFP(f), it is sufficient to compute LFPc(f), because LFP(f) = LFP−∞(f). We observe
that if the operator max does not appear in the definition sequence of f , then LFPc(f) can be computed
relatively easily. To formalize the observation, we introduce a concept called “steplessness.” Let T ⊆ In.
A function f : Z∞

n → Z∞ is upward stepless w.r.t. T if f is monotone w.r.t. T , and for all k ∈ T and
x ∈ Z∞

n, f (x) = f (x + zn
k,1) implies f (x) = f (x+ zn

k,c) for all c ∈ N∞. Word “upward” and set T are
omitted if no confusion occurs. A function f : Z∞

n → Z∞
m is stepless if π j f is stepless for all j ∈ Im.

Functions γc, πT , min(x,y), and x +↓ y are stepless, but max(x,y) and x +↑ y are not. Stepless functions
are closed under compositions: more precisely, if f : Z∞

n → Z∞
k is stepless w.r.t. T , g : Z∞

m → Z∞
n, πig

is stepless w.r.t. S for all i ∈ T , and πig = πi for all i ∈ In \T , then f ◦g is stepless w.r.t. S.
The least fixed-point of a stepless function is computed using the following lemma, which can be

proved in a similar manner as in the corresponding lemma in [5],

Lemma 1. Assume f : Z∞
m → Z∞

m is stepless, c ∈ Z∞
m, and f (c) ≥ c. Let c̄ = LFPc(f), T = {i ∈ Im |

πic < πic̄}, and S = Im \T . Thus, with respect to the partition (T,S), we have c = (d,e), c̄ = (d̄,e), and
d � d̄. Then, the following hold.

(1) T = {i ∈ Im | πic < πi f (m)(c)}.

(2) There is i ∈ Im such that πiLFPc(f) = πi f (∞,e)

(3) LFPc(f) = f (|T |)(∞,e).

For GFP, we define GFPc(f)(x) to be the greatest y such that y ≤ c and f (x,y) = y, if f (x,c) ≤ c.
Function f is downward stepless w.r.t. T if for all k ∈ T , f (x) = f (x− zn

k,1) implies f (x) = f (x− zn
k,c) for

all c ∈ N∞. Then, the counterpart of Lemma 1 holds: if f is downward stepless, f (c)≤ c, c = (d,e) and
c̄ = (d̄,e) = GFPd(f) w.r.t. a partition (T,S), and d̄ � d, then we have (1) T = {i∈ Im | πid > πi f (m)(d)},
(2) there is i ∈ Im such that πid̄ = πi f (∞,e), and (3) d̄ = f |T |(∞,e).

Although not all functions in F are stepless, we can approximate them with stepless functions.
Assume f ∈F, f : Z∞

n → Z∞
m, and c ∈ Z∞

n. We define the under approximation ua(f ,c) : Z∞
n → Z∞

m

and the over approximation oa(f ,c) : Z∞
n → Z∞

m as shown in Figure 1. The intuition is as follows:
we wish to define ua(f ,c) to be an upward stepless function. Because pair, minimum, +↓ preserves
steplessness (because it is closed under compositions), these operations can be handled naturally. LFP
and GFP are also all right, because they are expressed as compositions if the operand is stepless, by
Lemma 1 (3). Operation +↑ does not preserve steplessness, but it is almost the same as operation +↓,
and the exceptional case can be covered by a constant function. Finally, for max, we simply choose one
of the operands, by referring their values at c.

The following lemma can be proved without difficulty.

110

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

ua(γe,c) = γe
ua(πT ,c) = πT
ua(− f ,c) =−oa(f ,c)
ua((f ,g),c) = (ua(f ,c),ua(g,c))
ua(min(f ,g),c) = min(ua(f ,c),ua(g,c))

ua(max(f ,g),c) =

{
ua(f ,c) if f (c)≥ g(c)
ua(g,c) otherwise

ua(f +↓ g,c) = ua(f ,c)+↓ ua(g,c)
ua(f +↑ g,c) ={

γ−∞ if { f (c),g(c)}= {∞,−∞}
ua(f ,c)+↓ ua(g,c) otherwise

ua(LFP(f),c) = LFPc(ua(f ,(c,LFP(f)(c))))
ua(GFP(f),c) = GFPc(ua(f ,(c,GFP(f)(c))))

