
Distributed Musical Decision-making in an Ensemble of Musebots:  
Dramatic Changes and Endings 

 

Arne Eigenfeldt 
School for the  

Contemporary Arts 
Simon Fraser University 

Vancouver, Canada 
arne_e@sfu.ca  

Oliver Bown 
Art and Design 
University of  

New South Wales 
Sydney, Australia 

o.bown@unsw.edu.au 
 

Andrew R. Brown 
 Queensland  

College of Art 
Griffith University 
Brisbane, Australia 

andrew.r.brown@griffith.edu.au  
 

Toby Gifford 
Sensilab 

Monash University 
Melbourne, Australia 

toby.gifford@monash.edu   

Abstract 
A musebot is defined as a piece of software that auton-
omously creates music and collaborates in real time 
with other musebots. The specification was released 
early in 2015, and several developers have contributed 
musebots to ensembles that have been presented in 
North America, Australia, and Europe. This paper de-
scribes a recent code jam between the authors that re-
sulted in four musebots co-creating a musical structure 
that included negotiated dynamic changes and a negoti-
ated ending. Outcomes reported here include a demon-
stration of the protocol’s effectiveness across different 
programming environments, the establishment of a par-
simonious set of parameters for effective musical inter-
action between the musebots, and strategies for coordi-
nation of episodic structure and conclusion. 

 Introduction 
Musebots are pieces of software that autonomously create 
music collaboratively with other musebots. A defining goal 
of the musebot project  (Bown et al. 2015) is to establish a 
creative platform for experimenting with musical autono-
my, open to people developing cutting-edge music intelli-
gence, or simply exploring the creative potential of genera-
tive processes in music.  
 A larger and longer-term goal for the project has been a 
sharing of ideas about musebot programming, as well as 
the sharing of code. There already exists substantial re-
search into Musical Metacreation (MuMe) systems, with 
some impressive results. However, much of the creative 
work in this field is idiosyncratic, comprising ad hoc 
standalone systems, and as a result the outcomes can be 
opaque. In such a diverse environment, it is difficult for 
artistic researchers to share their ideas or their code, or 
work out ways that their systems might be incorporated 
into other’s creative workflows. Musebots, responding to 
these challenges, are small modular units designed to be 
shared and studied by others. By making collaboration 
central, and agreeing on communications protocols be-
tween computational agents, the musebot project encour-
ages developers to make transparent their system’s opera-

tion, while still allowing each musebot to employ different 
algorithmic strategies. 
 This paper presents our initial research examining the 
affordances of a multi-agent decision-making process, de-
veloped in a collaboration between four coder-artists. The 
authors set out to explore strategies by which the musebot 
ensemble could collectively make decisions about dramatic 
structure of the music, including planning of more or less 
major changes, the biggest of which being when to end. 
This is in the context of an initial strategy to work with a 
distributed decision-making process where each author's 
musebot agent makes music, and also contributes to the 
decision-making process. Questions that needed to be ad-
dressed, then, included:  

• how each musebot should relate its decision-making to 
its music generation strategy;  

• how it should respond to the collective, updating both 
its future decisions and musical plan;  

• what decision messages should be used;  
• whether decision-making agents should share common 

code;  
• and whether decision-making agents should strictly 

conform to given agreements about the decision-
making process. 

 We describe these explorations and their outcomes be-
low, but first provide a brief overview of the musebot re-
search context to date. 

A Brief History of Musebot Ensembles 
The premiere musebots ensemble occurred in July 2015 as 
an installation at the International Conference on Computa-
tional Creativity (ICCC) in Park City, and was followed in 
August 2015 at the International Symposium of Electronic 
Art (ISEA) in Vancouver. Since then, it has been presented 
at the Generative Art Festival in Venice in December 2015, 
the New Interfaces for Musical Expression (NIME) con-
ference in Brisbane in July 2016, and the Sound and Music 
Computing (SMC) conference in Hamburg in August 
2016. The first musebot ensembles are more fully de-



scribed elsewhere (Eigenfeldt et al. 2015), along with is-
sues and questions raised by these performances. 
 The Chill-out Sessions – so named due to an initial de-
sire to provide musebots as an alternative listening space to 
the dance rhythms of Algoraves (Collins and McLean 
2014) – have consisted of ensembles curated by the first 
author from a growing pool of publicly shared musebots. 
The musebot test suite1 currently has a repository of over 
sixty shared musebots – including source code – by nine 
different developers. 

