SLEMAS: An Approach for Selecting Materialized Views
Under Query Scheduling Constraints

Ahcene Boukorca
LIAS/ISAE-ENSMA - Poitiers

Ladjel Bellatreche
LIAS/ISAE-ENSMA - Poitiers

Alfredo Cuzzocrea
ICAR-CNR & University

University University Calabria
Futuroscope, 86960, France Futuroscope, 86960 Rende (CS)
France France ltaly

boukorca@ensma.fr

ABSTRACT

Materialized views are one of the most popular optimiza-
tion techniques selected during the physical phase to speed
up query processing in traditional and advanced databases.
Their selection has been proven to be NP-hard. As a con-
sequence large panoply of heuristics has been proposed to
find near optimal solutions. Usually, the selected material-
ized views are whole life disk resident and their presence is
not calling into question. Note that view maintenance can
cause significant amounts of CPU and I/O usage, which can
be detrimental to performance in a write-intensive database
application. Typically materialized views are stored on disk;
however with big number of queries, there are situations
where not all a good candidate views will be selected. As a
consequence, their dynamic selection becomes a necessity. In
this paper, we address the problem of materialized view se-
lection by considering the query scheduling. We first review
the most important existing work on static and dynamic
view selection. A formalization of the problem of view selec-
tion considering the re-ordering of a large number of queries
is given. A system, called SLEMAS, playing the role of a
generic advisor is described. Finally, intensive experiments
are conducted to compare the efficiency of our system re-
garding the most important state of art algorithms.

1. INTRODUCTION

Nowadays, the complex OLAP queries involving joins and
aggregations is part of the scenery of applications requiring
extremely large databases such as data warehouses, scien-
tific and statistical databases. Materialized views (M) are
one of the most popular optimization structures used in sev-
eral databases deployment platforms: centralized [10], dis-
tributed [4], Cloud [12]. MYV are used to pre-compute and
store aggregated data such as sum of extremely large tables
such as the fact table of a given data warehouse schema. So,
MYV are suitable for queries with expensive joins or aggrega-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

The 20th International Conference on Management of Data (COMAD),
17th-19th Dec 2014 at Hyderabad, India.

Copyright (©)2014 Computer Society of India (CSI).

bellatreche@ensma.fr

66

cuzzocrea@si.deis.unical.it

tions. Once selected, all queries will be rewritten using MV*
in order to avoid irrelevant base table accesses. A rewriting
of a query ¢; of a given workload using views is a query ex-
pression g, referencing to these views. The query rewriting
is done transparently by query optimizer. To generate a best
rewriting for a given query, a cost-based selection method is
used [2].

Note that MYV store data from base tables. In order to
keep the MV in the database repository up to date, it is
necessary to maintain them in response to the changes at the
base tables. This process of updating views is called view
maintenance which has evoked great interest in the past
years [8]. A MYV can be either recomputed from scratch,
or incrementally maintained by propagating the base data
changes onto that view. Note that re-computing the views
can be prohibitively expensive.

Due to resources required for MV (disk space, compu-
tation time, maintenance overhead and cost required for
query rewriting process), DBA cannot materialize all pos-
sible views [11]. Hence, she needs to select an appropriate
set of views to materialize under some resource constraints.
Historically, the Views Selection Problem (VSP) has been
formalized as follows [10]: given a set of most frequently
used queries Q = {q1,q2,-..,¢n}, where each query ¢; has
an access frequency f; (1 < i < n) and a set of resource
constraints CS = {C1,...,Cx}. The VSP consists in select-
ing a set of MV that minimizes one or more objectives,
possibly subject to one or more constraints. Many variants
of this problem have been studied that concern the stud-
ied objective functions and the resource constraint(s). The
main popular variations use respectively the following ob-
jective function and constraints: (i) minimizing the query
processing cost subject to a storage size constraint [10], (ii)
minimizing query and maintenance costs subject to storage
space constraint [15], (iil) minimizing query cost under a
maintenance constraint [10]. This problem is known as an
NP-hard problem [10]. Several algorithms were proposed to
deal with this problem. In [17], a classification of existing
algorithms is given. Note that commercial and academic
DBMS propose tools (advisors) (e.g., DB2 design Advisor,
SQL access Advisor for SQL, Data Tuning advisor for SQL
server, PARINDA for Postgres [16]) to recommend MYV to
DBA.

