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ABSTRACT  
Design of recommender system following the latent factor model 
is widely cast as a matrix factorization problem yielding a rating 
matrix, which is a product of a dense user and a dense item factor 
matrices. A dense user factor matrix is a credible assumption as all 
users are expected to have some degree of affinity towards all the 
latent factors. However, for items it’s not a reasonable supposition 
as no item is expected to possess all the traits (factors). In this 
work, we propose a matrix factorization model which yields a 
dense user but a sparse item factor matrix; having equivalence to 
Blind Compressive Sensing (BCS) formulation. Basic BCS 
framework is augmented with an added elastic net regularization 
term. The addition helps in capturing correlation between 
different item latent factors. Despite the efficiency of matrix 
factorization approach, it’s not feasible to apply the techniques for 
very large datasets (rating matrices). For this purpose, we employ 
Divide and Combine (DnC) approach – wherein proposed method 
is applied to distinct subsets of the rating matrix simultaneously 
and resulting estimates combined to yield the final result. The 
(randomized) DnC approach retains the convergence guarantees 
of matrix factorization. Experiments were conducted on real world 
Movielens dataset and our technique was compared against 
popular matrix factorization methods. The results indicate the 
superiority of our method in terms of both accuracy and speed.   

Keywords 
Blind compressive sensing, collaborative filtering, elastic net 
regularization, latent factor model. 

1. INTRODUCTION 
Information overload on the internet regards to the number of 
items, services, service providers and even reviews makes the job 
of finding the desired cumbersome for any customer. With the 
advent of Recommender Systems (RS), in 1990’s [30], [36], this 
task is considerably eased. An efficient Recommender System 
helps both the customers – by providing relevant suggestions, as 
well as e-commerce portals (like Amazon, Flipkart) – by 
increasing their popularity and hence revenue. Task of a RS is to 

predict a user’s choice based on his/her past history and make 
relevant recommendation of products and services for future.  

Methods for design of RS can be classified on the basis of 
information utilized and technique adopted for rating prediction 
into – Content based, Collaborative filtering and hybrid 
techniques [1]. Content based methods [32] are based on finding 
similarity/match between user’s choice profile and the content 
description of items. Collaborative filtering (CF) techniques [18], 
[14] rely on either implicit ratings – inferred from users past 
behavior such as browsing history, or on explicit ratings – ratings 
given by users on a small subset of items. They are the most 
widely used and efficient means of design of recommender 
systems. Unlike content based methods, they do not require any 
explicit characterization of items or users; which might not be 
always feasible. Hybrid schemes employ a combination of both 
[28].  

CF methods can be further subdivided into memory based and 
model based approaches. Memory based methods [35], [36] are 
primarily neighborhood based strategies. They scan the entire 
rating matrix to find users with high similarity (measured based 
on ratings on commonly rated items) to the target user. Predicted 
rating for an item is just a linear combination of ratings given by 
similar users on the concerned item. The approach can be 
extended to work on item similarity rather than user similarity 
[22]. These methods are more intuitive, but lack the desired speed 
of computation; due to large size of the rating matrix. Also, the 
sparsity of rating matrix makes finding similar users difficult at 
times, which prohibits predicting ratings especially for a new user 
– the cold start problem [1].   

Model based methods [39], [42] on the other hand, construct a 
model from existing dataset and subsequently use it for rating 
prediction. The lower dimension of the model viz-a-viz original 
database makes them suitable for faster online computations. 
Also, they are able to provide better coverage and prediction 
accuracy than their memory-based counterparts [1]. Several model 
based approaches have been studied such as Bayesian 
probabilistic modelling [37], cluster based methods [42], and 
latent factor models [19], [39].  