Ensembles 
Curation of ensembles for installation has consisted of 
combining musebots based upon their musical function. 
For example, several ensembles consist of one or more of 
the following: a beat musebot, a bass musebot, a pad 
musebot, a melody musebot, and a harmony generating 
musebot. A contrasting ensemble might involve combining 
several noise musebots, or a grouping of only beat muse-
bots (see Table 1). The diversity of musebots is highlighted 
in their presentation: if listeners don’t find the current en-
semble particularly interesting, they can wait five minutes 
and be presented with something completely different. 
 
Table 1. Musebot types available online 

Type Number available 
Bass Generators 5 
Beat Generators 13 
Harmony Generators 5 
Keys/Pads Generators 6 
Melody Generators 19 
Noise/Texture Generators 16 

 
 Musebot ensembles are launched by a master Conductor, 
whose function is also to provide a centralised timing 
source by broadcasting a running clock, as well as serving 
as a central network hub through which all messages are 
broadcast (see below) via OSC (Wright 1997). A desire for 
the musebot project is to be platform agnostic, so musebots 
are standalone applications (Mac and PC) that do not need 
to run in the development environment. As a result, 
launching musebot ensembles on a single computer does 
take some time, as individual audio applications are started 
up. 
 Ensembles are organized as text files, in the following 
format: 
tempo [BPM] duration [seconds] 
musebot_name  message value… 
musebot_name  message value… 
… 
 
Messages currently used in the ensembles include: 
 • gain (0.0 - 1.0)  
 • delay (in seconds)  
 • kill (in seconds). 
                                                
1 http://musicalmetacreation.org/musebot-test-suite/  

  The gain value will be sent to the musebot after all 
musebots are loaded. This allows for rough mixing of 
musebot levels. A delay value, in seconds, will delay the 
launching of that musebot by that length of time. Launch-
ing begins after the delay, and may take several seconds, so 
it cannot be assumed that the musebot will begin playing at 
that specific time. A kill value, in seconds, will cause the 
Conductor to send a kill message to the musebot after that 
time once the musebot has been launched, taking into ac-
count any delay. Thus, “delay 20 kill 20” will cause the 
musebot to launch with a delay of twenty seconds, then be 
killed 20 seconds later. Combining delay and kill messages 
allow for the ensemble to dynamically vary during presen-
tation time. 

Broadcasting Messages 
As mentioned, the Conductor also serves as a central hub 
through which messages are passed by the individual 
musebots. Broadcast messages are general messages sent 
from one musebot to the ensemble, and include the ID of 
the originating musebot, the message type, and the data 
(see Figure 1). 
 
Fig. 1. Musebot configuration for messaging. musebot_A 

sends a notepool message with its ID, and this message is 
passed to the entire ensemble. 
 
 The Musebot conductor provides synchronisation (tim-
ing) and message passing infrastructure, but beyond this 
musebot designers need to specify protocols of coordina-
tion. Our investigations focused on strategies for minimal 
effective musical coordination with minimal reliance on 
‘top-down’ intervention. This is modeled on a conductor-
less small ensemble where independent agents (musicians) 
agree on a few musical constraints (e.g., tempo, key, meter, 
genre) and then improvise around these.  
 An example message, given the musebot configuration 
in Figure 1 might be:  
 
broadcast/notepool/musebot_A 60 62 65 67 68 
  
 The information shared between musebots has tended to 
be surface detail, such as a current pool of pitches, density 
of onsets, and volume. For example, the harmony generat-
ing musebots have been used to provide a generated chord 
progression, sent as both pitch-class sets (independent of 
range) and notepool messages (which indicate specific 
pitches). Musebots have used this information to constrain 
their choice of pitches, resulting in congruent harmony. 
Other musebots (usually the beat generators) have mes-