The most traditional formalization selects views in a static
where it assumes that the queries is a priori known and pre-

!This process is known as query rewriting

ordered. To relax this hypothesis, the dynamic selection has
been proposed [14]. Existing algorithms for dynamic selec-
tion of MYV are divided into two categories based on their in-
coming workload [6]: algorithms with a predefined workload
(the algorithmn described in [21] belongs to this category) and
algorithms with an unknown workload (DynaMat system is
an example of this category [14]). Typically selected MV are
stored on disk permanently with updating strategy on these
MYV; however with disk space limit and with big number of
queries to be optimized, there are situations where not all a
good candidate views will be selected. As a consequence, a
flexible selection of the views under space constraint is rec-
ommended. It is characterized by temporary presence of the
views on the disk to maximize the benefit of using all best
views . In this mode of views selection, the views are created
as a workload execute. If a query need a view that is not
created, the view will be materialized on demand. If there
is not enough space, existing views may be dropped follow-
ing LRU rules. The views selection manner called dynamic
materialization. To maximize the benefit of using material-
ized views before their dropping, it is important to permit
workload’s query order. this query order permutation called
query scheduling.

Most important studies related to the dynamic selection
ignore the query scheduling, except the Phan et al.’s [21]
and Diwan et al.’s [7] works. This ignorance may penal-
ize the performance of the selected M). Note that the
query scheduling defines an efficient order to evaluate a set
of queries to take benefit from current content of a storage
device before relevant data is evicted. The device may be
a main memory buffer, a secondary memory device such as
hard disk, flash, etc. A couple of existing studies showed
the impact of query scheduling on managing buffer where
the allocation database objects into the buffer is guided by
the order of the queries [9]. Recent research efforts study
the impact of query scheduling on selecting optimization
structures such as MYV, indexes [21] and horizontal data
partitioning schema [1]. To the best of our knowledge the
work of Phan et al. [21] is the sole that dynamically se-
lects MV by considering query re-ordering. Consequently,
we propose to details the architecture of the proposed sys-
tem. It is mainly composed of four components: Dynamic
Materialized Query Table (MQT) Scheduler (DMS), MQT
candidate generator, scheduled queries generator, and Dy-
namic MQT management module, which will be described
below:

e The DMS receives query workload.

e MQT candidate generator: the MDS sends the queries
to MQT advisor of DB2 that returns a set of candi-
date MQT and their associated indexes. At the highest
level, the DB2 Advisor works as a black-box view-index
recommendation engine. The black-box has two in-
puts: a set of SQL statements known as the workload,
and statistics describing the target database. There is
only one output: the recommended views and indexes.

e Scheduled queries generator: the candidate MQT and
indexes are then submitted to DMS that runs a ge-
netic algorithm to find the best query order that pro-
duces the highest MQT benefit. The optimal solution
requires the exploration of a search space of N! per-
mutation of the query workload. The objective of the

67

genetic algorithm is establish a tradeoff between max-
imizing MQT cache hits, minimizing MQT material-
ization and minimizing base table accesses.

e Dynamic MQT management module is core of the ap-
proach. It uses a probabilistic model defining the usage
and the materialization of any MQT candidate. The
MQT pool (called cache) is managed by LRU that pro-
vides non-zero hit probability to the entire candidate
MQT.

The main limitation of Phan et al.’s work: (i) it is DB2
DBMS dependent, (ii) certainly DB2 advisor takes into ac-
count the interaction among optimization structures (in-
dexes, MYV, partitioning, and clustering) [27], but the in-
teraction between queries is not well highlighted. Another
aspect related to the query workload is the small number
of the used queries. Nowadays, the number of queries may
be very large (era of big queries). Note that the interac-
tion between queries is crucial for selecting MYV in different
database deployment platforms [18, 19, 26], and (iii) having
a genetic algorithm with fitness function using probabilistic
parameters that require a predictable approach to get them
is time consuming. To overcome these limitations, we pro-
pose a new scalable approach; called SLEMAS. This system
plays the role of generic advisor.