Latent factor models have gained tremendous popularity over the 
past decade. These models rest on the premise that a user’s choice 
of an item is governed by the traits possessed by the item and the 
user’s affinity towards those characteristics. Every user can be 
profiled as vector of his/her affinity to certain characteristics or 
latent factors. Similarly, every item can also be profiled by a 
vector describing the extent to which it possesses those latent 
factors. User’s rating on an item are a result of interaction 
between these latent factor vectors.  
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Latent factor based approach has been conventionally cast as a 
matrix factorization problem – representing the rating matrix as a 
product of user and item latent factor matrices [19].  Recently, in 
some works [20], [38], the latent factor model has been cast as a 
(low rank) matrix completion task. It’s a convex formulation 
unlike matrix factorization which is bilinear and hence non-
convex. But, use of singular value decomposition makes these 
algorithms computationally too intensive to allow wide spread 
application in RS design.  

Our proposed approach is based on matrix factorization 
formulation, which recovers the latent factor matrices for users 
and items. Existing works on matrix factorization aims to recover 
a dense user and item latent factor matrices [34]. It’s realistic to 
expect a dense user latent factor matrix, as all users will have 
some degree of affinity towards all latent factors. However, such a 
scenario is not correct with respect to items. For example, 
consider the case of a Music recommender system. A user will 
have certain degree of interest towards all forms, be it Bollywood, 
Ghazals or Rap. Similarly, he/she may have a favourite singer, but 
will not be averse to listening to others. All this will translate into 
dense latent factor vectors for the users. However, a song cannot 
simultaneously belong to all genres or be sung by all singers.  
Thus the latent factor vector for any song, will have very few non-
zero values – indicating possession of a few of the entire list of 
latent factors. Following this proposition, we formulate a matrix 
factorization approach that promotes recovery of the rating matrix 
as a product of a dense user latent factor matrix and a sparse item 
latent factor matrix. Our formulation shows equivalence to Blind 
Compressive Sensing (BCS) framework [11] in signal processing.  

In addition to being sparse, item latent factors also exhibit some 
correlation amongst themselves. For example, an album by Lady 
Gaga will invariably be Pop. This correlation can be captured by 
an elastic net [45] type penalty term added to our base matrix 
factorization formulation. Thus our framework resembles a BCS 
formulation with an additional elastic net penalty.   

The application of any matrix factorization algorithm to huge 
datasets (with rating matrix dimension exceeding tens of 
thousands) is not a feasible scenario. In [26] authors proposed a 
Divide and Conquer Approach which can be used to apply MF 
algorithms to huge datasets. We extend the approach to our 
formulation in order to generate predictions for very big datasets. 

The results obtained using our algorithm are compared against 
those obtained using existing state of the art formulations. Our 
method yields better results than the techniques compared against 
with regards to both recovery accuracy and execution time – 
important aspects of RS design.  

The rest of the paper is organized as follows. Section 2 provides 
brief description of work done in related areas. Our proposed 
formulation is elaborated in section 3. Section 4 includes the 
experimental setup and results. Conclusion and future work are 
presented in section 5.   

2. LITERATURE SURVERY AND 
PRELIMINARIES 
2.1 Latent Factor Model 
Actual ratings available in the database are influenced by not just 
the liking of a user towards the traits possessed by an item, but are 
also impacted by certain biases embedded in both users and items. 
If we consider a user who is a movie enthusiast, he will probably 

be fervent about all movies and rate all of them generously. Such 
a user ends up having a positive user bias. Similarly, a movie 
which is a big Oscar Awardee will tend to get higher ratings by 
almost all users, inflicting it with a positive item bias.  

The bias terms constitute the baseline estimate which can be 
modeled as [19] 

         ,   g u ia b a bbaseline mi bu u ib          (1) 

where, gm is the global mean,  aub u is the user bias for user ‘a’ 

and  bib i is the item bias for item ‘b’. 

