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Abstract

We present an approach to reasoning non-uniformly by default with uncertain, incomplete and
inconsistent information using sets of rules/extended logic programs in the context of logics with
a bilattice structure. A fixed point semantics for extended logic programs used in the process of
inference is described, along with its computational approach. We show how this theoretic approach
is applicable to the problem of integration of imperfect information coming from multiple sources.

1 Introduction

Information integration has received much attention for a number of year now in Database, Artificial
Intelligence, Logic Programming, Multimedia Information Systems, World Wide Web and other research
communities. Various approaches to information fusion have been proposed, adapted to the particular
research areas, as the integration of data in a distributed database or from different databases, or the
integration of information collected by an agent from other sources, or merging belief bases represented
using logic programs, or integrating information coming from different medium sources as text, sound
or image (as it is the case, for instance, in the query ”find the full description of albums containing music
played by piano and having elements of classical and jazz as genre”) or Web sources, etc.

In order to propose an approach to information integration, two main questions may arise: (1) How
is information coming from multiple sources combined?, and (2) Given the problems of possible con-
flicting information coming from mutually contradictory sources, of missing information coming from
incomplete sources, or of uncertain information coming from sources of limited reliability, what meaning
can one assign to the fused information (that is, what is the result of the integration)? The information
that is incomplete or totally or partially inconsistent or uncertain will be called imperfect information in
what follows.

With respect to the first question, the approach to the information integration that we propose in this
paper is based on the logic programming paradigm, as it uses inference rules to integrate information
in a logic based context. The logic rules we use, however, form extended logic programs as there is a
need to employ, apart operations as the conjunction ∧, the disjunction ∨ and the negation ¬, two more
operations, that can be easily given a particular meaning in information merging, called the consensus ⊗
and the collecting together operation ⊕, to be formally and most generally defined in the next section.

With respect to the second question, we first choose an appropriate formalism based on multiple
valued logics expressed by the concept of bilattice, that is very powerful in expressing the three aspects
of imperfect information, namely the uncertainty, the incompleteness and the inconsistency.

In order to illustrate the concept of bilattice, assume first that we want to express the truthness of an
information A. In the ideal case we can employ the logical values true or false, but in many situations
this approach is simplistic and not acceptable. If we use a degree between 0 and 1 instead of a classical
logical value, the approach is more appropriate in expressing uncertainty but less helpful in expressing
lack of information, or the presence of contradiction in information. Indeed, no value from [0,1] can
express, alone, incompleteness or inconsistency. A natural idea would then be to assign an information
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a pair 〈c,d〉 instead of one value, that would consist in a degree of confidence c and a degree of doubt d
in [0,1], which do not necessarily add up to 1 (otherwise the single value c would suffice and we would
be again in the previous case). In this setting 〈0,1〉 and 〈1,0〉, represent no confidence, full doubt, and
full confidence, no doubt, so they would correspond to the classical values f alse and true, respectively.
On the other hand 〈0,0〉 and 〈1,1〉, represent no confidence, no doubt, and full confidence, full doubt,
and they express a total lack of information or a total inconsistency, respectively. Two orders, namely
the truth and the information (or knowledge) orders denoted ≤t and ≤i, can naturally be defined on
the set of confidence-doubt pairs, denoted L C D and called the confidence-doubt logic [9], as follows:
〈x,y〉 ≤t 〈z,w〉 iff x ≤ z and w ≤ y, and 〈x,y〉 ≤i 〈z,w〉 iff x ≤ z and y ≤ w, where ≤ is the usual order
between reals. Intuitively speaking, an increase in the truth order corresponds to an increase in the
degree of confidence and a decrease in the degree of doubt, while an increase in the information order
corresponds to an increase in both degrees of confidence and doubt. The meet and join operations w.r.t.
≤t and≤i are denoted∧, ∨,⊗ and⊕, respectively. ∧ and∨ are the extensions of the classical conjunction
and disjunction, while⊗ and⊕ are two new operations with potential of use in information integration as
they naturally express the idea of consensus and of collecting together of two pairs of confidence-doubt
degrees. A natural extension of the classical negation is defined by ¬〈x,y〉 = 〈y,x〉. We conclude the
section by noting that the double structure of lattice induced by the two orders on L C D is the basis of
the general concept of bilattice introduced in [5].

