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Abstract

Interactive fictions, or text-adventures, are games in
which a player interacts with a world entirely through
textual descriptions and text actions. These games are
typically structured as puzzles or quests wherein the
player must execute certain actions in a certain order
to succeed. In this paper, we consider the problem of
procedurally generating a quest, defined as a series of
actions required to progress towards a goal, in a text-
adventure game. Quest generation in text environments
is challenging because they must be semantically co-
herent. We present and evaluate two quest generation
techniques: (1) a Markov model, and (2) a neural gen-
erative model. We specifically look at generating quests
about cooking and train our models on recipe data. We
evaluate our techniques with human participant studies
looking at perceived creativity and coherence.

Introduction

Natural language can be used to express creativity in the
form of narrative. Prior research has shown that narra-
tive is used in everything from environmental understand-
ing (Bruner 1991) to developing language (Johnston 2008).
Given this wide ranging impact, using narrative in language
to help us understand human perceptions of creativity and
what it takes to replicate this through computational models
is natural. Text-adventure games, or interactive fiction, in
which a player interacts with a world entirely through text,
provide us with a platform on which to explore these ideas
on creativity in language. These games are usually struc-
tured as puzzles or quests in which a player must complete a
sequence of actions in order to succeed. Text games allow us
to factorize the problem of creative language generation and
focus on developing more fine-grained, data-driven models.

Automated generation of text-adventure games can
broadly be split into two considerations: (1) the structure
of the world, including the layout of rooms, textual descrip-
tion of rooms, objects, and non-player characters; and (2) the
quest, consisting of the partial ordering of activities that the
player must engage in to make progress toward the end of
the game. In this work, we focus on methods of automat-
ically generating such a quest and how it can be used to
better understand narrative intelligence, specifically looking
at perceived creativity and coherence. Quest generation re-
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quires narrative intelligence as a quest must maintain coher-
ence throughout and progress towards a goal. Maintaining
quest coherence also means following the constraints of the
given game world. The quest has to fit within the confines
of the world in terms of both genre and given affordances—
e.g. using magic in a fantasy world. This is further com-
plicated in the case of a text-adventure as a consequence of
all interactions being in natural language—the potential out-
put space is combinatorial in size. Because the player “sees”
and “acts” entirely through text, any quest generation system
must also take into account the lack of visual information
and generate sufficiently descriptive text accordingly.

There are multiple variables that could potentially affect
a player’s perception of creativity in a text-adventure game
such as the vocabulary used, the structure of the world,
stylistic variations in writing, etc. To conduct controlled
studies, we use the TextWorld framework (Coté et al. 2018)
which lets us generate text-adventure game worlds based on
a grammar, allowing us to focus on novel quest generation
algorithms. It lets us fix variables concerned with game
world and logic generation and focus only on the genera-
tion of quests within this world. We use this framework’s
“home” theme—providing us with a textual simulation of a
house—and restrict the types of quests that can be generated
to those involving the completion of a cooking recipe. We
then attempt to learn how to generate a quest to complete
a recipe—as well as how to create the recipe itself—using
a large scale knowledge base of recipes. In these quests,
players are provided with a list of ingredients and their lo-
cations, and they have to navigate the environment to find
and prepare those ingredients to complete the given recipe.
For example, given a recipe to make peanut butter cookies
the quest would first tell the player to find eggs, peanut but-
ter, flour, and baking soda. The player would then have to
figure out that the first ingredient is in the fridge while the
others are in the pantry and prepare each item accordingly.
Generating this sort of quest requires knowledge of the in-
gredients, how they fit together, and how those ingredients
interact with the environment.

The contribution of this work is thus twofold. We first
detail a framework, and variations thereof, that can learn
to generate creative quests in a text-adventure game. This
framework includes two quest generation models using
Markov chains as well as a neural language model. It also



uses a semantically grounded knowledge graph to improve
overall quest coherence. Our second contribution provides
human subject evaluations that give us insight into how each
variation of this framework affects human perception of cre-
ativity and coherence in such games.

Related Work

Although there has been much work recently on text-
adventure gameplay (Bordes et al. 2010; He et al. 2016;
Narasimhan, Kulkarni, and Barzilay 2015; Fulda et al. 2017;
Yang et al. 2018; Haroush et al. 2018; Co6té et al.
2018; Tao et al. 2018; Ammanabrolu and Riedl 2019a;
2019b; Hausknecht et al. 2019a; 2019b; Ammanabrolu and
Hausknecht 2020), these works focus on creating agents that
can play a given game as opposed to being able to automat-
ically generate content for them.