The interaction component of the actual ratings, i.e. excluding the 
baseline estimates, is what can be modelled as in terms of user’s 
affinity to traits possessed by the item. The challenge in RS design 
is modelling the interaction component; baseline estimation is 
easy. Modelling this component using latent factor based design 
rests on the suggestion that  that a users’ rating of an item is a 
function of his/her affinity towards the traits (latent factors) 
possessed by the target item. For example, consider the case of a 
book recommendation system. Each user’s choice of a book can 
be defined in terms of choice of category (fiction/nonfiction etc.), 
author and certain other related features. Similarly a book will 
have these characteristics (latent factors) to varying extent. The 
interaction between the user and item can be modelled as the 
interaction between these feature vectors for books and users as in 
(2) 

 , ,a b
a b

interactio u i f
u

n f
i

                        (2) 

where, f denotes the latent factor vector. Actual ratings can be 
considered as a combination of interaction and baseline measures. 

     , ,  ,a b a b a bR u i u ibaseline inter uaction i        (3) 

Extending (2) and (3) to entire rating matrix, we can model the 
rating matrix, R, as 

  g u i U IR m I B B F F                                           (4) 

where, /   /u i U IB B and F Fare the matrix counterpart of the 

user/item bias and latent factor vectors respectively.  

The observed rating matrix Y given by 

   Y M R                                                        (5) 

where, M is the masking/subsampling operator. Only a small 
percentage of total ratings are available in the database, i.e. Y is 
extremely sparse. The task in Collaborative filtering is to predict 
the missing ratings and fill in the rating matrix. 

Most frequently used method of rating prediction using (5) is 
Matrix Factorization (MF) [19] - involving solving an 
optimization problem of the form 

   
2

, , ,

2 2 2 2

min ( )

         

u i U I FB B F F

b i i

g u i U I

u U IF F F F

Y M I

B

m B B F F

B F F 
   

  


                      (6) 

where, b and i are the regularization parameters which aid in 

preventing over fitting of model to observed data. Equation (6) is 



31

a non-convex formulation, but with separable variables. This 
enables minimizing over each of the variables alternately using 
alternating least squares [3] or stochastic gradient descent 
algorithm [47].  

Because of efficiency of MF approach, it has received lots of 
attention and several works [20], [29], [39] have proposed 
algorithms to solve the same.  

A recent addition to solving latent factor model based 
formulations is Matrix Completion (MC) approach. MC 
formulation aims to recover the interaction model (W) directly, 
instead of its factored version U IF F by solving expression of the 

form given below 

   Q M W                                                        (7) 

where, Q is the interaction component of observed set of ratings. 
Given the subsampling nature of masking operator M, (7) is an 
underdetermined linear system of equation. However, we can aim 
for a unique solution if we place a constraint on W [12]. In case of 
RS, the overall interaction component is affected by only the 
latent factors (which are the independent variables). As the 
number of latent factors (generally around 40-50), is far less than 
dimension of rating matrix (even reaching hundreds of 
thousands), W has a significantly low rank structure. Thus, we can 
look for the lowest rank solution. Hence, MC problem can be cast 
as 

   2
min nFW

Q M W rank W           (8) 

where, n is the regularizing term penalizing any deviation in W 

from the low rank nature. However, rank minimization is a NP-
hard problem [2http], and thus any algorithm for the same has 
complexity of a brute force algorithm. Hence, the rank constraint 
can be replaced by its convex hull, nuclear norm – sum of singular 
values – constraint as in (9) [5]. 

  2

*
min nFW

Q M W W           (9) 

Nuclear norm regularization term in (9), while maintaining 
convexity of the formulation, promotes recovery of a low rank 
solution [33]. Several solvers exist for (9) [4], [25], [41]. 
Although MC being convex has convergence guarantees, it is not 
widely used in RS design. This is so because most existing solvers 
use Singular value Decomposition (SVD) for solving (9), which 
because of its high complexity, is inefficient for very large rating 
datasets.  