2 Extended Logic Programs on Bilattices

Bilattices offer one of most capable frameworks to express, in the same time, the characteristics of the
information to be incomplete, totally or partially inconsistent or uncertain. In addition, bilattices have an
algebraic structure that allows to express approaches built on this concept in an elegant manner, and to
facilitate elegant and often shorter proofs of results.

Definition 1. A bilattice is a triple 〈B,≤t ,≤i〉, where B is a nonempty set, and ≤t and ≤i are partial
orders each giving B the structure of a complete lattice.

Given the bilattice B, join and meet operations under ≤t are denoted ∨ and ∧, called extended disjunc-
tion and conjunction, and join and meet operations under ≤i are denoted ⊕ and ⊗, called collecting
together and consensus, respectively. The greatest and least elements under ≤t are denoted true and
f alse, and the greatest and least elements under ≤i are denoted > and ⊥. A bilattice has a negation,
denoted ¬, if ¬ is a unary operation which is antimonotone w.r.t. the truth order and monotone w.r.t. the
information order. In addition ¬true = f alse, ¬ f alse = true, ¬⊥=⊥ and ¬>=>.

Note that L C D that we described in the previous section is a bilattice whose binary operations can
be expressed as follows:

〈x,y〉 ∧ 〈z,w〉= 〈min(x,z),max(y,w)〉, 〈x,y〉 ∨ 〈z,w〉= 〈max(x,z),min(y,w)〉,
〈x,y〉 ⊗ 〈z,w〉= 〈min(x,z),min(y,w)〉, 〈x,y〉 ⊕ 〈z,w〉= 〈max(x,z),max(y,w)〉.

In what follows we consider only bilattices for which all the distributive laws hold, an example of whom
is L C D . These bilattices are called distributive, and it was proven that their non-unary operations of
finite or infinite arity, are monotone w.r.t. both the truth and the information orders [2].

Fitting [2] extended the notion of logic program, that we will call extended program, to bilattices as
follows. Let B be a bilattice, whose elements will be referred to as logical values.

Definition 2. (1) A formula is an expression built up from literals and elements of B, using∧,∨,⊗,⊕,¬,∃,∀.
(2) A rule r is of the form H(v1, ...,vn)← F(v′1, ...,v

′
m) where the atomic formula H(v1, ...,vn) is the head,
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and the formula F(v′1, ...,v
′
m) is the body. It is assumed that the free variables of the body are among

v1, ...,vn. (3) A program is a finite set of rules assuming that no predicate letter appearing in the head of
more than one rule.

Note that the restrictions/assumptions from (2) and (3) in the above definition cause no loss of gen-
erality, since any program as above, but without these restrictions, can be rewritten into another program
respecting the restrictions [2]. On the other hand, any classical logic program can be written in the form
described in definition 2, if one employs ∧, ∨ and true only, from the operations and elements of the
bilattice B, which obviously embeds the classical bivalued logic.For technical reasons, from now on, we
consider any extended program to be instantiated (that is, all the free variables are replaced by ground
terms). Note that, due to the way extended programs have been defined, their instantiated versions have
no more than one rule with the same head.

Example 1. Consider the following set of rules / extended program in the context of the bilattice L C D .
A← B⊕F ; B←¬E;
D← B∨C; E← 〈0.7,0.3〉;
C←C⊗E.