Outside of this, there has been some work on learning to
create content in the context of interactive narrative. These
systems mainly work to overcome a significant bottleneck
in the form of the human authoring required to create such
works. Permar and Magerko (2013) present a method of
generating cognitive scripts required for freeform activi-
ties in the form of pretend play. Specifically, they use in-
teractive narrative—a form of pretend play that requires a
high level of improvisation and creativity and uses cogni-
tive scripts acquired from multiple experience sources. They
take existing cognitive scripts and blend them in the vein of
more traditional conceptual blending (Veale, O’donoghue,
and Keane 2000; Zook, Magerko, and Riedl 2011) to create
new blended scripts. Closely related is Magerko et al. (2014)
who present a Co-Creative Cognitive Architecture (CoCoA),
detailing the set of components that support the design of co-
creative agents in the context of interactive narrative. These
methods all follow singular cognitive models that do not
learn to generate content automatically.

Li et al. (2012) present Scheherazade, a system which
learns a plot graph based on stories written by crowd sourc-
ing the task of writing short stories through Amazon Me-
chanical Turk. This plot graph contains details relevant for
the coherence of the story and includes: plot events, tempo-
ral precedence, and mutual exclusion relations. The gener-
ated narrative contains events that can be executed from this
plot graph by both players and non-player characters. Guz-
dial et al. (2015) introduce Scheherazade-IF, a system that
learns to generate choose-your-own-adventure style interac-
tive fictions in which the player chooses from prescribed
options. More recently, Martin et al. (2017) introduce a
pipeline systems for improvisational storytelling agents ca-
pable of collaboratively creating stories. These agents first
focus on creating a plot for the story and then expand that
plot into natural language sentences.

Giannatos et al. (2011) use genetic algorithms to create
new story plot points for an existing game of interactive fic-
tion using an encoding known as a precedence-constraint
graph. This graph gives the system information regarding
the ordering of events that must happen in the game in order
to advance. They demonstrate the workings of their system
by generating additional content for the popular interactive
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fiction game Anchorhead, and show that this can be inte-
grated into the original game. This work, however, is offline
and relies on existing interactive fiction games and having
knowledge of the precedence-constraint graph for this exist-
ing game.

The Game Forge system (Hartsook et al. 2011) also uses
genetic algorithms to generate a game world and plot line for
related type of game, a computer role playing game (CRPG).
This work focuses on generating layouts and plot structures
to create novel game worlds through with a fitness function
based on a transition graph that encodes pre-built game re-
quirements. Tamari et al. (2019) focus on extracting action
graphs for sequential decision making problems such as ma-
terial science experiments and turn them into text-adventure
games. Although these works use graph structures in order
to constrain the generation of the game, we use these graph
structures only to maintain coherence and focus on content
creation.

Although there are works that attempt to automatically
evaluate the creativity of the output of a generative process
by computationally modeling potential human responses —
such as with story telling (Purdy et al. 2018), etc. — we
choose to rely on a human subject study based on the def-
inition of creativity as presented in Boden (2007). Specif-
ically we focus on the concepts of novelty and value, de-
spite collecting data for other defined metrics as well. We
use the definition of novelty stemming from the idea of p-
creativity, i.e. a concept that is entirely new to a single agent
— in this case a subject in our evaluation study. Value, as a
component of computational creativity, however, is not de-
fined concretely in Boden’s work for a general domain. Our
definition of value in the context of text-adventure games
relies on accomplishment or achievement.

Ammanabrolu et al. (2020) approach the problem of
world generation in interactive fiction by turning linear sto-
ries into interactive worlds. They first extract a knowledge
graph of the world from the story—containing lcoations,
characters, and objects—and use that to generate the full
game. Fan et al. (2019) leverage a crowdsourced dataset
of fantasy text-adventure dialogues (Urbanek et al. 2019) to
learn to generate interactive fiction worlds on the basis of
of locations, characters, and objects. These works all focus
on the problem of world generation in text-adventure games
and do not contain objectives or quests—these systems are
thus complimentary to ours.