2.2 Compressed Sensing 
Theory of Compressed Sensing (CS) focusses on recovery of a 
sparse signal from its lower dimensional projections [8]. If y is the 
observation vector, and x is the original signal, given the (linear) 
projection operator A, the three are related as 

y Ax                                                                                      (10) 

If A has a dimension of ;m n m n , then (10) being an under 
determined system of equation can have infinite solutions. 
According to CS theory, if the signal ‘x’ is sparse or adequately 
compressible, a unique solution to (10) can be obtained [2] by 

looking for the sparest solution (minimizing 0l  norm), i.e. solving 

problem of the form 

0
min    

x
x subject to y Ax                                                        (11)        

Most signals are often not themselves sparse, but sparse in some 
transform domain (for example images are sparse in wavelet 
domain). In such a case, we can modify (11) as follows. 

0
min    

,  

T

x

T

subject to y AD

where x D

 



                                                  (12)        

where, D is the sparsifying dictionary.  

However, (12) is NP-hard [31], with all algorithms to solve the 
same having complexity equal to brute force algorithms. But, non-
convex 0l  norm can be approximated by its convex surrogate, the 

1l  norm (13), which yields the same solution as (12) if certain 

conditions are met [6].  

1
min    

,  

T

x

T

subject to y AD

where x D

 



                                                  (13)        

Equation (13) can be put as an unconstrained convex formulation  

2
min 12

Ty AD                                                              (14) 

where,  is the regularization parameter. It has been shown and if 
A and D are incoherent and x is sufficiently sparse, solution of 
(12) and (14) match. 

2.3 Blind Compressed Sensing 
CS theory assumes the either the signal is sparse as it is, or sparse 
in some known transform domain i.e. sparsifying dictionary D is 
known a priori. But, there could be cases where that is not the 
case. Such problems fall under the framework of Blind 
Compressed Sensing (BCS) [11].  

BCS formulation attempts to simultaneously recover the sparse 
signal and the sparsifying basis from the under sampled signal 
measurements. However, a robust solution to this is possible only 
in case of Multiple Measurement vector (MMV) setting depicted 
in (15). Consider multiple observation vectors stacked in columns 
of Y and B being the sparse coefficients matrix, then 

TY AD B                                                                                (15) 

where, 1 2[ | | .... | ]NY y y y and 1 2[ | | .... | ]NB     

Even though, BCS shows similarity to dictionary learning, latter is 
an offline technique, i.e. it cannot be used for signal recovery/ 
reconstruction.  

To obtain a unique solution, it’s necessary to impose some 
constraint on the sparsifying basis also, alongside the sparsity 
constraint on the transformed signal coefficients [11]. One of the 
possible formulation for BCS, used in [23] for dynamic MRI 
reconstruction, is given in (16). It imposes a constraint on the 
Frobenius norm of the dictionary. 
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  2
min 12, 1

2  

l
A D y
i iD i

subject to D constF

  
     


                                       (16) 

2.4 Elastic-net Regularization 
Classical regression model can be written as 

2,  (0, )y Ax N           (17) 

where, y is a observed data, A is a matrix of explanatory variables 
and x is the unknown weight vector which explains the 
observation in terms of explanatory variables.    

The most basic and straight forward regularization is the ridge 
regression [15] which solves the problem of the form 

2 2

2 2
minr

x
x y Ax x                          (18)  

Where,   is the regularization parameter. Solving (18) promotes 
recovery of a dense solution because of 2l norm penalty term. 

However, in cases where only a few explanatory variables explain 
the entire formulation, ridge regression fails to capture the 
structure correctly. In such a case, we want a sparse solution 
(weight vector) x so that only a few explanatory variables 
participate in the describing the observed variable. Here comes 
the LASSO (Least Angle Shrinkage and Selection Operator) 
regularization [40]. 

LASSO solves (17) with the 2l  norm penalty term replaced by 1l  

regularization (19) 

2

2 1
minl

x
x y Ax x                         (19) 

Use of 1l  penalty promotes recovery of a sparse weight vector. 

But, in certain cases even with the desired weight vector being 
sparse, LASSO fails to yield the correct structure. For example, 
consider a case where the explanatory variables are 
interdependent or highly correlated. In this scenario, the 
correlated explanatory variables should occur together, i.e. if one 
of them is selected, others in the group should also be a part of 
selection. However, LASSO fails to capture or promote this group 
structure.  

