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The performance of Statistical Disclosure Control (SDC) methods for microdata (also called masking
methods) is measured in terms of the utility and the disclosure risk associated to the protected microdata
set. Empirical disclosure risk assessment based on record linkage stands out as a realistic and practical
disclosure risk assessment methodology which is applicable to every conceivable masking method.
The intruder is assumed to know an external data set, whose records are to be linked to those in the
protected data set; the percent of correctly linked record pairs is a measure of disclosure risk. This
paper reviews conventional record linkage, which assumes shared variables between the external and
the protected data sets, and then shows that record linkage—and thus disclosure—is still possible
without shared variables.
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1. Introduction

The main task of National Statistical Offices (NSO) is to collect
information from individuals and organizations and disseminate
this information to researchers, media and general public. Pre-
serving respondent privacy is a legal obligation of NSOs which
should not be considered less important than dissemination. The
thorny issue is that there is a tension between the goal of ac-
curate dissemination and respondent privacy preservation. The
higher the dissemination accuracy, the higher the risk of dis-
closing respondent information which should stay confidential.
Disclosure risk is defined as the risk of re-identification of partic-
ular individuals. Re-identification happens when some sensitive
and confidential data that have been released are subsequently
linked to a particular individual, which results in a confiden-
tiality breach. To avoid re-identification, data are masked (i.e.
distorted) before release. In this way, disclosure risk decreases.
However, masked data must maintain the so-called analytical
validity (Winkler 1995a), that is, statistical analyses on origi-

nal confidential data and on masked data should yield similar
results.

Among the existing re-identification methods, those based
on record linkage are probably the most general and realistic
ones, as they can be used with any method and in any disclosure
scenario. Record linkage (Robinson-Cox 1998) is a technology
whose original goal was, rather than assessing disclosure risk,
to improve the quality of data by linking records in separate files
that relate to the same individual or household.

When used by intruders as a method for re-identification of
individuals in data files, record linkage is a threat to statistical
confidentiality. Sensitive information can be disclosed as a re-
sult of released records being linked to other publicly available
information. When used by data protectors themselves, record
linkage is an invaluable tool to assess disclosure risk and thus
the level of protection associated to masked data being released.

Recent developments in record linkage are discussed in
Winkler (1995a, b), Robinson-Cox (1998), Rosman (1995),
Bacher, Brand and Bender (2002). The latter reference compares
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some of the existing methods. Usually, this kind of systems (e.g.
Integrity (http://www.integrity.com)) use statistical and artificial
intelligence methods to determine the matching between records
and extract a unique identifier (or a set of variables acting as an
identifier). Methods in the literature (see Newcombe et al. 1959,
Winkler 1995a, Robinson-Cox 1998, Gill 2001) assume the ex-
istence of a set of common variables in the files to be linked. The
main problem with such an assumption is that a matching proce-
dure among pairs of records is not always enough to establish the
link between records. As pointed out in Winkler (1995a), “the
normal situation in record linkage is that identifiers in pairs of
records that are truly matches disagree by small or large amounts
and that different combinations of the non-unique, error-filled
identifiers need to be used in correctly matching different pairs
of records”.

Example 1. Assume an external file A with the following vari-
ables:

• Name A, whose values consist of a first name followed by a
surname.

• Income tax, whose values are the income tax paid on a certain
year.

Assume a protected file B with the following variables:

• Name B, whose values consist of a surname followed by an
initial.

• Net income, whose values are the net income on a certain
year.

Note that files A and B do not share any variable (even the format
for names is different). However, it would seem natural to link a
record in A with the highest Income tax and Name A = “Henry
Plantagenet” to a record in file B with the highest Net income
and Name B = “Plantagenet H”. Conventional record linkage
cannot provide such a link.

1.1. Our contribution

Four record linkage situations are possible depending on the
coincidence or non-coincidence of variables and terminology
(terminology is the domain of the variables, i.e. the terms used
to evaluate the individuals):

(i) Same variables and same terminology.
(ii) Same variables but different terminology.

(iii) Different variables but same terminology.
(iv) Different variables and different terminology.

Classical record linkage falls into situations (i) or (ii), al-
though in the latter case only small terminology differences are
allowed (small inconsistencies among names, missing values
and the like). However, based on the above classification, other
types of record linkage are conceivable: situation (ii) when the
degree of non-coincidence on the terminology is not limited to
small variations of names (e.g. completely different terms, due,

for example, to the use of different granularities) and, of course,
situations (iii) and (iv).

We study in this paper situation (iv), that is, record linkage
when neither variables nor terminology are the same across the
files to be linked. What will be assumed is that there is a set of
shared individuals or entities across the files—without such a
set of shared individuals, record linkage does not make sense.

There is no evidence in the literature of previous work de-
voted to record linkage without shared variables. Yet, it is a
subject of interest for both statistical disclosure control and data
mining, because it highlights relationships between individuals
that would otherwise remain implicit and undiscovered in the
files to be linked.

Section 2 discusses two simple benchmarks to evaluate the
effectiveness of re-identification methods; these are random re-
identification and re-identification based on one-dimensional
ranking. Section 3 reviews classical record linkage between data
sets which have some variables in common. Section 4 presents
our approach for record linkage between data sets which have
no variables in common. Section 5 contains some conclusions
and suggestions for future work.

2. Benchmarking re-identification

For the sake of concreteness, we will concentrate in what follows
on record linkage between a released unidentified file A and
the intruder’s identified file B. To keep benchmarking simple,
we will assume in this section that both files correspond to the
same set of n individuals. Two benchmarks will be described
which should be useful in measuring the effectiveness of a record
linkage method.

2.1. Probability of random re-identification

The difference between the proportion of records correctly re-
identified by a record linkage method and the expected propor-
tion of records correctly re-identified by a random strategy is a
measure of the effectiveness of the method.

Let p0 be the permutation expressing the correct correspon-
dence between records in both files, i.e. record i in A and
record p0(i) in B correspond to the same individual, for all
i = 1, . . . , n. Random re-identification can be viewed as an in-
truder picking a random permutation p of the set of individuals,
such that the i-th individual in file A is linked to the j-th individ-
ual in file B, where j = p(i). The following proposition, proven
in the Appendix, gives the probability of correct re-identification
when this random strategy is followed.