Content Generation

In this section, we present Markov chains and neural lan-
guage model based models to generate content, i.e. recipes,
for our quests. Content generation for a quest in a text-
adventure game, in this case a recipe, can be thought of
as being equivalent to generating a sequence of events in
which prior elements affect the probability of subsequent
events. Markov chains present a simplified and well studied
method to generate such content. Neural language models,
designed to predict an element of a sequence conditioned on
a given number of prior elements, let us generate sequences
of events with more prior context—i.e. in the absence of the
Markov assumption.
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Figure 1: Example of ingredient connections.

Markov Chains

Our first quest generation model is based on the use of
Markov chains. This generation process consists of two
steps. We first learn a weighted ingredient graph, a Markov
chain, from a large scale knowledge base of recipes and then
probabilistically walk along this graph to generate the in-
structions for the recipe.

Ingredient Graph Generating the recipe requires domain
knowledge. For example, creating a recipe for peanut but-
ter cookies requires an understanding that an ingredient like
peanut butter fits well with eggs, flour, and sugar while
something like fish does not. We represent this knowledge
with an undirected graph of ingredients. Our ingredient
graph is based off of recipes scraped from allrecipes.
com.! The raw, uncleaned dataset included over 20,000
recipes with over 4000 unique ingredients. A list of ingredi-
ents was extracted from each recipe, and each of these lists
was converted into a set of ingredient pairs (Fig. 2). In total,
there were 118,116 unique ingredient pairings, and 73,088
of those pairings (62%) only occurred once. We reduced the
number of distinct ingredients from 4460 to 1703 by merg-
ing items with the same base ingredient and by replacing
name-brand items with a generic equivalent.

Each of the nodes within the graph represents a possible
ingredient, and weighted connections between these nodes
represent how well the ingredients go together. The weight
of each edge is the total number of occurrences of that in-
gredient pair within the recipe corpus. The edge connecting
eggs and white sugar would have a weight of 3774 while
the edge between hot milk and orange juice would have a
weight of 1. Ingredient pairings that do not occur within the
recipe corpus did not have an edge within this network, and
this helped prevent our model from generating completely
incoherent recipe pairings (e.g. hot sauce and baby food).
Take the graph in Fig. 1 as an example. In this complete
graph, all of the ingredients go well with each other except
for fish and sugar, which is indicated by the low weight con-
nection between them. The weak connection between sugar
and fish suggest that they would likely not go well together

lhttps ://github.com/kbrohkahn/
recipe-parser
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Figure 2: Ingredient extraction process.

peanut butter (peanut butter, sugar)

sugar (peanut butter, eggs)

eggs (peanut butter, baking soda)

baking soda (sugar, eggs)

(sugar, baking soda)

(eggs, baking soda)

in a recipe.

Instruction Generation With the ingredient graph cre-
ated, we begin the process of instruction generation based
on sub-graph mining and prior generative methods based on
probabilistic graph walks (Fleishman 1978). We start by se-
lecting an initial random ingredient ‘x’ weighted by its dis-
tribution in the graph.

k
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We probabilistically select one of its neighbors based on
the conditional frequency of the pair. Each iteration further
computes conditional probabilities and selects them. We ex-
clude all ingredients in which any bag of words token is
contained by any other, ensuring that a variety of different
ingredients are selected.
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In Eq. 2, By, refers to the 1-gram bag of words model.

However, just computing complete conditional probabili-
ties would remove the chance for entirely new combinations
to emerge. Therefore, we calculate just the partial probabil-
ity of having shared ingredients with a bias designed to favor
such combinations.

B = (Z Shared(z;, xn+1))2 3)

i=1
1 w(zy,22) >0
0 else

Shared(x1,x2) = { 4)

This process repeated recursively to generate a recipe with
the desired number of ingredients.
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Finally, resultant combinations are referenced back against
the original corpus to guarantee novelty in the result.

&)

xn+1

Neural Language Model

Our second technique uses a neural language model to gen-
erate both the ingredients for a recipe and the steps of the
ingredients as well. We use the same knowledge base as
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Figure 3: Object graph in the one room map.

described in Sec. Ingredient Graph and train two separate
language models: one to generate the ingredients, and the
other to generate the recipe given a set of ingredients.

The first language model uses a simple 4-layer LSTM to
generate a sequence of ingredients, treating all the words in
a single ingredient as a single token. For example, “peanut
butter” would be considered a single token in this model.
We train this model using the sets of ingredients found in
each recipe for the entire recipe dataset, with each set end-
ing with an <EOI> or End of Ingredients tag. Once trained,
the model then generates a sequence of ingredients until
the <EOI> is reached using the top-k sampling technique
(Holtzman et al. 2019).