This is where, the role of elastic net regularization [27], [45] 
comes into play. It includes an additional penalty term (2l  norm) 

on the weight vector into the LASSO framework. This quadratic 
penalty aims at selecting all the correlated variables together. 
Equation (20) shows elastic net regularization. 

2 2

1 22 1 2
minenet

x
x y Ax x x                          (20) 

2.5 Divide and Conquer 
Most e-commerce sites have very large database of users and 
items; generating a huge but extremely sparse rating matrix. 
Applying any algorithm to such huge matrices is almost 
computationally impossible because of its enormous time and 
space complexity.  

Research has been undertaken to solve this scalability problem 
and several approaches have been suggested. In [46] authors 
proposed a parallel ALS algorithm. In this, various “labs” in 
parallel MATLAB work on a subset of columns of the rating 
matrix and the resulting estimates are shared with other “labs”. 
[24] proposed an approach for performing nonnegative matrix 
factorization as a series of map and reduce steps.   

Authors in [26] proposed a distributed approach for performing 
MF on large datasets on a distributed architecture. It follows three 
steps 

1. Divide: Divide the observed rating matrix (Y) into sub 
matrices - 1 2, ,...., NM M M , by splitting Y along the longer 

dimension.  

2. Factor: Perform independent MF on each of the sub matrices, 
to yield partial estimates corresponding to each sub matrix - 

1 2
ˆ ˆ ˆ, ,.... NM M M .  

3. Combine: A technique using randomized column projection 
method suggested in [10] is used.  One of the estimated sub 
matrix is selected at random, and all sub matrix estimates are 
projected on to its column space to yield a (low rank) 
estimate for the entire rating matrix. Same procedure is 
implemented for all the sub matrices and an average of all 
resulting estimates yields the final matrix factors.  

This methodology is implemented on a distributed platform, with 
split and factorization algorithms running simultaneously on all 
sub matrices in parallel. It achieves a huge decrease in run time 
and also reduces net computational complexity.  

3. PROPOSED APPROACH 

3.1 Proposed Formulation 
In this section, we present our novel proposition for latent factor 
model based design of an efficient recommender system.   

For our model, we first estimate the baseline offline. Baseline 
estimation is done using stochastic gradient descent algorithm for 
solving the formulation in (21).  

    2
2 2

,
,b

,

min     
u i

u i u i b u i
b

u i
gmy b b b b


                        (21)                 

where,  is the set of observed ratings. 

For our design, offline baseline estimation not only reduces the 
online computation burden substantially, but also gives better 
recovery accuracy than online baseline estimation for our model. 
Once the baseline is computed by solving (21), the interaction 
part is segregated from the actual ratings. Our model is applied to 
this ‘interaction component’. After the interaction estimate for the 
entire matrix is computed, baseline terms are added back to get 
final rating values for making relevant prediction.  

Modelling of the interaction part is done following the latent 
factor based design approach. In line with the conventional latent 
factor model, we also propose to factorize the rating matrix into 
two sub matrices – user latent factor and item latent factor. 
Existing latent factor matrix factorization models solve the 
problem of the form 

 2 2 2

,
min ( )

U I
U I U IF F FF F

F F F FQ M                         (22) 
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where, u i gQ Y B B m I     is the observed interaction part, 

UF and IF are the matrix composed of user and item latent 

factor vectors, respectively and M is the subsampling operator. 
Above optimization problem promotes recovery of a dense item 
and a dense user latent factor matrix i.e. latent factor vectors for 
both users and items are dense, with non-zero values for all latent 
factors.  