Proposition 1. If A and B both contain n records correspond-
ing to the same set of n individuals, the probability of correctly
re-identifying exactly r individuals by a random strategy is

∑n−r
v=0

(−1)(n−r )

v!

r !
(1)
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2.2. Re-identification via one-dimensional ranking

Another benchmark that can be used is the proportion of records
re-identified by a simple strategy such as one-dimensional rank-
ing. This strategy is as follows:

• Project records of files A and B onto a single dimension each.
There are several techniques for doing so. One possibility is
to take the first principal component of each file. Another
possibility is to take the sum of z-scores of each file: all vari-
ables in the file are standardized (by subtracting their average
and dividing by their standard deviation) and the sum of the
standardized variables gives a one-dimensional value for each
record.

• Rank records in files A and B according to their one-
dimensional projection.

• Link the i-th record in file A with the i-th record in file B.

Again, the difference in the proportion of records correctly
linked by a record linkage method under test and the proportion
correctly linked by one-dimensional ranking can be used as a
measure of effectiveness.

3. Record linkage with common variables

In this section, we review the two most widely used approaches
for re-identification between files sharing a set of variables. Let
A and B be two files sharing a set of common variables. Both files
are defined over the same set of individuals. We will consider a
general case where it cannot be assured that the values for the
same variables in both files are the same for the same individuals.
In other words, even though variables are the same, values for a
particular individual may differ due to errors.

We first review probabilistic-based record linkage. Then,
distance-based record linkage is considered. Both approaches
are subsequently compared.

3.1. Probabilistic record linkage

Probabilistic record linkage is described in Fellegi and Sunter
(1969), Jaro (1989) and Winkler (1995b). In this section, we
outline only some of its elements. See the above mentioned ref-
erences for details.

Let us consider two files A and B with a single variable V each.
Let a and b be records belonging to files A and B, respectively.
Probabilistic record linkage applied to files A and B is based on
the computation of an index R(a, b) for each pair (a, b). Some
index thresholds are then used to label the pair as a linked pair, a
clerical pair or a non-linked pair. Equivalently, when the index is
larger than, say, linkThreshold, the pair is linked; when the index
is lower than, say, nonLinkThreshold, the pair is non-linked;
when the index is between both thresholds the pair is classified as
a clerical pair. A clerical pair is one that cannot be automatically
classified as linked or non-linked; human inspection is needed
to classify it.

The index R(a, b) is computed as a log-likelihood ratio

R(a, b) = log

(
P(a = b | (a, b) ∈ M)

P(a = b | (a, b) ∈ U)

)
(2)

where M corresponds to the set of matched pairs and U cor-
responds to the set of unmatched pairs. Pairs in M are those
that can be proven to be true matches (the ones that a perfect re-
identification method would detect as corresponding to the same
individual) and pairs in U are those that can be proven to be non-
related (the ones that a perfect re-identification procedure would
not relate).

When a set of variables are considered in both files rather than
a single variable, an expression equivalent to Expression (2) is
used. In this case, a and b correspond to vectors of values rather
than values for a single variable V . It is usually assumed for com-
puting R(a, b) that different variables are statistically indepen-
dent and thus products of conditional probabilities can be used.
Alternative approaches not assuming statistical independence
have also been considered in the literature (see Winkler 1995a).

To use probabilistic record linkage in an effective way,
we need to set the thresholds (e.g. the values linkThreshold
and nonLinkThreshold) and the conditional probabilities in
Expression (2).

The thresholds are usually determined from the probabilities:

P(linked pair | U)

P(non-linked pair | M)

In plain words, thresholds are computed from:

1. The probability of linking a pair that is an unmatched pair (a
false positive or false linkage).

2. The probability of not linking a pair that is a match pair (a
false negative or false unlinkage).

Conditional probabilities in Expression (2) are usually es-
timated using the EM algorithm (Dempster, Laird and Rubin
1977). See the survey paper (Torra and Domingo-Ferrer 2003)
for a description of the EM algorithm and its use in probabilistic
record linkage.

3.2. Distance-based record linkage

This approach, described in Pagliuca and Seri (1999) in a very
specific formulation, consists of computing distances between
records in the two data files being considered. The method was
applied in Pagliuca and Seri (1999) to disclosure risk assessment.
An original data file A was considered together with a distorted
version B of the same file. Record linkage was used to find out
to what extent distorted records could be re-identified.

In general, for each record in file A, the distance to every
record in file B is computed. Then the nearest and second near-
est records in file B are considered. A record in file B is labeled
as linked when the nearest record in file A turns out to be its
corresponding original record (the one that generated the dis-
torted record). A record in file B is labeled as linked to 2nd
nearest when the second nearest record in file A turns out to be
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the corresponding original record. In all other cases, records are
not linked.

The distance-based approach requires that distances be stan-
dardized to avoid scaling problems. Also, an assumption on the
weights of variables for computing the distance between a pair
of records (equal weight for all variables according to Pagliuca
and Seri (1999)) is required.

3.3. Discussion

Both record linkage methods aim at linking records in files A
and B that correspond to the same individuals. As shown above,
both approaches are radically different. The following aspects
can be underlined:

• Distance-based record linkage methods are simple to imple-
ment and operate. The main difficulty with them consists of
establishing appropriate distances for the variables under con-
sideration. In Domingo-Ferrer and Torra (2002), distances
were defined for categorical variables, for both ordinal and
nominal scales. The advantage of distance-based record link-
age is that it allows inclusion of subjective information (indi-
viduals or variables can be weighted) in the re-identification
process.

• Probabilistic record linkage methods are less simple. How-
ever, they do not assume rescaling or weighting of variables
and require the user to provide only two probabilities as input:
the values P(linked pair | U) and P(non-linked pair | M).

It has been illustrated that both approaches lead to similar re-
identification results for numerical data (Domingo-Ferrer and
Torra 2001) as well as for categorical data (Domingo-Ferrer and
Torra 2002). For a more detailed comparison of both methods,
see the survey paper (Torra and Domingo-Ferrer 2003).

4. Record linkage without common variables

As explained in Section 1.1, re-identification without com-
mon variables requires some assumptions, which are next
summarized:

Assumption 1. A set of common individuals is shared by both
files.

Assumption 2. Data in both files contain, implicitly, similar
structural information. In other words, even though there are no
common variables, there is substantial correlation between some
variables in both files.

Structural information of data files stands in our case for any
organization of the data that allows explicit representation of
the relationship between individuals. This structural informa-
tion is obtained from the data files through manipulation of the
data (e.g. using clustering techniques or any other data anal-
ysis or data mining technique). Comparison of the structural
information implicit in both files is what allows two records that
correspond to the same individual to be linked by the system.