Intuitively speaking, the information represented by E is assigned a confidence of 0.7 and a doubt of 0.3,
as this fact is specified. B is the contrary of this information so it is assigned a confidence of 0.3 and a
doubt of 0.7. F is an information whose confidence and support cannot be derived from the program as
there is no rule defining F, so we assign F a confidence and doubt given by the reliability of the source
providing it. That is, a default confidence and support will be assigned to F, specific to that source, as for
instance a confidence of 0 and a doubt of 1 in a pessimistic, ”not believing that source at all”, approach,
or a confidence of 1 and a doubt of 0 in an optimistic, ”believing that source”, approach. Let us assume
the pessimistic approach for this source. C is information that should agree with E, as their consensus
should be C. In particular C can be assigned a degree 0 of confidence and a degree 0 of doubt, if we are
completely skeptical about the reliability of its source (that is, that source is not considered reliable, nor
unreliable, so any default degrees of confidence and doubt from an information coming from that source
will be 0 and 0 respectively). D is the information that is assigned the largest confidence and the least
doubt from the confidence and doubt degrees of B and C, so 0.3 and 0, respectively. Note that C and D
are incomplete as their degrees of confidence and doubt add up to less than 1. Finally A collects together
the information B and F, so it will be assigned a confidence of 0.3 and a doubt of 1, so A is a partially
inconsistent information as its confidence and doubt degrees add up to more than 1.

Roughly speaking, the example above illustrates the computation of the meaning/semantics of an ex-
tended program. In particular, the atoms (representing information to be integrated by rules) are assigned
logical values from the underlying bilattice, process that needs the concept of interpretation and default
interpretation.

Formally speaking, an interpretation is a mapping that assigns a logical value to each atom from
the Herbrand base. In particular, if an atom cannot be derived from the rules then a default value, not
necessarily the same for all atoms, is assigned to it. This default value is related to the degrees of
reliability of the sources the information represented by the atom comes from. For instance if a source
has a reliability of 90 percent, then the atom A, representing information coming from the source, and
not being derived by any rule, is assigned by default a confidence of 0.9 and a doubt of 0.1. Formally
speaking, a default interpretation is an interpretation. It is to be used to compensate the incompleteness
of information derived using the program rules.

The derivation of information intuitively illustrated in the example above, will be formalised in the
following section. In particular, as it is the case in most logic programming based approaches, the
information deduction process will be expressed in terms of application of operators specific to the
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program, until no new information is obtained, that is, until a fixed point is reached. However, in our
framework one should take into account also the particularities of the underlying logic provided by a set
of values ordered w.r.t. a truth order and an information order, and the process of deduction by default
regarding an atom when there is no rule to apply for that atom.

3 Program Operators and Fixed Point Semantics

The following defines the order ≤p and naturally extends the truth and information orders to the set of
interpretations denoted by IntP.

Definition 3. If I and J are interpretations then
(1) I ≤t J if I(A)≤t J(A)
(2) I ≤i J if I(A)≤i J(A)
(3) I ≤p J if I(A) 6=⊥ implies I(A) = J(A)
for any ground atom A.

The interpretations can be extended to closed formulas (i.e. formulas not containing free variables)
as follows: I(X ∧Y ) = I(X)∧ I(Y ), and similarly for the other operations of L C D , I((∃x)F(x)) =∨

s∈GT I(F(s)), and I((∀x)F(x)) =
∧

s∈GT I(F(s)), where GT stands for the set of all ground terms. If
I(B) = β we say that the formula B evaluates to the logical value β with respect to I. However, in some
cases we can find out the value a closed formula evaluates to, no matter if some atoms are assigned the
value ⊥ - let us call them underdefined, thus the following concept:

Definition 4. The closed formula B ultimately evaluates to the logical value β w.r.t. interpretation I,
denoted by B≡I β , if J(B) = β for any interpretation J s.t. I ≤p J.

Let I> be the interpretation obtained from I by assigning the value > to any underdefined atom. We
have B≡I β iff I(B) = I>(B) = β .

The first inference operator assigned to an extended program P, called the production operator de-
noted ΦP and defined below, intuitively corresponds to the activation of the program rules:

ΦP(I)(A) = β if (∃A← B ∈ P and B≡I β ), or
⊥, otherwise.

The second type of inference assumes the use of a fixed interpretation D called the default interpretation.
Roughly speaking, the value of each atom A in the default interpretation is seen as being derived from
the reliability degrees of the sources the information represented by A is coming from. For instance
if two sources consisting in two medical studies found evidence, based on statistical tests with a 0.05
significance level, that medication m is effective in treating ailment a, while the other that the evolution of
the ailment a is independent of whether or not the medication m was administered to the tested patients,
then the atom E f f ective(m,a) would be assigned the partially inconsistent value 〈0.95,0.95〉 in the
interpretation D . This value will be used whenever no other value can be inferred for this atom from the
program.