The paper is organized as follows: Section 2 presents the
Background. Section 3 details our contributions, where we
present the scalable algorithm to capture the query inter-
action, MYV selection algorithm, query scheduling and ma-
terialization strategy. Section 4 implements our results and
validation in Oracle 11g. Section 5 concludes the paper by
summarizing the main results and suggesting future work.

2. BACKGROUND

In this section, we present some concepts to facilitate the
understanding of our approach that considers the interaction
of queries to generate the view candidates.

2.1 Multi-Query Optimization

The Multi-query optimization (M@QQO) problem has well
studied since 1980s [24, 22]. MQO tries to perform a batch
of queries by exploiting some share common results. MQO
problem can be divided into two phases [22]. The first phase
is to prepare alternative plans for each query (Each query
may be represented by an algebraic tree corresponding to its
execution plan). These plans can identify common shared
results among a set of queries. The second phase is to select
exactly one plan for each query. As a result of second phase,
the query plans may be merged to generate a graph struc-
ture called, unified query plan (UQP). The structure of this
plan is similar to that proposed in [26]. The leaf nodes of
the UQP represent the base tables. The root nodes repre-
sent the final query results and the intermediate nodes rep-
resent the common sub-expressions shared by the queries.
Among intermediate nodes, we distinguish: (i) unary nodes
representing the selection and the projection operations (ii)
binary nodes representing join, union, intersection, etc. Fig-
ure 3a. presents an UP(Q for a workload of 10 queries issue
form star schema benchmark. Several unified query plans
may exist for a given query workload due to the properties
of relational algebra operations [26]. Sellis et al. [24] are
proposed an A* search to explore all possible UQP. But

ASLEMA

Query#1

Capturin,
Query#2 Query p 8 Query
workload QUEW <cheduler
Query#n interaction

MV
identification

DBMS

Query sequences and

WMV creations

Tables

Figure 1: A global overview of our approach

exploring all possible UQP has been formulated as an NP-
hard problem [24]. To reduce the number of exploring UQP
many cost estimation functions are proposed [25]. Roy et
al. [23] describe a greedy heuristic for generating a good al-
ternative plans which maximize shared results. Dalvi et al.
[5] extend the work of Roy et al.[23] by pipelining common
shared results to maximize the benefit. With Big Queries
Era, offering scalable algorithms for generating a best query
plan becomes a crucial challenge [3].

2.2 Problem Formulation

Before formalizing the MVP considering the Query Schedul-

ing Problem (QSP), we think it would be wiser to pro-
pose a separate formalization of both MVP and QSP. In-
puts: (i) a relational data warehouse (RDW), (ii) a work-
load with a set of queries represented by an UQP, (iii) a set
of intermediate nodes candidates for materialization ; Con-
straint: a storage constraint S; Qutput: a set of MV opti-
mize the cost of processing O and satisfying the constraint
cost (size(MV) < 8).

Similarly, the QSP is formalized as follows:
Inputs: (i) RDW, (ii) a workload with a set of queries rep-
resented by an UQP, (iii) a set of intermediate nodes candi-
dates for materialization; a disk allocation policy;
Output: scheduled queries of the workload into a new or-
dered set that the query having the least execution cost.

The MVP considering QSP takes (i) A RDW and (ii) a
set of queries, (iii) a set of intermediate nodes candidates for
materialization; a constraint representing the limited stor-
age size. The problem aims at providing: (i) a scheduled
set of queries and (ii) MV, minimizing the overall process-
ing cost of and satisfying the storage constraint. The search
space of the combination of MVP and QSP becomes very
huge [21]. In the next section, we propose a new approach
supported by a tool (SLEMAS) dealing with this problem.

3. THE SLEMAS APPROACH

SLEMAS is a three-tier architecture as shown in the Fig-
ure 1: (1) an application tier representing the query work-
load, (2) SLEMAS with three main roles: (i) capturing of
interaction among queries, (ii) generation of views candi-
date and (iii) query scheduling, and (3) a data storage tier
that implements solutions recommended by SLEMAS. TIts
components are below detailed.