To generate the actual recipe, we use GPT-2 (Radford et
al. 2019) and fine-tune their pre-trained 345m parameter
model on the recipe data. The data to fine-tune this model is
designed to contain the recipe title, ingredients, and instruc-
tions in an unstructured text-form. Once this model has been
fine-tuned, we use it to generate the title and instructions for
the recipe conditioned on the ingredients generated by the
first language model. The entire generated recipe consists of
the ingredients, title, and instructions.

Quest Assembly

We now use the generated content—i.e. the recipe—to as-
semble a quest by grounding the generated ingredients and
instructions in the game world. This requires us to first de-
termine the structure of the game world and the locations
of objects within this world in addition to transforming the
set of generated instructions into executable actions. We
use two types of semantically grounded knowledge graphs
to represent this information: the object and action graphs.

The object graph is used to determine the structure of
the world and the most likely locations of objects within
this world. For example, we could have information that
says that vegetables must be stored in a refrigerator. If a
recipe requires carrots, then the carrots would automatically
be placed in a refrigerator at the start of the game. This graph
is constructed by hand and is built to make the game world
and resulting quest as coherent as possible.

We construct object graphs for two different room lay-
outs. The first, the one room (1R) map, consists of a kitchen
as well as the objects and actions that exist within it. The
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second map, the five room (5R) map, is an extension of the
first map and contains four additional rooms.

The object graph for the 1R map as shown in Fig. 3
is largely inspired by the simple, pre-built game provided
within TextWorld (C6té et al. 2018). This object graph
determines how and where objects are placed within the
environment during game generation, and the action graph
(Fig.6) dictates how generated instructions are transformed
into executable actions in the game. The object graph was
constructed logically: tools and utensils go in the drawer,
meat and dairy belong in the refrigerator, and so on. Food
item placements are deterministic and coherent. Vegetables
always go in the refrigerator, and fruit always goes on the
kitchen island. The action graph was also designed to pre-
vent the player from conducting illogical actions.

The 5R map included a dining room, garage, backyard,
and garden in addition to the kitchen (Fig. 4). The map
(Fig. 5) is designed to maintain the same levels of coherency
as the 1R map while allowing for more diverse gameplay,
which could in turn lead to higher levels of perceived cre-
ativity. The additional rooms are selected based on their
possible relationships to the domain of food and cooking,
and each new room has its own unique objects that players
can interact with. For example, the garage has an old re-
frigerator that can be used to store meat. These new rooms
and objects also allow for dynamic food placement. Meat
can be placed in one of two refrigerators, and fruits and
vegetables can possibly be found in the garden. The exis-
tence of these new locations is not immediately clear to the
player. The garage and backyard are additionally obscured
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Figure 6: Example action graph for both maps.

by closed doors, adding to quest complexity. While the ad-
ditional rooms and dynamic food placement allow for more
diverse gameplay, they do not sacrifice coherency.

The action graph contains information regarding the affor-
dances of the objects in the world and what kinds of objects
are required to complete a given generated instruction. For
example, if a generated instruction tells us to prepare veg-
etables, i.e. cut them, then this graph tells us that there must
be a knife somewhere in this world. This graph is partially
extracted from static cooking guides online using a mixture
of OpenlE (Angeli et al. 2015) and hand-authored rules to
account for the irregularities of cooking guides. An exam-
ple of an action graph is given in Fig. 6. A player can peel
fruit and vegetables, for example, but cannot peel a steak.
There are also strict rules on what tools are required for cer-
tain actions. A player can only cut something if they have
a knife and can only peel something with a peeler. While
this restricts how players can interact with the environment,
it ultimately reinforces game coherency.

We also note that when generating the quests, both the
Markov chain and the neural language model based genera-
tion systems use the object graph to determine object place-
ment but only the Markov chain based model uses the ac-
tion graph. This is because the instructions generated by the
Markov chain model is in the form of a sequence of ingre-
dients which then requires the action graph to determine the
actions and additional objects required to turn this list of in-
gredients into a playable quest. The action graph would thus
take an ingredient such as a carrot and determine first that
it needs to be cut and that a knife is required for this task.
The neural language model on the other hand already gen-
erates the full action, including potentially required objects,
that can be executed and so does not make use of this graph.