oa(γe,c) = γe
oa(πT ,c) = πT
oa(− f ,c) =−ua(f ,c)
oa((f ,g),c) = (oa(f ,c),oa(g,c))

oa(min(f ,g),c) =

{
oa(f ,c) if f (c)≤ g(c)
oa(g,c) otherwise

oa(max(f ,g),c) = max(oa(f ,c),oa(g,c))
oa(f +↓ g,c) ={

γ∞ if { f (c),g(c)}= {∞,−∞}
oa(f ,c)+↑ oa(g,c) otherwise

oa(f +↑ g,c) = oa(f ,c)+↑ ua(g,c)
oa(LFP(f),c) = LFPc(oa(f ,(c,LFP(f)(c))))
oa(GFP(f),c) = GFPc(oa(f ,(c,GFP(f)(c))))

Figure 1: Under/Over Approximation

Lemma 2. Assume f ∈F, f : Z∞
n → Z∞

m, and c ∈ Z∞
n.

(1) ua(f ,c) is upward stepless w.r.t. P(f), and oa(f ,c) is downward stepless w.r.t. P(f).

(2) ua(f ,c)(c) = oa(f ,c)(c) = f (c).

(3) ua(f ,c)(x)≤ f (x)≤ oa(f ,c)(x) for all x ∈ Z∞
n.

(4) If f (c)≥ c, then LFPc(ua(f ,c))≤ LFPc(f). If f (c)≤ c, then GFPc(oa(f ,c))≥ GFPc(f).

(5) {ua(f ,d) | d ∈ Z∞
n} and {oa(f ,d) | d ∈ Z∞

n} are finite sets.

3 Procedure

c1 c2

y = u0(x)

x

y

y = u1(x)

y = f (x)

y = x

LFPc(f)
c = c0

Based on the preparation in the previous section, we now de-
scribe the procedure to compute LFPc(f) for f ∈F and c ∈ Z∞

m

such that f : Z∞
m → Z∞

m and f (c) ≥ c. As a starting point,
we consider the following naive procedure: starting with c0 = c,
we compute cn+1 = LFPcn(ua(f ,cn)) until cn = cn+1. Because
ua(f ,cn) is stepless, we can compute cn+1 using Lemma 1. Then,
LFPc(f) = cn.

The right figure illustrates the intuition behind the procedure.
Note that c̄ = LFPc(f) is the left-most intersection (on the right
side of c) of the graph of y = f (x) with that of y = x. Because
of Lemma 2 (4), c1 = LFPc0(u0) is smaller than or equal to c̄,
and c1 is greater than or equal to c0 by its definition. Thus, we
have c0 ≤ c1 ≤ ·· · . The number of repetitions seems to be finite,
because of Lemma 2 (5) and the fact that ua(f ,cn) becomes “constant” on the right side of cn+1.

Unfortunately, the intuition is not correct. The procedure may not terminate if f has two or more
parameters, as will be shown in Example 5. To resolve the problem, the under approximation should be
taken component-wise, and if f does not move a component of cn, we keep the previous approximation
for that component.

The modified procedure is shown in Figure 2. For f ∈F , LFPc(f) is computed in the left column.
Because un is stepless, LFPcn(un) appearing in the left column is computed in the right column.

111

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Procedure for f ∈F .
Compute cn ∈ Z∞

m and define stepless function un
until cn+1 = cn:

c0 = c, u0 = ua(f ,c0).
cn+1 = LFPcn(un).

πiun+1 =

{
πiun if πi f (cn+1) = πicn+1

ua(πi f ,cn+1) otherwise
Then, LFPc(f) = cn.

Procedure for stepless f .
Compute dn ∈ Z∞

m until Tn+1 = Tn, where
Tn = {i ∈ In | πidn > πic}:

d0 = c, dn+1 = f (dn).
Let T = Tn, S = Im \T , and s = πSc. Compute
ek ∈ Z∞

m until ek+1 = ek:
e0 = (∞,s), ek+1 = f (ek)

Then, LFPc(f) = ek.