3.1 The Application Tier

This module receives from users a set of queries in a queue
to be processed by a DBMS.

68

3.2 SLEMAS Tier

Once query workload is received, SLEMAS performs the
following tasks:

3.2.1 Capturing of interaction among queries:

This step is performed by constructing the UQP. This con-
struction has to take into account the Era of Big Queries.
Usually, the interaction of queries is captured by the use of
acyclic graph [26] (Figure 2.a. To respond to the context of
Big Queries, we propose the use of hypergraph data struc-
ture that showed their efficiency in FElectronic Design Au-
tomation (EDA) [13]. In our context the vertices and edges
of the hypergraph represent respectively the join nodes and
queries as shown in Figure 2-a. Since the number of nodes of
our hypergraph can be very large, we adopt the same philos-
ophy of EDA | where the hypergraph is partitioned according
the interaction among queries. More precisely, each parti-
tion contains high interacted queries. To do the partitioning
we use a tool widely used in EDA called HMETIS [13]. Fig-
ure 2-b gives an example of a such partitioning. Each par-
tition is then transformed in a acyclic directed graph which
is similar to traditional query acyclic graph. During this
transformation, a cost driven approach to order the nodes is
given [3]. This cost computes the processing cost of overall
queries (Figure 2-c).

3.2.2 Materialized Views Selection:

Note that all nodes of the global plan are candidate for
materialization which may represent a huge number. For
instance, in our experiments, we consider 1 000 queries in-
volving 1552 join nodes. As a consequence a pruning mech-
anism is needed. It shall take into account the benefit of
the nodes and their constraints related to their storage and
maintenance. To do so, we define some functions:

e costwo(q, P): the processing cost of the query ¢; with-
out view(s).

e costwv(qi, V;): the query processing cost of query g¢;
using the materialized view Vj.

e costuqt(V;): the maintenance cost of the view V.

e Size(V;): the cost needed to store the view V;.

We define the benefit of a given view Vj (denoted by Benefit(V;))

by:
bene fit(V;) = costwo (V) — costwv (V) — costarar(V) (1)

where costwo(V;) and costwyv (V) represent respectively
the total processing cost of queries without/with the view

(a) Hypergraph of join nodes

t: hypergrap

(¢) Transformation of hypergraph to UQP

Figure 2: An Example of Query Interaction Capturing

V;. Instead of treating the whole search space including
all candidates as in the usual approaches for materializing
views, we propose to use a divide-conquer approach, where
the search space is divided into several sub search spaces,
where each one corresponds to a connected component of
the global graph (Figure 1). Contrary to the existing stud-
ies where they allocate the whole storage constraint to all
views candidate, our approach allocates this storage to each
component to be fair. Then, each component C}, is processed
individually, where its nodes are sorted according their ben-
efits and their ability to satisfy the storage constraint. Three
selection cases are possible. Let N be the set of nodes of
Cy having a greater benefit. The top nodes satisfying the
storage constraint are selected.

3.2.3 Query scheduling:

To avoid massively view dropping, we schedule queries.
This is done by respecting the following principle: when
a view s materialized, it should optimize the mazimum of
queries before its dropping. Therefore, we propose the fol-
lowing procedure supported by an example in which we con-
sider a connected component with 14 queries (Figure 3-a).

1. The queries are grouped in many distinct components
which the interaction (sharing of intermediate results),
is important between queries inside component and
negligible interaction between components. Our sched-
uler aims to schedule the queries in each component
and the order between components.