A user latent factor vector can be reasonably assumed to be dense, 
but the same cannot be applied to the item’s latent factors. Let us 
consider the case of a Restaurant recommender system. In this 
case the relevant latent factors (defining characteristics) include 
those related to cuisine, location, price, ambience, service and 
alike. A user might have a liking for continental cuisine but will 
be completely against Indian food. Similarly a user having an 
affinity for fine dining restaurants, might not be opposed to going 
to a self-service café. Hence, it can be safely presumed that a 
user’s affinity to almost all factors, to varying degree, will 
translate into a dense user factor matrix. On the other hand, if a 
restaurant is fine dining, it cannot have self-service. Similarly a 
bakery won’t serve Indian cuisine.  Hence, if we construct a 
restaurant’s latent factor vector, it will have a large number of 
zeros, as no restaurant can possess all latent factors concurrently. 
Hence, the dense latent factor assumption does not hold true for 
items. 

In contrast to previous works, we propose to factorize the rating 
(interaction) matrix into a dense user factor matrix and a sparse 
item latent factor matrix. The problem can be mathematically 
formulated as 

  2 2

, 1
min ( )

U I
u iF FU I U I

F F
F F F v cQ e FM          (23) 

Where,  1vec F is the vectorized (column concatenated) form 

of item factor matrix.  Equation (23) has equivalence to blind 
compressed sensing formulation (16) discussed in the previous 
section. The Frobenius norm penalty on the user matrix is in 
accordance with the constraint on dictionary in BCS framework. 
Together with the sparsity constraint on item factor matrix it 
provides conditions for recovery of a unique solution. 

Our above formulation (23) captures the sparse nature of item 
latent factor vectors but fails to capture the dependence of these 
factors on each other. Carrying on with the case of a restaurant 
RS, a fine dining restaurant will inevitably be expensive, as also 
will be a restaurant in a star property. It can be observed that 
certain latent factors are linked together, i.e. they will usually 
occur together. Hence, item latent factor vectors follows a group 
sparse structure. Equation (23) may select certain factors, but keep 
related latent factors as zero, as it fails to exploit their correlation. 
But, the lack of knowledge about which factor (position of latent 
factor in the entire vector) corresponds to which trait prevents us 
from imposing a strict group sparse penalty.  

Elastic net regularization allows us to embed this group nature 
and inter factor dependence into the matrix factorization model.  
Incorporating elastic net type penalty term into our previous 
formulation we get 

 2 2 2

, 1
min ( )

U I
u i enetU I U IFF IF FF

F F F vec F FQ M        (24) 

Inclusion of both 1l  and 2l  norm penalty on the item latent factor 

matrix promotes recovery of a sparse solution with correlated 
factors being chosen together.  

To enable efficient implementation of our approach to very big 
datasets, we place it in the structure of Divide and Combine 
methodology [26]. The observed interaction (component) matrix 
(Q) is split into several disjoint sub parts - smaller dimension 
matrices - by splitting randomly along the longer matrix 
dimension. Our latent factor based approach is then applied to 
each of the sub matrices. After all the partial estimates are 
obtained, they are combined in accordance with the procedure 
outlined in preceding sections. This approach helps us in efficient 
parallel implementation of our algorithm on a distributed 
platform.  

3.2 Algorithm Design 
In this section we present the design of an algorithm with low 
computational complexity to solve (24). Our algorithm is based 
on the principle of Majorization Minimization (MM) [9].  

Majorization Minimization scheme proposes to map 
computationally intensive optimization problems into much 
simpler and effective iterative procedures. We briefly discuss the 
MM approach before using it for our algorithm design.  

In several applications, we are required to solve least square 
optimization of the form 

2

2
min

x
y Ax                                                               (25) 

 The solution to above is given by   1T Tx A A A y
 .  

If the size of signal x, is very large, computation of pseudo 
inverse of A is computationally very intensive – forming the 
algorithm’s bottleneck. MM technique eliminates this 
bottleneck. It involves replacing the existing 

function   2

2
min

x
h yx Ax , by another function  g x which 

is much simpler to minimize. It is essentially a majorizer 
of  h x and the two are related as follows 

 ( ) ( ) k kg x h x  

 ( ) ( )g x h x x   

As shown in fig. 1, new function is defined such that it touches 
the existing function at the point of definition, and lies above it 
otherwise.  