Assumption 3. Structural information can be expressed by
means of partitions.

In our approach, structural information is represented by
means of partitions. Partitions obtained from data through clus-
tering techniques make explicit the relation between individuals
according to the variables that describe them. Common par-
titions in both files reflect the common structural information.
We prefer partitions rather than other (more sophisticated) struc-
tures also obtainable with clustering methods, like dendrograms,
because the former are more robust to changes in the data, as
shown in Neumann and Norton (1986).

Although the main interest of our research is re-identification
of individuals, the approach described below is not directly tar-
geted to the re-identification of particular individuals. Instead,
we try to re-identify groups of them. Due to this, we use the term
of group-level re-identification; record-level re-identification is
a particular case of group-level re-identification where one or
more groups contain a single record (see Note 2 below).

4.1. Theoretical background

In this section, we review some of the theoretical results that be-
long to the area of aggregation of equivalence relations. Equiv-
alence relations are relevant here as a way to express rela-
tionships between records (they are equivalent to partitioning
records).

Definition 1. A binary relation R on a set A is an equivalence
relation if and only if, for all a, b, c in A, the following conditions
hold:

(a) Reflexivity: R(a, a)
(b) Symmetry: R(a, b) if and only if R(b, a)
(c) Transitivity: R(a, b) and R(b, c) imply R(a, c).

Definition 2. An aggregation function C over equivalence re-
lations on a set A is a function that, given n equivalence relations
R1, . . . , Rn , defines a new equivalence relation on A. Denote the
aggregated relation by C(R1, . . . ,Rn).

It is usual to add some constraints to define what an aggrega-
tion function is (see Godo and Torra (2000) for examples in the
ordinal case). The additional constraints we impose are specified
next:

Definition 3 (Consistent aggregation). An aggregation func-
tion C is said to be consistent if it satisfies the following two
conditions:

1. For all a, b ∈ A and all pairs of n-tuples (R1, . . . ,Rn) and
(R′

1, . . . ,R′
n) of equivalence relations on A,

if Ri (a, b) ⇔ R′
i (a, b) for i = 1, . . . , n, then

R(a, b) ⇔ R′(a, b)

where R = C(R1, . . . ,Rn) and R′ = C(R′
1, . . . ,R′

n)



Disclosure risk assessment 347

2. For all a, b ∈ A and all (R1, . . . ,Rn),

(a) If Ri (a, b) for i = 1, . . . , n then R(a, b).
(b) If ¬Ri (a, b) for i = 1, . . . , n then ¬R(a, b), where ¬ is

the logical negation operator.

where R = C(R1, . . . ,Rn).

The first condition in the above definition is the so-called in-
dependence condition. It means that the value of the aggregated
relation between a and b does only depend on the individual re-
lations between these two elements. This is equivalent to saying
that the aggregation can be computed over pairs. In other words,
there exists a function F such that:

R(a, b) = F(R1(a, b), . . . ,Rn(a, b))

The second condition is unanimity over pairs, which means
that: (i) when all equivalence relations relate a and b, the ag-
gregated relation also relates a and b; (ii) when all equivalence
relations say that a and b are not related, the aggregated relation
does not relate them.

Theorem 1 below states that consistent aggregation functions
characterized in Definition 3 can be equivalently characterized
as follows:

Definition 4 (Conjunctive aggregation). Let R1, . . . ,Rn be re-
lations on a set A. Then an aggregation function C is a conjunc-
tive aggregation function if there exists a nonempty subset N
of {1, . . . , n} such that R(a, b) ⇔ (Ri (a, b), ∀ i ∈ N ), where
R = C(R1, . . . ,Rn).

The following theorem states that conjunctive combination
of partitions (i.e. intersecting the groups in the partitions) is
the only consistent way to aggregate partitions. This is the
basis of our method described in Section 4.2, which relies on
conjunctive combination of partitions obtained using different
clustering techniques.

Theorem 1 (Fishburn-Rubinstein 1986). If the set A has at
least three elements, the set of consistent aggregation functions
(Definition 3) equals the set of conjunctive aggregation func-
tions (Definition 4).

4.2. Group-level re-identification

General structural information is identified in both files by means
of clustering techniques. Moreover, as different clustering tech-
niques identify different relationships between the individuals,
several techniques with different parameterizations are applied
in turn to both files. In this way, for each file and each technique,
a partition of the individuals is obtained. This initial process is
formalized below considering that data files are named A and
B and, as usual, files are defined by a set of records that assign
values to variables. We assume that the file for which individuals
are known is file B.

Let us express files A and B as sets of records, i.e. A =
{a1, . . . , an(A)} and B = {b1, . . . , bn(B)}, where the number of

records (n(A) and n(B)) is not necessarily the same in both files.
Assumption 1 requires that a substantial number of individuals
exist which are common to both files. However, no knowledge
on which are those common individuals is assumed; therefore, at
this stage, different names in each file will be used for denoting
common individuals.

A clustering process is applied to each file. A set of t different
clustering methods is considered (or the same clustering method
with different parameters) and each method in the set is applied
to each file. Each method induces a partition of the set of records
in a file.

Let CP = {CP1, . . . , CPt } be the set of clustering techniques
considered. Let Ci,A = {Ci,A,1, . . . , Ci,A,nc(i)} and Ci,B =
{Ci,B,1, . . . , Ci,B,nc(i)} be the groups obtained when the clus-
tering technique CPi is applied to files A and B, respectively.
Here, Ci,A, j and Ci,B, j correspond to the j-th group obtained by
the clustering technique CPi when applied to data files A and B.
For all i, j , groups Ci,A, j and Ci,B, j are subsets of the records
in files A and B, respectively, i.e. Ci,A, j ⊆ A and Ci,B, j ⊆ B.
Note that we impose that the number of groups induced by a
particular clustering technique CPi be the same nc(i) when ap-
plied to both data files. This constraint is necessary in order for
groups obtained for file A to be identifiable with those obtained
for file B.