saged their current onset density; musebots that respond to 
this message can decide to follow, or oppose, this density, 
resulting in an audible interaction. 
 To reiterate, the broadcast messages passed between 
musebots are not themselves defined in the specification, 
and have instead been decided upon by the designers of 
individual musebots; messages can be as low level – for 
example, realtime timbral analysis has been messaged – or 
as high level as required. The messages that a musebot 
sends, and responds to, are contained within a separate 
human readable text file – info.txt – so that other musebot 
designers can access and use these messages, and ensem-
bles can be more easily curated. These messages are also 
provided within the online musebot repository2. 
 Musebot ensembles have previously been limited to five 
minute performances within installation settings, for two 
reasons. The first is diplomatic: to allow as many combina-
tions of musebots to be presented to listeners as possible, 
in as wide a variety of styles as possible; the second is 
more pragmatic: although having virtual performers audi-
bly agree upon certain parameters – for example, density 
and harmony – may suggest musically successful machine 
listening, these levels of interaction become mundane sur-
prisingly quickly. The more subtle interactions that occur 
in human improvisation ensembles, and their development 
over time, have not yet been successfully modeled within 
communally developed musebot ensembles. This is not a 
limitation of the musebot messaging system (see Eigen-
feldt 2016); however, designing a communal set of useful 
messages that satisfy a broad range of musical goals has 
proven to be more challenging, despite a shared document 
for this very purpose. This paper reports on one of the first 
attempts to collectively address these issues. 

Challenges 
Musebot ensembles have, for the most part, remained a 
proof of concept. Our next goal is to continue iterating 
musebots so as to allow further autonomy, on multiple 
fronts. This might include getting musebots to decide with 
which other musebots they play well, how to collaborative-
ly determine key, meter and tempo, and methods to organ-
ise how and when major events occur, including the most 
major of all musical events: starting and ending. Of course, 
there is no a priori need for this to occur in a bottom-up 
self-organised rather than top-down dictatorial way; how-
ever, a research question of interest to us is what types of 
musebot organisations are creatively fruitful and effective, 
in a metamusical creative context? 

Experiments in collaborative Musebots  
Our recent experiments involved the four authors each de-
veloping a musebot that took on particular ensemble 
roles—melodic, harmonic, bass, and drums—in support of 

                                                
2 See, for example, 
http://musicalmetacreation.org/musebots/beat-generators/  

an ‘experimental prog rock’ performance. Each developer 
worked in a different software environment (Pure Data, 
Max, Extempore and Java) and were free to implement any 
algorithmic processes. Following discussion about possible 
minimal coordinating parameters, we chose to use musical 
density and vote to end. Musebots were designed to vary 
their generative output based on the density level (from 0.0 
- 1.0) and to respond to a majority vote to end the perfor-
mance. Periodically musebots broadcast  

1. their own density level and,  
2. a suggested future density target (based on analysis 

of the ensemble density profile), and  
3. a vote to end or not.   

 As the project developed, we added the communication 
of harmonic context (current pitch pool) to these initial 
parameters. Musebot developers could choose to store the 
history of broadcast data if they felt it enhanced their 
musebot’s decision-making processes.  
 We were interested to see whether density was a suffi-
cient level of abstraction for musical coordination and, if 
density does provide a level of musical success, what could 
be learned in terms of effective design principles. Also we 
hoped to see if our musebot interactions, using only the 
parameters described, could be scaled to include more di-
mensions. 
 The resulting musebot source code is available, and re-
cordings of example performances that resulted are availa-
ble online. Analysis of the operation of the musebots and 
the resulting musical interactions are reported below. 

Approaches to algorithmically addressing musical 
parameters 
The Musebots reported in this paper were developed dur-
ing a one-week programming sprint toward the end of 
2016 where the authors were co-located and could readily 
communicate about issues as they arose.  Despite authors’ 
co-location, an interesting aspect of this Musebot experi-
mentation was the independence of implementation and 
agreed parametric coordination. This separation is reminis-
cent of that maintained in human ensembles where the log-
ic of a musician’s decision making remains opaque to oth-
ers, and interaction is based on an observation of behav-
iors. In this section, each developer outlines their approach 
to the main defining characteristics of the performance: 
density, deciding to end, and responding to the pitch pool. 
These detailed descriptions were not available to the other 
designers, nor were they discussed until after the initial 
performances. 