2. The scheduler is based on maximizing the benefit of
reusing nodes, so the order is guided by nodes. The

69

(b)

ng, | 400 nqg; | 400

ng, | 100 ng, | 300

ng, | 300 ng; | 200

ng; | 200 ng, | 100

(c)

Query Use Weight
Q, ng, 400
Q, nqg; 400
Q; ng; 400
Q, ng,, nq 500
Qs ng,, N4, 500
Qs ng,, Nq, 500
Q; ng,, nd, 500
Qg ngy, N4g 700
Qy ng,, g, 600
Qo Nqg;, NQq 700
Q) N4y, Nqs 700
Q;, [nqy, ng,, Ngy | 700
Qy3 | gy, NGy, Ng; | 700
Qy4 | Nqy, NGy, NGy | 700

(d)
Query order |Qw |Q10|Q11|Q11|Q13|Q14|°s |Q< IQs |Q5 |n7 IQ. IQ; |q, ‘

Figure 3: Example of our Scheduling Approach

materialization of a node prompts that the queries
which use this node are the following to be run. So, no
consideration of space constraint in query scheduler.

3. The identification of node(s) of each component with
maximal benefit (called queen nodes). In our example,
four queen nodes are selected:

{gn1, gnz, qns, gna} (represented by solid nodes in Fig-
ure 3-a).

4. Ordering queen nodes: Let NY* be the number of

(a)DW size :1 GB

2.6e+02 : : :
2.4e+02
2.2e+02
2.0e+02
1.8e+02
1.6e+02
1.4e+02
l2e+02 |
1.0e+02
8.0e+01
6.0e+01 + —f A

4.0e+01 1 1 1 ‘
0.1 0.25 0.3 0.35

disk space (MB)

Static —e— |
Dynamic —es—
Dynamic \& Schedule

(c) DW size :100 GB
5.0e+04 . . .
4.5e+04
4.0e+04
3.5e+04
3.0e+04
2.5e+04
2.0e+04
1.5e+04
1.0e+04

5.0e+03 ! ! ! !
10 15 30

35
disk space (GEB)

(b) DW size :10 GB
2.4e+03 4 . .
2.2e+03
2.0e+03
1.8e+03
1.6e+03
1.4e+03
1.2e+03
1.0e+03
8.0e+02
5.0e+02 +

4.0e+02 L L !

1 1.5 2 25 3
disk space (GEB)

(d)DwWsize :1TB
9.0e+05 . .
8.0e+05 L B

7.0e+05 g
6.0e+05 g
50e+05 + 4
4.0e+05 _
3.0e+05 g
2.0e+05 _

1.0e+05 ! ! !

50 100 150 200 250 300

disk space (GB)

Figure 4: Advantage of dynamic materialization with query scheduling

nodes of the component Cj. Their ordering is based on
their benefit. The benefit of the queen nodes are prop-
agated to their queries. As a consequence, each query
may be assigned to a weight representing the sum of
the benefit of its nodes. These weight are then used
to schedule the queries based on their overall benefit
(Figure 3-d). The query scheduling process not con-
sider the constraint space

Till now, materialized views candidate are identified and
the order of queries. Based on the different cost models
available at SLEMAS side, it can easily decide on materi-
alizing or dematerializing views by performing simulation
using algorithm 1.

Algorithm 1 materializeView (o)

1: cost + estimateM aintenance(mv);{Estimate the main-
tenance cost of the view using the generic cost model}

2: changeStat(muv, true);{ change the stat of the view as
materialized}

3: diskSpace + diskSpace — sizeO f(mv);

4: return cost;

3.3 Data Storage Tier

The results obtained by SLEMAS are translated respect-
ing the target DBMS then receives a creation and dropping
scripts of materialized views and the pre-ordered queries.

70

4. EXPERIMENTAL EVALUATION AND ANAL-

YSIS

We conduct several experiments to evaluate the efficiency
of SLEMAS. First of all, we develop a simulation tool us-
ing Java. It allows to get automatically the characteristics
of the meta data of the data warehouse and run the three
algorithms: (1) SLEMAS’s approach; (2) dynamic material-
ization algorithm proposed by Phan et al’s [21] and (3) MV
selection algorithm proposed by Yang et al’s [26] using a
static formalization. To analyze the behaviors of these algo-
rithms, we consider four scenarios: (1) using static materi-
alization, (2) dynamic materialization, (3) with considering
query scheduling and (4) without query scheduling. These
scenarios are tested by varying: (a) the size of data ware-
house, (b) consideration of different query workload’s ran-
domly generated using SSB query generator and (c) varying
the storage space constraint. The simulated results are then
deployed on Oracle 11g DBMS, running on a Core 2 Duo
server with 2.40GHZ CPU and 32 GB of main memory. The
star Schema Benchmark (SSB) with 100 GB of data contain-
ing a fact table Lineorder and 4 dimension tables [20]: Part,
Customer, Supplier and Date is used.