Note 1 (On the number of groups). A substantial practical
problem in performing a cluster analysis is deciding on the
number of groups in the data. Hierarchical clustering meth-
ods give configurations for numbers of groups from one (the
entire data set) up to the number of records (each group has
only one record). Other algorithms find a best fitting structure
for a given number of groups. The latter algorithms can be re-
peatedly used for different choices of the number of groups to
give a variety of alternatives. See Section 1.7 of Hoppner et al.
(1999), Chapter 10 of Duda, Hart and Stork (2001) or Anderberg
(1973) and Hastie, Tibshirani and Friedman (2001) for further
discussion. In this work, we use hierarchical clustering meth-
ods which give dendrograms for each file. For each hierarchical
clustering technique CPi used, both dendrograms are cut at the
highest point (closest to their root) that gives partitions with
the same number of groups nc(i) for file A and file B. Cutting
high in the dendrogram results in partitions with less groups,
which seem more robust (less dependent on small changes in
the data). In particular, this allows the method discussed in this
paper to be used with files A and B with different number of
records.

Once all partitions have been obtained for each CPi , the struc-
tural information is built for each file. This information is a par-
tition (according to Assumption 3) that should synthesize the
common information extracted by all CPi . To achieve this, we
combine all partitions Ci,A and Ci,B by means of an aggrega-
tion function. Since Theorem 1 states that the only consistent
aggregation functions are the conjunctive ones, we use the con-
junction of all partitions. Thus, the structural information of a
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Fig. 1. Conjunction of partitions: �(A, {C1,A, C2,A}) = {C1,A, j1 ∩
C2,A, j2 | for 1 ≤ ji ≤ nc(i)}

file is defined as the intersection of all partitions obtained by the
clustering methods in CP.

Definition 5 (Structural information). Given a set of clustering
methods CP and two files A and B, the structural information
extracted by techniques in CP from files A and B is defined as
�(A, CP) and �(B, CP), respectively, where

�(A, CP) = {∩1≤i≤t Ci,A, j | for 1 ≤ j ≤ nc(i)}
= {

π A
1 , . . . , π A

p(A)

}
�(B, CP) = {∩1≤i≤t Ci,B, j | for 1 ≤ j ≤ nc(i)}

= {
π B

1 , . . . , π B
p(B)

}

Figure 1 illustrates the conjunction of partitions for file A in
the particular case t = 2 (only two clustering techniques used).
Tables 1 and 2 depict the structural information extracted from
files A and B by a set of clustering methods. Remark that some
of the Ci,A, j in Table 1 may be empty, because the number of
groups obtained with the i-th method CPi is nc(i) ≤ p(A); a
similar remark applies to the Ci,B, j in Table 2.

From Definition 5, the proposition below follows:

Proposition 2. �(A, CP) and �(B, CP) are partitions of the
sets of records of files A and B, respectively.

Using the equivalence of consistent and conjunctive aggrega-
tion (see Definitions 3 and 4 and Theorem 1), we can state the
next proposition.

Table 1. Partitions obtained from file A with clustering techniques
CP = {CP1, . . . ,CPt }

FileA CP1 CP2 CPt

π A
1 C1,A,1 C2,A,1 · · · Ct,A,1

· · · · · · · · · · · ·
π A

p(A) C1,A,p(A) C2,A,p(A) · · · Ct,A,p(A)

Table 2. Partitions obtained from file B with clustering techniques
CP = {CP1, . . . ,CPt }

FileB CP1 CP2 CPt

π B
1 C1,B,1 C2,B,1 · · · Ct,B,1

· · · · · · · · · · · ·
π B

p(B) C1,B,p(B) C2,B,p(B) · · · Ct,B,p(B)

Proposition 3.

1. All records in the same partition element π ∈ �(A, CP) are
clustered together in all partitions Ci,A. The same holds true
for �(B, CP).

2. Two records in two different groups πi and π j in �(A, CP)
are clustered in different partitions at least for one clustering
method. The same holds true for �(B, CP).

To perform record linkage between files A and B, we need
to associate each group in a data file with a group in the other
one. Therefore, we want a mapping fi : Ci,A → Ci,B for all
i ∈ {1, . . . , t} that assigns to each group in Ci,A a group in Ci,B .
Mappings fi should be such that, when applied to Table 1, a table
as similar as possible to Table 2 is obtained (note that Ci,A is the
i-th column of Table 1 and Ci,B is the i-th column of Table 2).
We define similarity between tables on a row basis: the j-th row
in Table 1 (e.g. the one corresponding to π A

j ) should be similar
to one of the rows in Table 2. Otherwise put, a π B

k in �(B, CP)
should exist which is similar to f (π A

i ) = ( f1(cA
i,1), . . . , ft (cA

i,t ))
for all i .

Consistently with the above approach, we use a similarity
function S : [C1,B × · · · × Ct,B]2 → R specified by:

S(X = (x1, x2, . . . , xt ), Y = (y1, y2, . . . , yt )) =
t∑

i=1

si (xi , yi )

where si (x, y) = 1 if x = y, and 0 otherwise.
To complete the formalization of the re-identification process,

we need a group-level re-identification function (i.e. one that
relates the i-th partition of �(A, CP) with the k-th partition of
�(B, CP)). Let this function be

m : {1, . . . , p(A)} → {1, . . . , p(B)}
Now, the group-level re-identification problem can be stated in
the following way:

Problem 1 (Group-level re-identification). Find functions f =
( f1, . . . , ft ) and m such that

∑t
i=1 S( f (π A

i ), π B
m(i)) is maxi-

mized.

The following remarks related to Problem 1 are of interest:

1. The definition of the problem assumes that the file for which
the identity of individuals is known is file B. Therefore, the
re-identification function m maps groups in A into groups
in B and the similarity function is computed by comparing
partitions in B.

2. We place a restriction on fi by requiring that
( fi (Ci,A,1), . . . , fi (Ci,A,nc(i))) be a permutation of the vector
(Ci,B,1, . . . , Ci,B,nc(i)).

3. p(A) can be different from p(B). Therefore, m is not always
a one-to-one function.

4. When the number of clustering methods increases (larger
CP), the number of elements in �(A, CP) and �(B, CP)
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increases toward the number of records in the files (i.e. groups
become smaller and smaller and tend to include a single
record). Therefore, if a large number of clustering methods
is used, group-level re-identification tends to become record-
level re-identification.

5. The above statement of group-level re-identification is tar-
geted to the case where no common variables nor terminolo-
gies exist between files A and B, but it also includes the case
of common variables but different terminologies between A
and B.