Pd Musebot - Andrew Brown 
The Pd Musebot (PD_MIDI_bot) generated melodic mate-
rial based on a random walk pitch contour and rhythms 
derived from probabilistic beat subdivisions. Note level 
data were sent in real-time via MIDI to a software synthe-
sizer for playback. The density was largely a factor of 
rhythmic sparseness achieved by varying the probabilistic 
likelihood of notes occurring. Rhythmic coherence was 



maintained by coordinating between levels of metric em-
phasis (downbeat and subdivisions) so as to avoid filtering 
out metrically salient notes. In addition, density influenced 
note dynamic level resulting in quieter performance in less 
dense sections.  
 Pitch selection was limited to the pitch classes provided 
in the available pitch pool. When a new pitch pool was 
broadcast, the musebot updated its pitch class set to match. 
 Density suggestions were made on the basis of manag-
ing ‘boredom’ and ‘confusion’. A proxy for these emotion-
al states was the degree of variation in collective density. 
When the ensemble density remained static for some time 
(approximately 36 bars), then a density suggestion that 
deviated from this was made. Conversely, if the density 
variation over time was wide then a suggestion to maintain 
the current ensemble density was made.    
 Ending decisions involved a combination of current ex-
treme levels of ensemble density (very low or very high) 
and historical trends of density change (upward or down-
ward over several bars). A final ‘catch all’ was to vary the 
thresholds for these parameters over time to gradually in-
crease the likelihood of end decisions, thus avoiding per-
formances of unacceptably long duration. 

Max Musebot - Arne Eigenfeldt 
The Max musebot (SynthBassBot) assumed the role of a 
bass synth; as with many musebots, it made performance 
decisions resulting in representations very similar to MIDI 
data (i.e. pitch, volume, and duration) and then produced 
its own audio based upon a variety of pre-existing samples. 
At the beginning of every performance, the synthesiser 
settings would be randomised from within a constrained 
range, including sample folder, amplitude envelope set-
tings, filter envelope settings, and filter settings. Some of 
these – amplitude sustain, filter cutoff – were varied during 
the performance based upon the environment. For exam-
ple, when the agent became “bored” (described shortly), 
the possibility of producing a phrase-long filter sweep in-
creased; when the density became low, the envelope sus-
tain increased to “fill the space” with longer notes that oc-
curred less frequently. 
 Pitches were derived from a pitch set provided by a sep-
arate musebot that produced a suggested harmonic pro-
gression, and were transposed to a low to low-mid pitch 
range. Because the root of the chord could be inferred from 
the messaged harmonic progression, certain notes (i.e. the 
root) were given a greater probability of occurring. With 
each new pitch set received, a new pitch ordering, which 
included repeated pitches and octave transpositions, was 
created, which was maintained for the duration of that par-
ticular harmony. New pitch orderings could be generated 
every phrase beginning with a 33% probability, which re-
ordered the existing pitch collection. 
 Similarly, new onset patterns could be initiated with the 
same probability (but not necessarily at the time). These 
onsets corresponded to metric placements of sixteenth 
notes (semiquavers) within the measure: the downbeat is 
onset 0, the second beat is onset 4, as shown in Figure 2 A. 

The extrapolation to eighth notes (quavers) can be seen in 
Figure 2 B; this pattern is reordered by potentially switch-
ing primary onsets (0 4 8 12) and secondary (2 6 10 14). 
For example, the unordered pattern could switch primary 
onsets 0 and 8, and the second switch onsets 2 and 14, re-
sulting in a reordered pattern of (8 14 4 6 0 10 12 2). The 
number of onsets performed within a measure is dependent 
upon the current density; given a density of 0.5, only the 
first four onsets would be chosen (8 14 4 6), resulting in a 
final ordered pattern of (4 6 8 14), shown in Figure 2 C. 

 
Fig. 2. Varying onset patterns in SynthBassBot 
 
 The SynthBassBot could become “bored” if it felt there 
hadn’t been much change in the ensemble’s mean density. 
Every two phrases (eight measures), it would check if there 
had been more than a 10% change in cumulative density; if 
there hadn’t, it would begin a series of tests to decide its 
boredom state: 

1. on each downbeat, scale its internal boredom pa-
rameter exponentially over 16 measures (the default 
setting for these initial run throughs was 0.2). Count 
the number of measures which have lacked signifi-
cant change; when this value becomes greater than 
the scaled boredom number of measures – using the 
default setting of 0.2 resulted in two measures – 
proceed to test #2; 

2. Generate a random value between 0. and 1. Com-
pare this to the number of measures which have 
lacked significant change (scaled by 0.1). If the ran-
dom value is less, the agent becomes bored. 