We introduce now an intermediary operator called the refining operator, denoted by ΨP, whose role
is to refine an arbitrary default information X (part of the interpretation D), in the sense that X either has
to safely complete the information I obtained by activating the rules, in which case X is not modified by
ΨP, or has to be modified into a new interpretation ΨP(X , I) that safely completes I. Formally,

ΨP(X , I) = Rev(X ,ΦP(Rev(X , I)⊕ I))
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where Rev(X ,J) is an interpretation X ′ s.t. X ′(A) = X(A) for any ground atom A for which either J(A) =
⊥ or X(A) = J(A), and X ′(A) =⊥ for any other ground atom A. We say that X ′ is the revision of X w.r.t.
J.

Note that, by employing the refining operator, we wish to obtain the “best” default information X
used to complete the interpretation I. Formally, we have the following requirements: (1) X ≤p D ; (2)
X = ΨP(X , I); and (3) under the previous two conditions X is maximal w.r.t. ≤p. Roughly speaking X is
to be a part of the default interpretation D (condition 1), that, when it is revised by the sure information
encoded in I and then is further revised by the information that is deducted using the rules applied to I
completed with X , it is stable, that is, it does not change to refinement (condition 2). In addition X is
supposed to complete as much as possible the information encoded in I (condition 3). That is, we are
interested in the maximal fixed points of the operator λXΨP(X , I) that are parts of D , which we call
actual default interpretations with respect to I and D . We show below, via algebraic methods, that there
exists a unique actual default interpretation w.r.t. I and D .

Let (S,≤) be a complete semilattice. We define a diagonal contraction on S as being a binary operator
T ′ : S2→ S that satisfies T ′(X ,X)≤ X for any X ∈ S. We provide the following useful lemmas.

Lemma 1. If T is a monotone operator defined on the complete semilattice (S,≤) the following hold:
(1) T has a least fixed point w.r.t. ≤.
(2) if Y is an element of S s.t. T (Y ) ≤ Y then T has a greatest fixed point X below Y . Moreover X can
be obtained as the limit of the following sequence: X0 = Y , Xn = T (Xn−1) if n is a successor ordinal and
T (Xn) = in f≤,m<nT (Xm) if n is a limit ordinal.

Lemma 2. Let T ′ be a binary operator defined on the complete semilattice (S,≤) which is monotone
in its first argument and antimonotone in its second argument and is a diagonal contraction. If Y is an
arbitrary element of S then T ′ has a greatest fixed point X = T ′(X ,X) below Y . Moreover X can be
obtained as the limit of the following sequence: X0 = Y , Xn = T ′(Xn−1,Xn−1) if n is a successor ordinal
and T (Xn) = in f≤,m<nT ′(Xm,Xm) if n is a limit ordinal.

We have the following properties of the production and the refining operators.

Proposition 1. ΦP is monotone w.r.t. ≤i and ≤p orders.

Let Θ(X ,Y, I) = Rev(X ,ΦP(Rev(Y, I)⊕ I)). Obviously ΨP(X , I) = Θ(X ,X , I). We have the follow-
ing:

Lemma 3. (λX ,λY )Θ(X ,Y, I) is monotone in its first argument and antimonotone in its second argu-
ment and is a diagonal contraction w.r.t. ≤p.

As a consequence of Lemmas 2 and 3 we get:

Proposition 2. (λX)ΨP(X , I) has a greatest fixed point below D w.r.t. ≤p, denoted by De f D
P (I).

Note that Proposition 2 involves that De f D
P (I) is the unique actual default interpretation, while

Lemma 2 provides a means of computation for De f D
P (I) consisting in starting with the default inter-

pretation D and iterating the operator (λX)ΨP(X , I) until a fixed point is reached. We call De f D
P the

default operator, as it is obvious that it reflects the application of the inference by default.
The two types of inference described above are now combined via a new operator, denoted ΓP and

called the integrating operator. Formally ΓP(I) = ΦP(I)⊕De f D
P (I). Roughly speaking, given an inter-

pretation I encoding the information inferred from the program so far, ΓP(I) encodes the new information
currently inferred from the program.