Experiments

Our experiments were designed to compare perceived cre-
ativity and coherence, specifically testing our models in
addition to factors such as complexity. We tested five
types of designs: Human Designed (HD), Random Assign-
ment (RA), Markov Chains Simple (MCS), Markov Chains
Complex (MCC), and Language Model (LM). HD is sim-
ply what it sounds like: a game that was created by a
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person. In this game, a human—not associated with the
research—creates both the ingredients and the instructions
for a recipe and is additionally responsible for quest assem-
bly, i.e. grounding the generated content in a given game
world. We do not consider experience in designing text-
adventure games when picking a human to create this game
as this task can be performed even by novices given the eas-
ily understandable “home” theme of the game world. The
game is manually crafted in terms of decided what ingre-
dients to put where and what the final recipe would come
together to be. RA is on the opposite end of the spectrum
where, as the name suggests, everything is placed in a ran-
dom location, and the recipe could be totally random with
ingredients and instructions that might not normally be seen.
MCS and MCC use our Markov chains approach to gener-
ate quest content. The difference between MCS and MCC
are that the former has four ingredients involved in its recipe
while the latter has eight. This was to vary the complexity
to see how that affected perceived creativity. LM refers to
the games generated using the recipes generated by the lan-
guage model. We additionally had one-room and five-room
variants for each of the models to test how the structure and
length of the game would affect the players.

Automatically evaluating the creativity of the output of
any computational generation process is a difficult task
which requires concrete definitions of the metrics being
used. We thus evaluate by deploying the game designs on
Amazon Mechanical Turk for people to play and provide
feedback. Specifically, they would play one randomly se-
lected game from the 1 room layout and then fill out a sur-
vey for that game, and then play one randomly selected
game from the 5 room layout and fill out an identical sur-
vey. Subjects were provided with a simple practice game
that they could play beforehand to familiarize themselves
with TextWorld and its interface. We had 75 total partici-
pants for the entire study and had an average of 15 people
play each game. The only restrictions that we had for par-
ticipants was that they had to be fluent in English—this was
determined by means of pre-built restrictions on Amazon
Mechanical Turk and game completion verification.

The users were asked questions pertaining to two metrics:
coherence and creativity. We looked at creativity as a metric
in the survey using the components of creativity as defined
by Boden: novelty, surprise, and value. The survey detailed
questions that measured our defined metrics, using Likert
Scale values along a scale of 1-7. It posed questions such
as “How coherent was the objective of the quest?”, “How
original was the quest you played? 1: not at all novel, 7:
exceptionally novel”, “Did you have a sense of accomplish-
ment after completing the game? 1: no value, 7: extremely
valuable”, “How unpredictable was the quest you played?”
when measuring coherence, novelty, value, and surprise re-
spectively. The other factors were also measured using sim-
ilarly phrased questions. A one-way ANOVA test was then
conducted followed by Tukey HSD post-hoc analysis to de-
termine significance. The results of the raw scores for each
group as well as the significant results between pairs of dif-
ferent models are presented below.



Coherence

p-value = 1.78E-02

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 7: Coherence scores for each game. Error bars indi-
cate a 95% confidence interval.

Originality

p-value = 3.21E-02

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 8: Originality (novelty) scores for each game. Error
bars indicate a 95% confidence interval.

Results and Discussion

We present results for four metrics: coherence, unpre-
dictability (or surprise), novelty (or originality), and value
(or accomplishment) for each of the games. Additionally,
we also show the p-value result of a one way ANOVA test for
the distributions in each of the categories to determine sta-
tistical significance. This test tells us if the differences in the
means across the different games are significant for each of
the categories separately. The Tukey HSD post-hoc analysis
further tells us which specific pairs of results are significant.
We hypothesized that semantic grounding using the knowl-
edge graph would enable our models to maintain coherence
on par with the human designed games. Further, given the
stochastic nature of our generative models, we further pre-
dicted that our models would also rate as being comparable
in terms of creativity to the human designed games—with
all models relatively outperforming the randomly generated
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Unpredictability

p-value = 1.04E-09

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 9: Unpredictability (surprise) scores for each game.
Error bars indicate a 95% confidence interval.

Accomplishment

p-value = 7.53E-05

HD-1 RA-1 MCS-1MCC-1 LM-1 HD-5 RA-5 MCS-5MCC-5 LM-5
Games

Figure 10: Accomplishment (value) scores for each game.
Error bars indicate a 95% confidence interval.

games. We see below that these predictions hold.