In the first experiments, we test the interest of dynamic
and query scheduling on optimizing queries. To perform
our experiments we consider a data warehouse with differ-
ent sizes (1Gb, 10Gb, 100Gb and 1 Tb) and a workload of 30
queries, the candidate nodes are selected using our approach.
Three scenarios are considered: (i) naive scenario in which
nodes are materialized till the saturation of storage space,

(a) Static & 1 Gb & 30Queries

120 T | T I
Yang
'—g 110 Phan —e—
% 100 SLEMAS —=— i
=
~ a0 -
i
O 80 —
o
= 70 -
=
= 60 o
50 | 1 | 1
100 150 200 250 300 350
Disk space (Mb)
(c) Dynamic & schedule & 1 Gb & 30Queries
72 T T T T
Phan —e—
w70 L SLEMAS —=— _|
5
g 68 —
g” 66 - = = = g -
8]
g &4 -
i &2
5 L o
80 | | | |
100 150 200 250 300 350
Disk space{Mb)
(e) Dynamic & Schedule & 100Gb & 30Queries
26 T T T T
24 Phan —e—
7 SLEMAS ——=— 7]
5 2
@ 20
% 18
8]
o 16
T 14
2 12
10 | | | |
10 15 20 25 30 35

Disk space (5b)

Number of materialization Total /O Cost (Millions)

Total I/O Cost (Billions)

(b) Dynamic & no schedule & 1 Gb & 30Queries

260 I I I |
240 \P(?wng _
220 - SLEMAS o
200 —
180 —
160 —
140 —
120 —
100 —
80 —
60 1 f i t &
100 150 200 250 300 350
Disk Space(Mb)
(d) Dynamic & no schedule & 1 Gb & 30Queries
250 T T T T
no schedule —sa—
200 With schedule —s— i

| |
200

100 150 250 300 350

Disk Space{Mb)

(f) Dynamic & Schedule & 100Ghb & 1000Queries

1000
900 -
800
700
800
500
400
300

200 | | | |
10 15 20 25 30

|
Phan —ea—

SLEMAS —s—

35
Disk space {(Gh)

Figure 5: Performance of SLEMAS’s approach

(i) materializing without scheduling using our dynamic ap-
proach and considering the workload as pre-ordered® and
(i) materializing with query scheduling. The overall cost
of queries in terms of inputs/outputs is then computed by
varying the storage constraint. Figure 4 summarizes the ob-
tained results. The main lesson is: the dynamic materializa-
tion with query scheduling outperforms the other scenarios
whatever the size of the data warehouse. This shows the in-
terest of incorporating the query scheduling in materializing
views.

In the second experiments: we test the performance of our
approach compared with two existing approaches: Phan et
al.’s method [21], and Yang et al.’s method [26]. For Phan
method, we have developed the following algorithms: (i) a
genetic algorithm to find an optimal query permutation by
emulating Darwinian natural selection of 1000 generations;

2The query scheduling module of our approach in this case
is obsolete.

71

(it) algorithm to select candidate nodes which are the nodes
that have greater benefit have been selected as candidates
(In Phan et al.’s, they are used DB2 advisor to have those all
nodes with greater benefit); (iii) pruning algorithm of candi-
date views using their benefit; (iv) an evaluation algorithm
to estimate the total net benefit of using pruned candidate
views set by query workload; (v) algorithm to manage the
cache of the views (LRU). For Yang, we have developed the
following functions: (i) generation of individual plan tree,
(if) generating Multiple Views Processing Plans (MVPP),
using merging individual plans (iii) selecting materialized
views using M VPP (iv) estimation of query MVPP using
views. To show the performance of our approach three sce-
narios are considered:

1. Static materialization: we consider a data ware-
house with 1Gb and a workload of 30 queries, the
nodes selected by each algorithms are materialized till
the saturation of storage space. As shown in the Fig-

SSB & Size 1 Gb & 30 Queries

400 T T T —T
T Query processing &z=za
2 350 | Materialized Views
S Total Costs
& 300 | i
2 50 L 1
£
= 200 4
C
o
= 150 ,
@
£ 100]
=
&z 50 i
=]
o -

0] L
MNo-MV ASLEMAS Phan Yang

Figure 6: Oracle validation on data warehouse of
1Gb

ure 5-a, there is not a big difference between the three
methods, which improve that our approach not avoids
the selection of best views.