Figure 2: Procedure to Compute LFPc(f)

Example 3. Let f : Z∞
2 →Z∞

2 be defined by f (x1,x2)= (x1,min(x1 +↓x2,10)). We compute LFP(1,0)(f).
Because f is stepless, the right column of Figure 2 is used. The computation of the first half is as fol-
lows: d0 = (1,0), T0 = ∅, d1 = (1,1), T1 = {2}, d2 = (1,2). T2 = {2}. Here, we have T1 = T2 = {2}.
With this result, we start the second half: e0 = (1,∞), e1 = (1,10), e2 = (1,10). Thus, we get the result:
LFP(1,0)(f) = (1,10).

Example 4. Assume that n ∈ N and fn : Z∞ → Z∞ is defined by fn(x) = max(n + 1 + min(x−n,0),0).
We compute LFP(fn). First, c0 = −∞ and u0 = γ0, because n + 1 + min(−∞− n,0) < 0. Therefore,
c1 = LFP−∞(γ0) = 0. Because fn(c1) = 1 6= c1, we take u1(x) = ua(fn,0)(x) = n + 1 + min(x− n,0).
Using the right column, we get c2 = LFP0(u1) = n + 1. Repeating this step, we find c3 = n + 1, and
conclude LFP(fn) = n+1.

3210

1

2

3

x1

x2Example 5. Let function f : Z∞
2 →Z∞

2 be defined by f (x1,x2) =
(min(x1 + 1,max(x1,x2)),min(max(x2,x1 + 1),x2 + 1)). A small
calculation could show that f (x1,x2) = (x1,x2 +1) if x1 ≥ x2, and
f (x1,x2) = (x1 + 1,x2) if x1 < x2, although it is not a part of the
procedure. In the right figure, f is depicted by arrows connecting
(x1,x2) and f (x1,x2). It is clear that LFP(0,0)(f) = (∞,∞).

If we apply the naive procedure shown in the beginning of
this section, the computation does not terminate. We start with
c0 = (0,0) and u0(x1,x2) = (x1,min(x1 + 1,x2 + 1)). Then, c1 =
LFPc0(u0) = (0,1), and u1(x1,x2) = (min(x1 + 1,x2),x2). In the
next steps, we have c2 = (1,1), u2 = u0, c3 = (1,2), and u3 = u1.
Thus, the computation continues for ever, calculating c2n = (n,n),
c2n+1 = (n,n+1), u2n = u0, and u2n+1 = u1.

On the other hand, the modified procedure does terminate. The computation goes in the same way
up to c1. When we decide u1, two values c1 = (0,1) and f (c1) = (1,1) are compared. Because their x2-
components are identical, we reuse the x2-component of u0 for that of u1. The x1-component is calculated
as usual. Thus, we have u1(x1,x2) = (min(x1 + 1,x2),min(x1 + 1,x2 + 1)), and because LFPc1(u1) =
(∞,∞), we reach the result in finite repetitions.

The partial correctness of the procedure is almost clear from the previous lemmas. When f is stepless,
by Lemma 1 (1), (T, Im \ T) gives the required partition, where T = Tn = Tn+1. Then, Lemma 1 (3)
guarantees that LFPc(f) = ek. For f ∈ F , Lemma 1 shows that the right column computes the fixed-
point for stepless functions. By Lemma 2 (4), (cn)n is an increasing sequence that does not exceed
LFPc(f). Therefore, if we reach n such that cn+1 = cn, then LFPc(f) = cn.

To prove the termination, i.e., there exists n such that cn+1 = cn, we use the following technical
lemma.

112

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

Lemma 6. Assume (T,S) is a partition of Im, u = (v,w) : Z∞
m → Z∞

m is a stepless function, (a2,b2) =
LFP(a1,b1)u, v(a2,b3) = a2, a1 � a2, and b2 � b3. Then, there exists i ∈ T such that πia2 = πiv(∞,∞).