Note 2 (Group-level vs. record-level re-identification). The
approach described above is meant as a group-level re-
identification. That is, its outcome is a mapping between groups
of records in file A and groups of records in file B. As a particu-
lar case, if groups in file B contain a single record, our approach
leads to record-level re-identification (even if it may be a many-
to-one or few-to-one re-identification, instead of one-to-one).
Note that outliers in the released file A (usually the most interest-
ing individuals for intruders) are likely to belong to single-record
groups; thus, for outliers, record-level is likely to mean one-to-
one re-identification. The way to reduce the size of groups and
tend to record-level re-identification is to increase the number
of clustering methods used. The explanation is that partitions
resulting from the various clustering methods are conjunctively
aggregated by intersecting groups, which increases the number
of groups and decreases their size.

4.3. Experimental results

We demonstrate in this section the feasibility of our approach
by reporting a practical application. To test the methodology, we
have used part of a data set we used in our paper (Domingo-
Ferrer and Torra 2001). The data set consists of 13 variables
and 90 records that have been obtained using the Data Extrac-
tion System (DES) of the U.S. Census Bureau (2003). From
the available data sources we chose the Current Population Sur-
vey corresponding to 1995—specifically, the file group “March
Questionnaire Supplement—Person Data Files”.

Variables in the data set are as follows: AFNLWGT (Fi-
nal weight), AGI (Adjusted gross income), EMCONTRB (Em-
ployer contribution for health insurance), ERNVAL (Business
or farm net earnings), FEDTAX (Federal income tax liability),
FICA (Social Security retirement payroll reduction), INTVAL

Table 3. Correlations between variables in files A and B

AFNLWGT EMCONTRB PTOTVAL TAXINC POTHVAL PEARNVAL WSALVAL

AGI −0.111 0.469 0.782 0.972 0.027 0.774 0.773
FEDTAX −0.100 0.304 0.741 0.977 0.114 0.703 0.703
STATETAX −0.093 0.378 0.784 0.957 0.114 0.746 0.745
INTVAL 0.112 −0.130 0.255 0.155 0.648 0.035 0.035
FICA −0.135 0.612 0.892 0.697 −0.185 0.956 0.956
ERNVAL −0.095 0.629 0.922 0.707 −0.150 0.975 0.975

(Amount of interest income), PEARNVAL (Total personal earn-
ings), POTHVAL (Total other persons income), PTOTVAL (To-
tal personal income), STATETAX (State income tax liability),
TAXINC (Taxable income amount), WSALVAL (Amount: Total
wage and salary).

File A consists of variables AFNLWGT, EMCONTRB, PTOT-
VAL, TAXINC, POTHVAL, PEARNVAL and WSALVAL. File
B consists of variables AGI, FEDTAX, STATETAX, INTVAL,
FICA and ERNVAL. Table 3 shows the correlations among vari-
ables across files, to illustrate the level of similarity in the struc-
tural information in both files. It is enough that there be some
variable pairs with high correlation, even if other variable pairs
are uncorrelated.

We next illustrate the operation of our group-level re-
identification method on files A and B. The following steps
were performed:

1. Before splitting the original data set, a standardization of
the domains of variables was performed. We standardized
values x of variable V in the [0, 1] interval as x ′ = (x −
min(V ))/(max(V ) − min(V )).

2. The partitions specified by Tables 1 and 2 were computed. To
do so, t = 6 classification techniques were applied to both
files. Each technique led to a dendrogram and for each den-
drogram a partition was obtained. Dendrograms were con-
structed using SAHN (Everitt 1977) methods (i.e. sequen-
tial, agglomerative, hierarchical, non-overlapping methods).
Several similarity functions (functions to compute similari-
ties between variables/groups) and classification criteria (how
to compute, from already known similarities, the similarity
between a new group and the previous existing ones) were
applied. Similarity functions used were based on Manhattan
distance, on differences and on taxonomic distance; classifi-
cation criteria used were the arithmetic average and centroid
clustering. Detailed descriptions of these functions and crite-
ria and their properties can be found in Everitt (1977). Once
the partitions were obtained for the six methods, the intersec-
tion partitions in �(A, CP) and �(B, CP) were computed.
The latter partitions together with the partitions obtained
using the six classification methods are given in Tables 4
and 5.

3. The maximization problem (Problem 1) was heuristically
solved, with the constraint that fi ’s be one-to-one and
group-level re-identification induced by m be such that a
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Table 4. Intersection partitions π A
j ∈ �(A, CP) and the corresponding groups Ci,A, j ∈ Ci,A. The last six columns correspond to the six clustering

techniques CPi used: aa and cc are the classification criteria and stand for arithmetic average and centroid clustering, respectively; µ, δ and τ

refer to similarity functions based, respectively, on Manhattan distance, differences and taxonomic distance. The column whose header is the i-th
clustering technique CPi contains the groups Ci,A, j ∈ Ci,A. The re-identification function m maps partitions π A

j to π B
m( j) (see Table 5). The 24

correctly re-identified records in the first column are shown within a box; the 5 correct group-level re-identifications which are not record-level are
shown between parentheses

CP1 CP2 CP3 CP4 CP5 CP6

π A
j π B

m( j) aa,µ aa,δ aa,τ cc,µ cc,δ cc,τ

a2 b2 C1,A,4 C2,A,1 C3,A,1 C4,A,1 C5,A,36 C6,A,1

a3 b3 C1,A,4 C2,A,1 C3,A,6 C4,A,4 C5,A,9 C6,A,4

a1 b1 C1,A,4 C2,A,1 C3,A,6 C4,A,1 C5,A,10 C6,A,1

a82 b8 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,2 C6,A,3

a83 b47 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,12 C6,A,3

(a81) b78, b81 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,11 C6,A,1

a84 b84 C1,A,3 C2,A,2 C3,A,3 C4,A,2 C5,A,19 C6,A,2

a80 b87 C1,A,3 C2,A,2 C3,A,3 C4,A,2 C5,A,10 C6,A,2

a87 b30, b33 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,11 C6,A,4

(a63) b5, b20, b49, b63 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,39 C6,A,3