2. Dynamic materialization without query schedul-
ing, we have used the same configuration as static ma-
terialization. Asshown in the Figure 5-b, we show that
Phan is more better than our approach. This is due
to the difference of materialization/dematerialization
number (Figure 5-c). Phan et al.’s method tries to find
best candidate views that optimize the workload glob-
ally which minimize the dropping of the views. But
the views in our approach a divided a many sub sets
which each sub-set optimize some queries, which in-
crease the probability of dropping views if the query
not scheduled.

3. Dynamic materialization with query schedul-
ing: we have used data warehouse with different size
(1Gb and 100Gb) and a workload of 30 queries. As
shown in the Figures 5-c and 5-e, our approach out-
performs Phan method because the number dropping
is minimal and each materialized views are used max-
imally to optimize the queries of the component. As
shown in the Figures 5-f, our approach performs more
when we use big queries (in our tests: 1000 queries).

4.1 Validation in Oracle 11g

ue to the complexity and time needed to deploy all the-
oretical solutions on Oracle DBMS, we propose the follow-
ing: we consider a workload of 30 queries running on two
data warehouses (1GB and 100GB). The disk storage is set
to 400MB (39%) for the first dataset(Figure 6) and 30GB
(30%) for the second dataset (Figure 7).

The obtained results described in the Figures 6 and 7
which are quite similar to those obtained by our simulator.
This shows the quality of our used cost models.

5. CONCLUSION

In this paper, we addressed an important problem which
is the dynamic materialized view selection by considering
the query scheduling. Both problems are hard. To solve
this problem, we propose a methodology supported by a

72

SSB & Size 100 Gb & 30 Queries

5000 , , ‘

w Query processing

2 Materialized Views 7

g 2000 L Total Costs o |
0

s

o 3000 | _
E

c

S Zo00 _
5

@

% =

Y 1000 | %9 N
b [F

@ £ kel

. £ kel

9 0 lts]

MNo-MV Phan Yang

Figure 7: Oracle validation on data warehouse of
100Gb

generic advisor called SLEMAS. It is 3-tiers architecture in-
cluded: (1) an application tier representing the query work-
load, (2) SLEMAS with three main components: (i) cap-
turing of interaction among queries. To offer a scalable al-
gorithm, we proposed the use of hypergraph largely used
in the EDA domain. (ii) Generation of views candidate
performed by divide-conquer approach, in which the hy-
pergraph is partitioned into several connected components.
(iii) Query scheduling allows re-ordering the query work-
load based on their benefit in using materialized views. (3)
A data storage tier that implements solutions recommended
by SLEMAS. Our approach is compared against the most
important state of art works and the obtained results show
the efficiency and effectiveness of our approach.

Currently, we are working in two directions: the incorpo-
ration of another optimization structure which is the indexes
to SLEMAS and development of a more sophisticated tool
with nice interfaces and offering several API to connect dif-
ferent DBMS platforms.

6. REFERENCES

[1] L. Bellatreche, A. Kerkad, S. Breff, and D. Geniet.
Roupar: Routinely and mixed query-driven approach
for data partitioning. In On the Move to Meaningful
Internet Systems: OTM 2013 Conferences, pages
309-326. Springer, 2013.

A. G. Bello, K. Dias, A. Downing, J. Feenan,

J. Finnerty, W. D. Norcott, H. Sun, A. Witkowski,
and M. Ziauddin. Materialized views in oracle. In
VLDB, pages 659-664, 1998.