Proof. Let t = |T |, v̄ : Z∞
t → Z∞

t be defined by v̄(a) = v(a,∞), and ā2 = LFPa1 v̄. We have a2 ≤ ā2: this
is because while a2 is the T -part of the supremum of the sequence (xα)α defined by x0 = (a1,b1) and
xα+1 = v(xα), ā2 is the supremum of the sequence (yα)α defined by y0 = a1 and yα+1 = v(yα ,∞). We
can show that yα ≥ πT xα by induction on α . On the other hand, because v(a2,b2) = v(a2,b3), b2 � b3,
and v is stepless, we have v(a2,∞) = a2, i.e., a2 is a fixed point of v̄. Therefore, a2 = ā2. Because v̄ is
stepless and a1 � a2, by Lemma 1 (2), there exists i ∈ T such that πia2 = πiv̄(∞) = πiv(∞,∞).

We sketch a termination proof. Assume on the contrary that the sequence does not converge: c0 <
c1 < · · ·< cn < cn+1 < · · · . Let U = {i ∈ Im | πicn < πicn+1 for infinitely many n} and V = Im \U . There
exists N ∈ N such that for all n ≥ N, πV cn = πV cN . Let s = πV cN . We write cn = (en,s).

We claim that for any n′ ≥ N, there exists n ≥ n′ and i ∈U such that en′ � en and πiun(∞,s) = πien.
Let k be the least k such that en′ � ek, and m be the largest m such that em � ek. Let T = {i ∈ U |
πiem+1 = πiek} and S =U \T . By applying Lemma 6 with u := um (with V -part fixed to s), (a1,b1) := em,
(a2,b2) := em+1, and b3 := πSek, we confirm the claim by taking n = m+1.

By Lemma 2 (5), there exists i ∈ T and n,k ∈ N such that en � ek, un = uk, πiun(∞,s) = πien, and
πiuk(∞,s) = πiek, which is impossible.

4 Function Examples

In this section, we show that several functions defined on graphs are regarded as elements of F , thus
they can be computed by our algorithm. We do not claim that our procedure is more suitable to calculate
values of these particular functions than known algorithms. Instead, these examples illustrate various
quantitative properties are expressed as the fixed-point of a function in F .

4.1 Shortest Path

Assume that G = {s1,s2, . . . ,sn} is a finite set of nodes and the lengths d(i, j) ∈ N∞ of the connection
between two adjacent nodes si and s j are given. If si and s j are not directly connected, d(i, j) = ∞. We
fix s = si0 ∈ G, and define f by πi f (x) = min({d(i, i0)}∪{d(i, j)+ π jx | j 6= i0}). Then, the length of
the shortest path between si to s is πiGFPx(f) (or πiLFPx(f): they coincide in this case). The intuitive
meaning of this definition is that the shortest path from si is either the direct connection to si0 or a path
to some adjacent state s j connected with the shortest path between s j and si0 , whichever is the shortest.

If (G,E) is a graph and d(i, j) is defined by d(i, j) = 1 if (si,s j) ∈ E, d(i, j) = ∞ otherwise, then the
same function computes the shortest hop count from si to si0 .

4.2 Proof-Number Search

Let us consider a finite tree with labels on nodes. The label is either ‘true’, ‘false’, or ‘unknown’ on
a leaf node, and either ‘MAX’ or ‘MIN’ on an internal node. The proof number proof(n) of node n is
defined as follows [1]: the value of proof(n) is 0 if the label is ‘true’, ∞ if ‘false’, and 1 if ‘unknown’.
For an internal node, proof(n) = min{proof(n′) | n′ ∈ child(n)} if the label is ‘MAX’, and proof(n) =
∑{proof(n′) | n′ ∈ child(n)} if the label is ‘MIN’.

The proof number can be computed as a value of function in F : let {ni | i = 1, . . . ,N} be an enu-
meration of the nodes of a tree. For each i, we define fi : Z∞

N → Z∞ to reflect the definition of the proof
number. For example, if si is a leaf node with label ‘false,’ fi(x) = ∞ for any x, and if si is an internal

113

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

node with label ‘MIN,’ fi(x) = ∑(x j | s j ∈ child(si)). Let f : Z∞
N → Z∞

N be such that πi f = fi for all i.
Then, it is obvious that proof(ni) = πiGFP(f).