 If the agent became bored, it would cast a vote to alter 
the current density setting, and potentially execute a filter 
sweep. The new requested density would be derived from 
its own ongoing activity model, generated at the beginning 
of the composition.  
 The bass musebot monitors the ensemble density, keep-
ing track of the trends over the previous four measures, and 
determines if the density has been rising, falling, or re-
maining stable. It uses this judgment to decide on whether 
to vote to end the performance, based upon the following 
three criteria: 

1. the performance has progressed beyond a minimum 
number of measures (a logarithmically scaled curve 
between 1 and 120, dependent upon the musebot’s 
boredom attribute), and 

2. the ensemble density over the past four measures is 
either falling or stable, and 

3. the current density is less than what the average 
density has been so far. 



Extempore Musebot - Toby Gifford 
The Extempore musebot pad_bot (originally called negoti-
ation_ybot before its musical function solidified) adopted 
the role of generating background harmonic pads — long 
notes with slowly evolving timbre intended to be a musical 
backdrop to the melodic and rhythmic elements. After ini-
tial experiments, an aesthetic decision was made to pro-
duce some degree of sonic output continuously in contrast 
with other bots’ more literal interpretation of density. 
 Density was manifested through rate of triggering — 
higher density corresponded to faster triggering of pad 
notes. When a new note was triggered, the currently play-
ing note(s) faded out, though with some overlap. Because 
of this, higher density also resulted in greater polyphony as 
more successive notes overlapped. 
 An internal ‘boredom’ measure was implemented to 
discourage extended periods of extreme density (whether 
high or low). The boredom measure determined sugges-
tions of both density and ending. When a boredom thresh-
old was reached, the musebot would suggest a change of 
density to be as different as possible to the current density. 
Similarly, after a fixed minimum performance length of 64 
measures, the musebot would suggest ending whenever it 
was bored. 
 Note selection was determined by the notepool broad-
cast message, and by the recent history of note pools. Spe-
cifically, the pitch selection for each successive triggered 
pad note cycled through an internal pitch-set. This pitch-set 
was initially identical to that of the first notepool message. 
Upon receiving another notepool message, the internal 
pitch-set is restricted to the intersection of itself with the 
new notepool. If there are no pitches in common (i.e. the 
intersection is empty) then the pitch-set is reset to the new 
notepool. 

Java Musebot – Oliver Bown 
The Java musebot plays drums. As with the other bots, the 
system works only with common, simple and well-studied 
generative processes that produce pleasant and generative-
ly varied drum sequences. The generative strategy is based 
on an additive, rather than divisive, metrical approach, 
resulting in irregular meter structures. The density parame-
ter, shared with the other bots, is combined with a syncopa-
tion parameter, which is used internally only. Both parame-
ters are represented internally as integers between 0 and 9. 
A single kit of drum samples is used, ordered as follows: 
closed hat, open hat, kick, snare1, half hat, snare2, rim, 
clap, ride, crash. The ordering is used in the weighting of 
stochastic drum sound selection, with earlier drums in the 
list being chosen with higher probability. The generative 
algorithm creates a new pattern each 4-bars. It consists of 
two stages. First, a base-pattern is created. This consists of 
a sequence of sixteenth-note drum events, where each 
event may be zero or more individual hits, with each hit 
consisting of a drum sound and velocity. Then a “tala” 
structure is generated. This is a series of subpattern 
lengths, with a start offset for each subpattern. Subpatterns 