a89 b45 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,39 C6,A,4

(a78) b78, b81 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,35 C6,A,1

a54 b60 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,6 C6,A,3

a90 b90 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,6 C6,A,4

a51 b51 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,38 C6,A,3

a86 b77 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,38 C6,A,4

a4 b4 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,32 C6,A,3

a88 b88 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,31 C6,A,4

a6 b6 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,15 C6,A,3

a38 b24 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,27 C6,A,1

a39 b39 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,14 C6,A,1

a36 b36 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,13 C6,A,1

a40 b40 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,21 C6,A,1

a35 b35 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,13 C6,A,1

a41 b72 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,14 C6,A,1

a34 b37 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,32 C6,A,4

a42 b9, b74 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,22 C6,A,4

a33 b57 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,26 C6,A,1

a44 b21 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,29 C6,A,4

a32 b46 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,22 C6,A,3

a46, a62 b67 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,17 C6,A,3

a31 b43, b89 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,23 C6,A,4

a47 b7, b13, b66 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,7 C6,A,3

a30 b28 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,16 C6,A,1

a50 b50 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,11 C6,A,3

a29 b76 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,15 C6,A,4

a52 b22 C1,A,1 C2,A,2 C3,A,1 C4,A,1 C5,A,30 C6,A,1

a28 b9, b74 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,9 C6,A,4

a16, a53 b53 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,30 C6,A,1

a26 b26 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,15 C6,A,1

a55 b55 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,28 C6,A,1

a25 b25 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,24 C6,A,1

a56 b56 C1,A,3 C2,A,2 C3,A,3 C4,A,2 C5,A,11 C6,A,2

a24 b54 C1,A,4 C2,A,2 C3,A,4 C4,A,1 C5,A,25 C6,A,3

(Continued on next page.)
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Table 4. (Continued)

CP1 CP2 CP3 CP4 CP5 CP6

π A
j π B

m( j) aa,µ aa,δ aa,τ cc,µ cc,δ cc,τ

a23 b64 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,18 C6,A,1

a58 b58 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,1 C6,A,1

a22 b52 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,16 C6,A,1

a21 b80 C1,A,4 C2,A,2 C3,A,2 C4,A,1 C5,A,17 C6,A,1

a60 b61 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,31 C6,A,3

a19 b79 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,17 C6,A,1

a17 b17 C1,A,1 C2,A,2 C3,A,1 C4,A,1 C5,A,29 C6,A,1

a66, a73 b82, b83 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,9 C6,A,3

a67 b18 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,34 C6,A,3

a14 b70 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,19 C6,A,1

a59, a68 b23 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,17 C6,A,1

a18 b69 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,11 C6,A,3

a76 b86 C1,A,6 C2,A,2 C3,A,6 C4,A,4 C5,A,11 C6,A,4

a69 b7, b13, b66 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,19 C6,A,3

(a49) b5, b20, b49, b63 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,4 C6,A,3

a74 b31 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,4 C6,A,4

a70 b68 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,7 C6,A,4

a15 b11 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,20 C6,A,3

a45 b29 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,20 C6,A,4

a71 b71 C1,A,1 C2,A,2 C3,A,1 C4,A,1 C5,A,10 C6,A,1

a27 b27 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,8 C6,A,3

a37 b42 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,8 C6,A,4

a72, a79 b16 C1,A,1 C2,A,2 C3,A,1 C4,A,1 C5,A,19 C6,A,1

(a20) b5, b20, b49, b63 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,33 C6,A,3

a43 b65 C1,A,5 C2,A,2 C3,A,6 C4,A,4 C5,A,33 C6,A,4

a75 b14 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,9 C6,A,1

a61 b73 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,5 C6,A,3

a65 b10 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,5 C6,A,4

a48 b48 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,3 C6,A,3

a64 b43, b89 C1,A,4 C2,A,2 C3,A,6 C4,A,4 C5,A,3 C6,A,4

a13 b32 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,37 C6,A,3

a77 b44 C1,A,6 C2,A,2 C3,A,6 C4,A,4 C5,A,37 C6,A,4

a11 b5, b20, b49, b63 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,23 C6,A,3

a12, a57 b19 C1,A,4 C2,A,2 C3,A,1 C4,A,1 C5,A,19 C6,A,1

a5 b82, b83 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,9 C6,A,3

a10, a85 b75 C1,A,4 C2,A,2 C3,A,6 C4,A,1 C5,A,12 C6,A,1

a7 b62 C1,A,2 C2,A,2 C3,A,5 C4,A,3 C5,A,19 C6,A,3

a9 b41 C1,A,6 C2,A,2 C3,A,6 C4,A,4 C5,A,19 C6,A,4

a8 b15 C1,A,1 C2,A,2 C3,A,4 C4,A,1 C5,A,21 C6,A,3

group π B
j ∈ �(B, CP) receives at most |π B

j | mappings from
�(A, CP).

The functions fi in the solution are given in Table 6.
The second column of Table 4 gives the group-level re-
identification induced by the solution. From the first two
columns of Table 4, it can be seen that, with just t = 6
clustering techniques, a group-level re-identification is ob-
tained which in most cases is a record-level re-identification
(groups with a single record are obtained in the second
column).

After applying the method, we measured its effectiveness in
terms of correct re-identifications. These can be counted from
Table 4 as follows: a record ai in the first column is correctly re-
identified if bi appears in the second column and same row. This
gives 29 correct group-level re-identifications for 90 records, 24
of which are record-level re-identifications (such that the group
in the second column contains a single bi ). Thus, the percent of
correct record-level re-identifications is 26.6%. The 24 correctly
re-identified records ai are shown in Table 4 within a box; the 5
correct group-level re-identifications which are not record-level
are shown between parentheses in that table.
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Table 5. Intersection partitions π B
j ∈ �(B, CP) and the corresponding

groups Ci,B, j ∈ Ci,B. Meanings of aa, cc, µ, δ and τ as in Table 4

CP1 CP2 CP3 CP4 CP5 CP6

π B
j aa,µ aa,δ aa,τ cc,µ cc,δ cc,τ

b2 C1,B,1 C2,B,2 C3,B,1 C4,B,2 C5,B,26 C6,B,2

b3 C1,B,2 C2,B,2 C3,B,6 C4,B,2 C5,B,22 C6,B,2

b1 C1,B,1 C2,B,2 C3,B,1 C4,B,2 C5,B,8 C6,B,2

b82, b83 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,22 C6,B,3

b78, b81 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,14 C6,B,2

b84 C1,B,4 C2,B,1 C3,B,3 C4,B,3 C5,B,22 C6,B,4

b80 C1,B,5 C2,B,1 C3,B,1 C4,B,2 C5,B,5 C6,B,2

b85 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,28 C6,B,2

b87 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,22 C6,B,2

b79 C1,B,5 C2,B,1 C3,B,1 C4,B,2 C5,B,17 C6,B,2

b5, b20, b49, b63 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,16 C6,B,3