4.3 Data Flow Analysis

Lacey et al. used CTL to specify conditions on a control flow graph by regarding the graph as a Kripke
structure for the purpose of program transformation [7]. We extended the approach by introducing a non-
standard semantics of the modal µ-calculus [4]. For example, let us introduce a propositional symbol
accessx that holds at a node in a control flow graph if the program variable x is accessed at the node.
The minimum number of accesses to the variable x on an execution path starting from a node can then
be expressed by the following formula under the non-standard semantics:

νX(((accessx∧1)∨ (¬accessx))∧ (halt∨♦X)).

Here, halt is an abbreviation for �⊥, which means that no outgoing transition exists.
Now, for given Kripke structure K = (S,R,L), we enumerate S = {s1, . . . ,sn} and denote the set

{s′ | (s,s′) ∈ R} by sR. For i ∈ In, we define ai,hi ∈ Z∞ by ai = 1 if x is accessed at si, ai = 0 otherwise,
and hi = 0 if there is no outgoing node at si, hi = ∞ otherwise. Then, the above formula corresponds to
function LFP(f) in F , where f : Z∞

n → Z∞
n is defined as follows,

πi f (x) = ai +min(hi,min{π jx | s j ∈ siR}).

5 Conclusion

5.1 Remark on Efficiency

Compared to the algorithm proposed in [4], the procedure in this paper not only covers wider range of
functions, but also is more efficient in some cases. For example, The old algorithm requires O(n) time to
compute the least fixed-point of fn in Example 4 (more precisely, their corresponding functions defined
on N∞), but the algorithm in Section 3 requires constant time.

Unfortunately, we have not yet obtained the time complexity of the algorithm. Even if we restrict
ourselves to fixed-point free functions, the current termination proof shown in Section 3 does not provide
the number of required repetitions. To evaluate the complexity of the algorithm remains as future work.

Acknowledgments

The authors would like to thank the reviewers for their careful reading and helpful comments.
This research has been partially supported by Grant-in-Aid for Scientific Research by Ministry of

Education, Culture, Science and Technology, Scientific Research(C) 21500006, “Decision procedures of
modal logics and their application to software verification.”

References
[1] L. V. Allis, M. van der Meulen, and H. J. van den Herik. Proof-number search. Artif. Intell., 66(1):91–124,

1994.
[2] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Quadrat. Synchronization and Linearity: An Algebra for Discrete

Event Systems. John Wiley & Sons, 1992.
[3] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

114

Fixed-Point Computations over Functions on Integers Tanabe and Hagiya

[4] D. Ikarashi, Y. Tanabe, K. Nishizawa, and M. Hagiya. Modal µ-calculus on min-plus algebra N∞. In Proc.
of 10th Wksh. on Programming and Programming Languages, PPL 2008 (March 2008), 2008. Available at
http://www.nue.riec.tohoku.ac.jp/ppl2008/program.html.

[5] D. Ikarashi, Y. Tanabe, K. Nishizawa, and M. Hagiya. Modal µ-calculus on min-plus algebra N∞. Revised ver-
sion of [4], submitted, 2009. Available at http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.
pdf.

[6] D. Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27(3):333–354, 1983.
[7] D. Lacey, N. D. Jones, E. Van Wyk, and C. C. Frederiksen. Compiler optimization correctness by temporal

logic. Higher-Order and Symb. Comput., 17(3):173–206, 2004.
[8] I. Simon. Limited subsets of a free monoid. In Proc. of 19th Ann. Symp. on Foundations of Computer Science,

FOCS ’78 (Ann Arbor, MI, Oct. 1978), pp. 143–150. IEEE CS Press, 1978.

115

http://www.nue.riec.tohoku.ac.jp/ppl2008/program.html
http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.pdf
http://cent.xii.jp/tanabe.yoshinori/09/05/minplusPC.pdf

	Introduction
	Target Functions
	Procedure
	Function Examples
	Shortest Path
	Proof-Number Search
	Data Flow Analysis

	Conclusion
	Remark on Efficiency