are played concatenatively. A subpattern is a playback of 
the base pattern with the given start offset. For example, if 
the base pattern is [kick,hat,snare,tom,…] and the tala pat-
tern is [[3,1],[3,1],[2,2],...] with the first number indicating 
the length and the second number indicating the start off-
set, then the resulting pattern would be [kick, hat, snare, 
kick, hat, snare, hat, snare…]. 
 The density and syncopation parameters are used to di-
rect the content of these generated patterns in simple ways. 
Greater density parameters result in more events in the 
base-pattern, including greater occurrences of snares and 
cymbals. Above a certain density threshold, a kick drum on 
the first sixteenth note and a snare drum on the fifth is 
guaranteed. The density also contributes to shorter subse-
quences, whilst the syncopation parameter leads to a great-
er number of odd-length subsequences over even-length 
ones. A random number generator is used in the exact se-
lection of values, but this random number generator is 
seeded according to the density and syncopation parame-
ters, meaning that for any given density-syncopation value 
pair, the exact same pattern is generated each time, making 
it easier to gain an understanding of the system’s behaviour 
(both as developer and as listener). 
 The musebot then performs two core actions as part of 
its negotiation and planning. It selects a new desired syn-
copation and density state from a lookup table. This lookup 
table is generated at start time and maps current state pairs 
to future desired state pairs. The table largely maps states 
to neighbouring states (gradual changes), but has a small 
percentage of ‘wormholes’ that map to different areas of 
the state space, resulting in sudden changes. Besides these 
properties the state transition table is randomly generated. 
The result is an arbitrary-but-not-random behavioural plan, 
i.e., the transition behaviour is consistent over time even if 
it derives from an arbitrary source. This has been argued 
by Cook and Colton (2015) to be a meaningful strategy for 
generative systems. 
 The system then broadcasts its density intention. It up-
dates its actual density based on the agreed strategy of tak-
ing the average of all intentions. The system simply uses 
its desired syncopation as its actual syncopation value in 
the next 4-bar cycle. The system votes to stop when the 
density is below a threshold of 10%. 
 A few other minor behavioural details are as follows. 
The system looks at the size of the forthcoming change and 
if the change is small can decide not to create a new pattern 
for the forthcoming 4-bar cycle. If the forthcoming change 
is very large, it can plan to perform a fill, which involves 
generating a new pattern just for the last bar of the 4-bar 
cycle. Lastly, the system periodically updates its density-
syncopation lookup table. 



Analysis 
All four musebots broadcast their current density ‘periodi-
cally’. This relative interval was interpreted independently 
by the different developers, ranging from every second, to 
the first beat of every measure, to every beat. It was agreed 
that musebots must vote on a suggested density before the 
beginning of the third measure in every four bar phrase, 
although musebots were free to change their own density at 
any time. Despite musebot suggestions often being quite 
dramatic — requesting extreme low or high densities (see 
Figure 4) — the musebots generally progressed towards 
these extremes, without ever achieving these levels them-
selves.  

 
Fig. 3. Actual musebot densities over a 180 measure per-
formance3. 
 

Fig. 4. Suggested density targets.  
 
 Figures 3 and 4 display the actual densities (top) versus 
the suggested density targets (bottom), displaying how the 
individual musebot interpretation of target suggestions 

                                                
3 A recording of the performance can be found here: 
 https://youtu.be/azWnFTMCNic  

results in an undulating mean ensemble density. The sug-
gested targets converge three times – near measures 40, 
120, and 170; in each case, these targets follow the appar-
ent direction of the ensemble. The measures in which there 
is little agreement upon targets – 60-100, and 135-150 – 
result in the greatest discontinuities in ensemble density: a 
dramatic leap upward at measure 92, and downward at 
135. 

Fig. 5. Votes to end. 
 
 Figure 5 displays when musebots voted to end the per-
formance. These votes clustered in three locations that cor-
relate to the lowest actual ensemble densities. Comparing 
these locations with the suggested density targets of the 
two musebots that voted to end (SynthBassBot and 
pad_bot) shows that these musebots also proposed even 
lower ensemble densities. This illustrates the intended re-
sult of our system design: that the musebots are not simply 
reactive – voting to end at a predetermined ensemble den-
sity – but proactive – continuing their attempt to influence 
the overall ensemble density. 
 Comparing Figure 3 and 5 shows how an ending was 
negotiated and agreed upon once all four musebots voted 
to end. In fact, only a majority vote, rather than unanimity, 
is required for an ending; in this case, all four musebots 
recognised and agreed upon the potential ending. 
SynthBassBot anticipated the ending by requesting densi-
ties below the current ensemble mean – which was already 
decreasing – because it recognised the conditions ap-
proaching a possible ending. SynthBassBot has its own 
internal density model – including an ending; this can be 
seen by the alternation between two states in its density 
target voting: an initial vote based upon its model, then a 
second vote averaged between its model and the mean of 
the ensemble targets. 
 Comparing the actual ensemble density to the mean tar-
get requests (Figure 6) displays the expected correlation. In 
most cases, the targets precede the ensemble response; for 
example, the dramatic drop ¾ of the way through. Points 
of disagreement in between targets (e.g. the section prior to 
the midpoint) do not provoke any significant changes when 



compared to when the targets more closely align (e.g. the 
immediately preceding section). 
 