b43, b89 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,16 C6,B,1

b54 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,13 C6,B,3

b90 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,6 C6,B,2

b51 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,21 C6,B,3

b86 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,11 C6,B,2

b4 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,18 C6,B,3

b88 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,35 C6,B,2

b6 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,15 C6,B,3

b38 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,37 C6,B,2

b39 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,24 C6,B,2

b36 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,25 C6,B,2

b40 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,15 C6,B,2

b35 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,25 C6,B,2

b41 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,23 C6,B,2

b34 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,16 C6,B,2

b42 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,7 C6,B,1

b30, b33 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,27 C6,B,2

b44 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,30 C6,B,2

b32 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,30 C6,B,3

b46 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,9 C6,B,3

b31 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,16 C6,B,2

b47 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,12 C6,B,3

b50 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,4 C6,B,3

b29 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,20 C6,B,2

b52 C1,B,3 C2,B,1 C3,B,1 C4,B,2 C5,B,28 C6,B,2

b28 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,18 C6,B,2

b53 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,4 C6,B,2

b26 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,23 C6,B,2

b55 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,33 C6,B,2

b25 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,31 C6,B,2

b56 C1,B,3 C2,B,1 C3,B,1 C4,B,2 C5,B,29 C6,B,2

b24 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,27 C6,B,2

b57 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,39 C6,B,2

b23 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,17 C6,B,2

b58 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,1 C6,B,2

b22 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,32 C6,B,2

b59 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,29 C6,B,2

b21 C1,B,5 C2,B,1 C3,B,5 C4,B,1 C5,B,10 C6,B,1

b60 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,6 C6,B,3

b19 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,37 C6,B,2

b62 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,34 C6,B,3

(Continued.)

Table 5. (Continued)

CP1 CP2 CP3 CP4 CP5 CP6

π B
j aa,µ aa,δ aa,τ cc,µ cc,δ cc,τ

b17 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,3 C6,B,2

b7, b13, b66 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,38 C6,B,3

b16 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,16 C6,B,2

b67 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,17 C6,B,3

b14 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,28 C6,B,2

b68 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,38 C6,B,2

b18 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,19 C6,B,3

b76 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,13 C6,B,1

b69 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,11 C6,B,3

b9, b74 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,38 C6,B,1

b70 C1,B,2 C2,B,1 C3,B,6 C4,B,2 C5,B,34 C6,B,2

b15 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,36 C6,B,3

b45 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,36 C6,B,1

b71 C1,B,1 C2,B,1 C3,B,1 C4,B,2 C5,B,2 C6,B,2

b27 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,7 C6,B,3

b37 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,19 C6,B,2

b72 C1,B,5 C2,B,1 C3,B,1 C4,B,2 C5,B,24 C6,B,2

b73 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,5 C6,B,3

b75 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,12 C6,B,2

b61 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,35 C6,B,3

b65 C1,B,6 C2,B,1 C3,B,6 C4,B,2 C5,B,26 C6,B,2

b48 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,26 C6,B,3

b64 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,9 C6,B,2

b77 C1,B,6 C2,B,1 C3,B,4 C4,B,1 C5,B,21 C6,B,1

b11 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,20 C6,B,3

b12 C1,B,1 C2,B,1 C3,B,3 C4,B,2 C5,B,34 C6,B,2

b10 C1,B,5 C2,B,1 C3,B,6 C4,B,2 C5,B,5 C6,B,2

b8 C1,B,3 C2,B,1 C3,B,2 C4,B,4 C5,B,10 C6,B,3

Benchmarking the results. Since both files have the same num-
ber of records, it is easy to benchmark the above result with the
strategies discussed in Section 2.

The first benchmark was random linkage. The probability of
randomly obtaining 24 or more correct links out of 90 links (see
Proposition 1) is 0.6175115 · 10−24. Thus, the expected number
of correct re-identifications for 90 records is O(10−22).

Note 3. In fact, using Expression (1), one can see that the
probability of randomly obtaining more than 3 correct links out
of 90 links is already negligible.

The second benchmark consisted on using one-dimensional
ranking for record linkage:

• For one-dimensional ranking based on the first principal com-
ponent, 5 out of 90 records were correctly re-identified (5.5%).
The re-identified pairs were (a7, b7), (a13, b13), (a31, b31),
(a40, b40) and (a61, b61).

• For one-dimensional ranking based on the sum of z-scores,
also 5 out of 90 records were correctly re-identified (5.5%).
The re-identified pairs were (a5, b5), (a7, b7), (a13, b13),
(a35, b35) and (a89, b89).
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Table 6. Functions fi that maximize the similarity between partitions in Tables 4 and 5. Notation: fi maps Ci,A to Ci,B, so the groups Ci,A, j on
the left of the arrows for fi are the groups in partition Ci,A (see Table 4) and the groups Ci,B, j on the right of the arrows for fi are the groups in
partition Ci,B (see Table 5)

f1 C1,A,1 → C1,B,1 C1,A,2 → C1,B,3 C1,A,3 → C1,B,4 C1,A,4 → C1,B,5

C1,A,5 → C1,B,6 C1,A,6 → C1,B,2

f2 C2,A,1 → C2,B,2 C2,A,2 → C2,B,1

f3 C3,A,1 → C3,B,1 C3,A,2 → C3,B,5 C3,A,3 → C3,B,3 C3,A,4 → C3,B,2

C3,A,5 → C3,B,4 C3,A,6 → C3,B,6

f4 C4,A,1 → C4,B,2 C4,A,2 → C4,B,3 C4,A,3 → C4,B,4 C4,A,4 → C4,B,1

f5 C5,A,1 → C5,B,1 C5,A,2 → C5,B,10 C5,A,3 → C5,B,29 C5,A,4 → C5,B,23

C5,A,5 → C5,B,5 C5,A,6 → C5,B,6 C5,A,7 → C5,B,38 C5,A,8 → C5,B,7

C5,A,9 → C5,B,22 C5,A,10 → C5,B,8 C5,A,11 → C5,B,11 C5,A,12 → C5,B,12

C5,A,13 → C5,B,25 C5,A,14 → C5,B,24 C5,A,15 → C5,B,15 C5,A,16 → C5,B,28

C5,A,17 → C5,B,17 C5,A,18 → C5,B,32 C5,A,19 → C5,B,34 C5,A,20 → C5,B,20

C5,A,21 → C5,B,37 C5,A,22 → C5,B,9 C5,A,23 → C5,B,16 C5,A,24 → C5,B,31

C5,A,25 → C5,B,13 C5,A,26 → C5,B,39 C5,A,27 → C5,B,27 C5,A,28 → C5,B,33

C5,A,29 → C5,B,3 C5,A,30 → C5,B,4 C5,A,31 → C5,B,35 C5,A,32 → C5,B,18

C5,A,33 → C5,B,2 C5,A,34 → C5,B,19 C5,A,35 → C5,B,14 C5,A,36 → C5,B,26

C5,A,37 → C5,B,30 C5,A,38 → C5,B,21 C5,A,39 → C5,B,36

f6 C6,A,1 → C6,B,2 C6,A,2 → C6,B,4 C6,A,3 → C6,B,3 C6,A,4 → C6,B,1

Thus, the results obtained with our method are significantly
better than those obtained using the benchmark strategies.