Roughly speaking, in order to generate the information that can be derived from the extended pro-
gram P we start with the least degree of information characterized by an interpretation I0 in which all
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ground atoms are underdefined, denoted by Const⊥ (i.e. nothing is known). We apply the two types
of inference to the current information, which corresponds to an application of ΓP operator, and we get
a new interpretation I1. This process is continued until nothing changes, that is, until a fixed point is
reached. Formally we define the sequence S as follows:

I0 = Const⊥,
In = ΓP(In−1) for a successor ordinal n≥ 1,
In = in f≤p,m<nIm for n a limit ordinal.

We have:

Theorem 1. The following hold:
(1) S is increasing w.r.t. ≤p order (and thus w.r.t. ≤i) and reaches a limit denoted by s.
(2) ΓP(s) = s
(3) for any x s.t. ΓP(x) = x we have s≤i x.

Thus s is the least fixed point of ΓP, and represents the minimal information that can be inferred
from the extended program P completed with the default information D . We chose s to designate the
semantics of P. Note that any fixed point of ΓP is deductively closed w.r.t. the program P and the default
interpretation D , and the two types of inference. Computationally speaking, we have:

Proposition 3. If the program P does not contain any functional symbol, the semantics of P can be
generated by iterative application of the integration operator in a finite number of steps , even if the
underlying bilattice is infinite.

Lemma 4. If Values(P) is the set of logical values appearing in the program P, and Closure(S) is the
closure of the set of logical values from a subset S of the bilattice B, to which one adds the elements
true, f alse, >, and ⊥, w.r.t. the negation and the finite and infinite join and meet operations of B, then
Closure(Values(P)) is a finite bilattice.

The proof of Proposition 3 is based on Theorem 1 and Lemma 4. Indeed, note that the logical values
of any atom in the process of the computation of the semantics of P are elements of Closure(Values(P)),
and are obtained as an increasing sequence w.r.t. ≤p, and thus the evaluation of the semantics of P
finishes in a finite number of steps since the Herbrand base is also finite.

4 Related Work

Our approach can be related in the first instance to other works regarding reasoning under uncertainty
based on multivalued logics, in particular on bilattices, as those authored by Fitting. [3] defined the (mul-
tivalued) stable models for extended programs in bilattices that generalize the concept of stable models
in the conventional bivalued logic [4]. We show below that if we consider the default interpretation D
assigning the value f alse to any ground atom, the semantics of P defined by our approach coincides with
Fitting’s multivalued stable model that has the least degree of information:

Proposition 4. Let P be an extended program considered on the bilattice B, and mstable(P) be its
multivalued stable model, as defined in [3], which is the lowest w.r.t. the information order. Then the
semantics of P w.r.t. the default interpretation D coincides with mstable(P).

We show also that our semantics captures the α-fixed models of extended programs on bilattices,
introduced by the author in [7]. For different logical values α , in particular false, true and ⊥, the α-
models provide various meanings to the same program, depending on how one chooses to complete
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the missing information by adopting a pessimistic, optimistic, or skeptical approach respectively. It
was proven in [7] that α-fixed models capture successful conventional semantics as the well-founded
semantics [10], the three-valued stable semantics [8], the bi-valued stable semantics [4] and the Kripke-
Kleene semantics [1]. Thus the semantics for information integration presented in this work is a natural
extension of the above successful conventional bi-valued or three-valued semantics of conventional logic
programs.

Proposition 5. Given an extended program P considered on the bilattice B, for any logical value α

from B, the α-fixed model of P, as defined in [7], coincides with the semantics of P w.r.t. the default
interpretation that uniformly assigns the value α to any ground atom, as defined in the current approach.

We are currently studying how the semantics defined for information integration in this approach,
strongly related to the multivalued stable models (that in turn generalize the conventional stable models),
can be related to recent work, as for instance [6], which provides a logic programming based approach
making use of a program semantics based on stable models, for merging belief bases. We currently
investigate how the two approaches integrating information/beliefs and their corresponding program se-
mantics can be compared, given the link with the stable model concept, although the present framework
seems more general as based on multivalued logics.
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