 
Fig. 6. Mean ensemble density versus mean target sugges-
tions. 

 Discussion 
An iterative practice-led development approach was adopt-
ed for these experiments. Correspondingly, it is informa-
tive to report on both the practice-based learning that arose 
and the results of performances generated by the musebot 
ensemble. 

Successes and Failures 
During the communal design stage, we settled upon a lim-
ited set of parameters for interaction once we determined 
that sending around too much complex musical data was 
too challenging to program. This reaffirmed notions of 
maintaining simplicity when dealing with complex infor-
mation. We also found that limiting the communication 
around a single parameter – density –greatly reduced the 
creative demands of the task (a contrary position was sug-
gested, in that we are not attempting to necessarily simu-
late a human band, so why rely upon such obvious modes 
of interaction?). Limiting interaction to 4-bar cycles was 
also convenient, although it forced the resulting music into 
a 4-bar mode. 
 Likewise, the authors found that from a practical work-
ing point of view the musebot paradigm of communication 
at a meta-musical layer was creatively effective, and in-
formation flow from the musical surface to the concept 
layer was not required for successful interaction. Because 
musebots interacting this way communicate what they are 
doing, other musebots are not required to analyse each oth-
er’s output. For example, musebots need not know the spe-
cific pattern a drumbot is playing, but instead the parame-
ters the drumbot is using to generate that pattern – e.g. 
density and syncopation. At the same time, this adds addi-
tional load on the programmers, who must consider both 
generating actions and also communicating those actions, 
as well as intentions. Thus the design problem seems to 
involve a trade off between the value of mediating interac-

tion between the musical surface and the value of com-
municating agreed meta-parameters. We discussed extend-
ing the communication to further parameters – valence, to 
match the arousal suggested by density – but this was left 
for future work. An important question is whether further 
parameters can be included without a debilitating explo-
sion in complexity. 

Possible New Designs and Strategies 
Our initial questions included:  

• how each musebot should relate its decision making to 
its music generation strategy;  

• how it should respond to the collective, updating both 
its future decisions and musical plan;  

• what decision messages should be used;  
• whether decision making agents should share common 

code;  
• whether decision making agents should strictly con-

form to given agreements about the decision making 
process. 

 The first three questions are partially addressed in the 
above discussion. We see value in this formulation and 
believe it can form the basis for effective music creation as 
well as research around musical decision-making. Howev-
er, the process also pointed to alternative designs that could 
be more effective.  
 To begin with, developing four different systems that 
implemented the same basic framework of decision mak-
ing, let alone performing any machine listening, style mod-
eling and so on, suggested that a shared codebase or ser-
vice architecture would be effective. A service architecture 
would be a way to compile successful strategies in ma-
chine listening, style modeling, decision making and algo-
rithmic composition strategies into a common repository. 
Individual agents would be able to query services for in-
formation such as what is going on in the music at the 
moment, or what would make a good note or chord to fol-
low a given sequence given a certain style database or even 
information contained in the current performance.  
 It could also provide services to support negotiation. In 
essence, under the current scheme, each programmer is 
building a generative music system as well as very simple 
virtual psychology underlying the decisions surrounding 
density planning; for example, the agent can be fickle, or 
conformant. This is hard, repetitive, and prone to errors or 
mistaken understanding. There is great potential for farm-
ing out such decision-making to well-developed models 
that incorporate aspects of psychology. 
 Thus the experiment points to an agent-based architec-
ture which would break quite significantly from one in 
which each agent is the equivalent of a human musician, 
listening, making decisions and generating music. An en-
semble would still consist of a series of agents that would 
have the same agency to perform musical acts, but much of 
their cognitive machinery would exist in 3rd party agents 
that provided services and might also act as a form of dis-
tributed cognition. This would allow certain aspects of top-



down organisation and would form a heterogeneous dis-
tributed system. 