5. Conclusions and future work

This paper tackles the problem of re-identification of individu-
als when non-common variables are shared by two information
sources. The results obtained are promising and show that re-
identification is indeed possible in such a scenario. This is good
news for data mining and less so for statistical disclosure con-
trol; indeed, data protectors should be aware that powerful record
linkage tools are conceivable which do not require variables to
be shared between the intruder’s side information and the files
released by NSOs.

In spite of the encouraging results obtained so far, more re-
search is needed to reach more definitive and general conclu-
sions. Lines for future work include the following:

• Carry out controlled experiments in a systematic way in or-
der to precisely characterize the conditions under which the
proposed method is successful.

• Characterize the clustering techniques which are most suitable
for re-identification. Suitable techniques are those such that
combining a small number of them yields a large number of
single-record groups and a good group-level re-identification
rate.

• The methodology introduced here has been applied to quanti-
tative data. Nothing prevents it from being applied to categori-
cal data (ordinal or nominal), since clustering techniques exist
that deal with that kind of data. Therefore, the methodology
presented can be used to link files containing both quantitative
and categorical variables.

Appendix

Proof (Proposition 1): The probability of correctly re-
identifying exactly r records is the probability that exactly r
records are equally mapped by the intruder’s random permuta-
tion p and by the correct permutation p0. This probability is
the same as the probability that a random permutation p of the
records in A maps r records to fixed positions (specified by p0).
Without loss of generality, we can assume that the fixed positions
are the original positions of the r records (this is just taking a
particular p0). Thus the probability of correctly re-identifying r
records out of n can be computed as the probability that a per-
mutation of n records leaves exactly r records in their original
position. This is what is computed in the rest of the proof.

The number of possible re-identifications is the number of
possible permutations p, that is, n!. Now let us compute the
number of permutations such that there are exactly r elements
unmoved. These permutations can be built by taking n − r ele-
ments from the correct permutation and permuting them in such
a way that none keeps its original position. The number of pos-
sible subsets of n − r elements is n!/((n − r )!r !). Call permuta-
tions of n − r elements without a fixed point those permutations
of a set of n − r elements in which no element keeps its original
position. According to Reinhard and Soeder (1997), the number
of permutations of n − r elements without a fixed point is

(n − r )!
n−r∑
v=0

(−1)(n−r )

v!

Thus, the number of permutations such that there are exactly r
elements in the correct position is:

n!
∑n−r

v=0
(−1)(n−r )

v!

r !
(3)
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Now the probability of finding at random a permutation
with exactly r elements in the correct position can be com-
puted by dividing Expression (3) by the total number n! of
permutations. �

Acknowledgments

Thanks go to Josep M. Mateo-Sanz for helping with some
computations. This work has been partially supported by
the European Commission under project no. IST-2000-25069
“CASC”. Assistance of guest editor Leon Willenborg is grate-
fully acknowledged.

References

Anderberg M.R. 1973. Cluster Analysis for Applications. Academic
Press, New York.

Bacher J., Brand R., and Bender S. 2002. Re-identifying register data
by survey data using cluster analysis: An empirical study. Inter-
national Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems 10(5): 589–608.

Dempster A.P., Laird N.N., and Rubin D.B. 1977. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society 39: 1–38.

Domingo-Ferrer J. and Torra V. 2002. Validating distance-based record
linkage with probabilistic record linkage. Lecture Notes in Com-
puter Science 2504: 207–215.

Domingo-Ferrer J. and Torra V. 2001. A quantitative comparison of
disclosure control methods for microdata. In: Zayatz L., Doyle
P., Theeuwes J., and Lane J. (Eds.), Confidentiality, Disclosure
and Data Access: Theory and Practical Applications for Statistical
Agencies, North-Holland, Amsterdam, pp. 111–134.

Duda R.O., Hart P.E., and Stork D.G. 2001. Pattern Classification, 2nd
edition, Wiley, New York.

Everitt B. 1977. Cluster Analysis. Heinemann Educational Books Ltd.,
London.

Fellegi I.P. and Sunter A.B. 1969. A theory of record linkage. Journal
of the American Statistical Association 64: 1183–1210.

Fishburn P.C. and Rubinstein A. 1986. Aggregation of equivalence
relations. Journal of Classification 3: 61–65.

Godo L. and Torra V. 2000. On aggregation operators for ordinal quali-
tative information. IEEE Transaction on Fuzzy Systems 8(2): 143–
154.

Gill L. 2001. Methods for Automatic Record Matching and Linking and
Their Use in National Statistics, National Statistics Methodology
Series no. 25, London: Office for National Statistics.

Hastie T., Tibshirani R., and Friedman J. 2001. The Elements of Statis-
tical Learning. Springer, Berlin.

Hoppner F., Klawonn F., Kruse R., and Runkler T. 1999. Fuzzy Cluster
Analysis. Wiley, New York.

Jaro M.A. 1989. Advances in record-linkage methodology as applied
to matching the 1985 Census of Tampa, Florida. Journal of the
American Statistical Association 84: 414–420.

Neumann D.A. and Norton V.T. (Jr). 1986. Clustering and isolation in
the consensus problem for partitions. Journal of Classification 3:
281–297.

Newcombe H.B., Kennedy J.M., Axford S.J., and James A.P.
1959. Automatic linkage of vital records. Science 130: 954–
959.

Pagliuca D. and Seri G. 1999. Some Results of Individual Ranking
Method on the System of Enterprise Accounts Annual Survey,
Esprit SDC Project, Deliverable MI-3/D2.

Reinhard F. and Soeder H. 1997. Atlas des mathématiques, Librairie
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