We find that the results for each individual category are
significant at p < 0.05 in all the cases. Additionally, all the
specific pairwise comparisons we make are significant with
p < 0.1. Table 1 presents some pairwise results along with
the corresponding difference in scores and p-values. The
rest of this section discusses these metrics in more detail.

Fig. 7 displays trends in the players’ perception of coher-
ence for each of the games. We first see that the one-room
games were consistently rated to be more coherent than the
five-room games, indicating that overall quest coherence—
and thus the coherence of our generative system—degrades
the longer and more complex the quest. Across the games,
we see that the RA models were the considered to be the
least coherent. The LM achieves a higher score than both
of the Markov chain models and maintains coherence more
easily than either. Most importantly, all of these methods are



Group1l Group2 Meandiff p-value
Coherence

MCC-5 RA-5 -0.5333 0.1
LM-5 MCS-5 -0.4392 0.066
LM-5 RA-5 -1.0392 0.028
LM-1 RA-1 -0.2843 0.042
Originality (novelty)

HD-1 LM-1 1.2292 0.057
HD-1 MCS-1 0.5347 0.10
HD-1 RA-1 1.5772 0.013
MCC-1 RA-1 1.0147 0.077
Unpredictability (surprise)

HD-1 MCC-1 0.9375 0.079
HD-1 RA-1 0.9228 0.071
LM-1 MCC-1 0.6667 0.1
LM-5 RA-5 -1.3255 0.026
MCC-1  MCS-1 -0.8611 0.086
MCC-5 RA-5 -1.2667 0.037
Accomplishment (value)

HD-1 LM-1 2.1042 0.022
HD-1 RA-1 1.6728 0.01
HD-5 LM-5 0.8914 0.046
LM-1 MCC-1 -1.25 0.062
LM-1 MCS-1 -0.5 0.1
LM-5 MCS-5 -1.0196 0.06
MCS-5 RA-5 -1.2 0.05

Table 1: Select pairwise results from the post hoc Tukey
HSD test for each experiment.

comparable in coherence to the human-authored games, i.e.
our semantically grounded knowledge graph ensures that co-
herence is not lost when generating content.

Originality (Fig. 8), which we use as a proxy to measure
novelty, exhibits similar trends as surprise. The more longer,
more complex games are deemed more original. Despite
being random, the RA games are seen to be less original
than the the rest of the games perhaps indicating that there
is a link between perceptions of coherence and originality.
The gaps in performance here are much less pronounced,
however, and the Markov chain models slightly edge out the
LM — with all three being comparable to the HD games.

Similarly, Fig. 9describes how surprising the game was
to the players. The difference between the one-room and
five-room games here is much more pronounced. The play-
ers find the five-room, the longer and more complex game,
much more surprising than their one-room counterparts,
showing that complexity is an important factor in determin-
ing surprise. The LM achieves comparable performance to
MCC and again they all perform as well as the HD games.

To measure value, or utility, in a text-adventure game, we
asked the players if they felt a sense of accomplishment af-
ter finishing the game (Fig. 10). We see players reported a
higher sense of accomplishment after finishing more com-
plex games in general with the exception of the RA games,
both of which performed poorly—likely due to them being
relatively incoherent. We also note that the LM showed the
highest values here, surpassing the HD games. We hypothe-
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size that this might be due to the player having to perform a
wider range of actions, some relatively unintuitive, that are
not constrained by our action graph.

Conclusions

We have demonstrated a framework to automatically gener-
ate cooking quests in a “home” themed text-adventure game,
although our framework can be generalized to other themes
as well. Quest generation in a given game world is a subset
of the overall problem of generating entire text-adventure
games. Content generated by both the Markov chains and
the neural language models can be grounded into a given
game world using domain knowledge encoded in the form
of a knowledge graph. The models each excel on different
metrics: the Markov chains model produces quests that are
more surprising and novel while the neural language model
offers greater value and coherence. We also note, however,
that the neural language model requires less domain knowl-
edge than the Markov chains and is thus potentially more
generalizable to other themes and types of quests.

Our human subject study shows us that there is an inverse
relationship between creativity and coherence but only when
a certain threshold of coherence is passed. In other words,
the less coherent a game the more creative it is, but incoher-
ent games—such as those generated by the RA model—are
perceived to be less creative. Furthermore, our automati-
cally generated games consistently perform at least as well
as human designed games in this setting, both in terms of co-
herence and creativity—implying that the generative process
can be automated without a loss in perceived game quality.
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