Future Directions 
While the performances produced by these musebots 
demonstrate interesting variations in the musical surface in 
density, these are minor developments in musebot ensem-
ble design, albeit with the additional of a negotiated end-
ing. From a musical perspective, a continued limitation a 
lack of large-scale change within the way the ensemble 
performs over time. A common criticism of young impro-
visers and composers is that the final minute, for example, 
does not vary a great deal from the first minute. In our 
case, the musebots did not alter the way in which they in-
terpreted density, or even the way in which they fulfilled 
their roles within the ensemble: PD_MIDI_bot freely im-
provised melodically in the same general fashion, pad_bot 
played pads, SynthBassBot played the same general bass 
line using the same timbres, and JavaDrumBot performed 
the same basic rhythmic patterns. At no time, for example, 
did any part actually stop playing, or take over the fore-
ground role. Such foreground/background negotiation is 
standard in improvised music, and would be the next step 
in achieving more musical interaction within this musebot 
ensemble. 
 Another utility of algorithmic experimentation of this 
kind is that it requires the articulation and testing of theo-
ries of behavior. This is a musicological activity when im-
plementing musical performance outcomes, as in the 
musebots case, and is often contributive to this field 
(Brown et al. 2009). But the method can be applied more 
generally to behavioural understanding in many fields, and 
particularly to the dynamics of creative collaboration and 
interaction. 

Conclusion 
Musebots are based upon a state-driven communication 
system, rather than an output-driven system that requires 
feature analysis found in many metacreative systems: for 
example, the P in Blackwell and Young’s PfQ model 
(Blackwell and Young 2005) or the Listener in Rowe’s 
model (1993). Our goal in this paper was not to compare 
the two models, but to accept the musebot ideal as outlined 
in the original manifesto (2015), and explore its potential 
as a platform for better scaffolding musical intelligence in 
large modular systems.  
 By limiting the messages passed by musebots to current 
density, proposed density, and a vote to end, we feel that 
our ensemble of four independent systems – coded without 
explicit collaboration in algorithm design – demonstrated 
some ways in which multiple musical metacreative crea-
tors can make ensemble performances mediated by ma-
chine interaction. 

 The code for the musebots described in this paper is 
available here: 
https://vault.sfu.ca/index.php/s/O4AY9DBSR5wBITI 
  
 A recording of the performance can be found here: 
https://youtu.be/azWnFTMCNic 

Acknowledgements 
The authors wish to acknowledge the Social Sciences and 
Humanities Research Council of Canada (SSHRC) for 
funding this research. 

References 
Blackwell, T., and Young, M. 2005. Live Algorithms. 
Available online at www.timblackwell.com. 
Bown, O., Carey, B., and Eigenfeldt, A. 2015. Manifesto 
for a Muse-bot Ensemble: A platform for live interactive 
performance between multiple autonomous musical agents. 
Proceedings of the International Symposium of Electronic 
Art, Vancouver. 
Brown, A. R., Gifford, T., Narmour, E. and Davidson, R. 
2009. Generation in Context: an exploratory method for 
musical enquiry. Proceedings of the 2nd International Con-
ference on Music Communication Science, Sydney. 
Collins, N, and McLean, A. 2014. Algorave: Live perfor-
mance of algorithmic electronic dance music. Proceedings 
of the International Conference on New Interfaces for Mu-
sical Expression, London. 
Cook, M., and Colton, S.  2015. Generating code for ex-
pressing simple preferences: Moving on from hardcoding 
and randomness. Proceedings of the Sixth International 
Conference on Computational Creativity, Park City. 
Eigenfeldt, A., Bown, O., and Carey, B. 2015. Collabora-
tive Composition with Creative Systems: Reflections on 
the First Musebot Ensemble. Proceedings of the ICCC, 
Park City. 
Eigenfeldt, A. 2016. Exploring Moment-Form in Genera-
tive Music. Proceedings of the Sound and Music Compu-
ting Conference, Hamburg. 
Rowe, R. 1993. Interactive Music Systems. Cambridge, 
Massachusetts: MIT Press. 
Wright, M. 1997. Open Sound Control - A New Protocol 
for Communicating with Sound Synthesizers. Proceedings 
of the International Computer Music Conference, Thessa-
loniki. 