A. Boukorca, L. Bellatreche, S.-A. B. Senouci, and
Z. Faget. Sonic: Scalable multi-query optimization
through integrated circuits. In Database and Ezpert
Systems Applications, pages 278-292. Springer, 2013.
L. W. F. Chaves, E. Buchmann, F. Hueske, and

K. Béhm. Towards materialized view selection for
distributed databases. In EDBT, pages 1088-1099,
20009.

N. N. Dalvi, S. K. Sanghai, P. Roy, and S. Sudarshan.
Pipelining in multi-query optimization. Journal of
Computer and System Sciences, 66(4):728-762, 2003.
N. Daneshpour and A. A. Barforoush. Dynamic view
management system for query prediction to view

2]

(3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

materialization. IJDWM, 7(2):67-96, 2011.

A. Diwan, S. Sudarshan, and D. Thomas. Scheduling
and caching in multi-query optimization. In
International Conference on Management of Data
COMAD, Delhi, India, 2006.

A. Gupta and I. S. Mumick. Maintenance of
materialized views: Problems, techniques, and
applications. IEEE Data Eng. Bull., 18(2):3-18, 1995.
A. Gupta, S. Sudarshan, and S. Viswanathan. Query
scheduling in multi query optimization. In IDEAS,
pages 11-19, 2001.

H. Gupta. Selection and maintenance of views in a
data warehouse. Ph.d thesis, Stanford University -
USA., 1999.

V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Implementing data cubes efficiently. In SIGMOD,
pages 205-216, 1996.

V. Kantere, D. Dash, G. Frangois, S. Kyriakopoulou,
and A. Ailamaki. Optimal service pricing for a cloud
cache. IEEE TKDE, 23(9):1345-1358, 2011.

G. Karypis and V. Kumar. Multilevel k-way
hypergraph partitioning. In ACM/IEEE Design
Automation Conference (DAC), pages 343—-348, New
York, NY, USA, 1999. ACM.

Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic
view management system for data warehouses.
SIGMOD Rec., 28(2):371-382, June 1999.

M. Lawrence. Multiobjective genetic algorithms for
materialized view selection in olap data warehouses.
In Proceedings of the 8th annual conference on
Genetic and evolutionary computation, pages 699-706.
ACM, 2006.

C. Maier, D. Dash, I. Alagiannis, A. Ailamaki, and
T. Heinis. Parinda: an interactive physical designer
for postgresql. In EDBT, pages 701-704, 2010.

I. Mami and Z. Bellahsene. A survey of view selection
methods. SIGMOD Record, 41(1):20-29, 2012.

H. Mistry, P. Roy, S. Sudarshan, and

K. Ramamritham. Materialized view selection and
maintenance using multi-query optimization. In
SIGMOD, pages 307-318, 2001.

T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and
N. Koudas. Mrshare: Sharing across multiple queries
in mapreduce. PVLDB, 3(1):494-505, 2010.

X. C. Pat O’Neil, Betty O’Neil. Star schema
benchmark. June 2009.

T. Phan and W.-S. Li. Dynamic materialization of
query views for data warehouse workloads. In ICDE,
pages 436-445, 2008.

A. Rosenthal and U. S. Chakravarthy. Anatomy of a
mudular multiple query optimizer. In Proceedings of
the International Conference on Very Large Databases
(VLDB), pages 230-239, 2006.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe.
Efficient and extensible algorithms for multi query
optimization. ACM SIGMOD Record, 29(2):249-260,
2000.

T. K. Sellis. Multiple-query optimization. ACM
Transactions on Database Systems, 13(1):23-52,
March 1988.

K. Shim, T. Sellis, and D. Nau. Improvements on a

73

[26]

[27]

heuristic algorithm for multiple-query optimization.
Data € Knowledge Engineering, 12(2):197-222, 1994.
J. Yang, K. Karlapalem, and Q. Li. Algorithms for
materialized view design in data warehousing
environment. In VLDB, pages 136-145, 1997.

D. C. Zilio, J. Rao, S. Lightstone, G. M. Lohman,

A. J. Storm, C. Garcia-Arellano, and S. Fadden. Db2
design advisor: Integrated automatic physical
database design. In VLDB, pages 1087-1097, 2004.