For (25), at an initial (guess of minima) pointkx ,  kg x can be 

defined as 

    2

2
( )

T T
k k kg x y Ax x x I A A x x                                  (26) 

Under the constraint that  max Teig A A  , (26) will satisfy 

conditions for majorizer. Now, instead of minimizing our original 
function, (26) is minimized. Its minima forms the new point of 
definition  1 mink

x
x g x  .  

After some mathematical manipulations, minimization of  g x can be converted into two iterative steps 
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 1
 1:  T

k kStep b x A y Ax                                                     (27a) 

2

2
 2 :  min

x
Step b x                                                               (27b) 

Hence, the solution to (25) no longer requires pseudo inverse 
computations.  

Before extending the same methodology to our formulation (24), 
we apply Alternating Direction Method of Multipliers (ADMM) 
to (24), to split this bilinear formulation into two convex sub 
problems (as both variables are separable) – one optimizing over 

UF and other over IF . 

Sub problem 1: 

2 2
min ( )

U
uFU FF

I UF FM FQ                                          (28) 

Sub problem 2: 

 2 2

1
min ( )

I
i enetFF

I I FU I
F F vec FQ M F                  (29) 

Sub problem 1 can be simplified using MM approach discussed 
above into following steps 
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Step 2 can be recast as a simple least squares optimization as 

2

min
0U

I

U
F

u F

FD
F

I
                                                                      (31) 

Which can be efficiently solved using any least square solver like 
gradient descent.  

Similarly, sub problem 2 can also benefit from MM approach and 
written as following iterates 

    
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  (32)             

Step 2 can put reformulated as in (31) 

 
2

1
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0I

U

I i I
F

enet F

FW
F vec F

I


                                            (33) 

Equation (33) can be solved using iterative soft thresholding [7]. 

Both the sub problems are iteratively solved till convergence 
criteria  is satisfied, i.e. maximum number of iterations reached or 
objective function variation between consecutive iterations falls 
below the threshold (1e-7).  

The complete algorithm for implementation of our formulation on 
big datasets is given in fig. 2. 
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4. EXPERIMENTAL SETUP AND 
RESULTS 
This section describes our experimental setup for testing our novel 
proposition. Also, comparison with various standard matrix 
factorization algorithms is given in terms of mean absolute error 
(MAE) and execution times.  

4.1 Experimental Setup 
We conducted experiments on Movielens 10M dataset [48] which 
has been used extensively for benchmarking collaborative filtering 
algorithms.  The rating matrix has a dimension of 71567 users and 
10667 items with 10 million ratings valued 1-5. The size of rating 
matrix is justifies the use of divide and combine approach. We 
performed fivefold cross validation, the available ratings are split 
into five parts. Four of the parts (80% of available ratings) form 
the training data and the last set (20% of available data) 
constitutes the test set. For each of the test-train pair, 50 
independent runs of the algorithms were carried out. 

Baseline estimation was done offline, using (21) and the 
interaction part fed into our model framework. The value of 
regularization parameter for the same was kept at 0.001 and 250 
iterations were carried out using stochastic gradient algorithm.  

For our experimentation, the complete interaction (user-item 
rating) matrix was split into four disjoint sub matrices of almost 
equal dimensions – by splitting along the column. Our matrix 
factorization algorithm (EBCS-BD) was applied to each of the sub 
matrices in parallel. The value of regularization parameters were 
selected using L-curve method [13]. The optimum values were 
found to be 1 3 , 1 2 , 1 5 i enet ue e e       . The 

dimensionality of the model – number of latent factors – were 
experimentally selected to be 50. The resulting predicted estimates 
were combined as per the design procedure underlined in fig. 2. 
After the interaction component of the ratings are predicted, 
baseline data computed offline is added back to recover 
completely filled rating matrix.  

4.2 Results 
Our model and design algorithm was compared against the 
traditional and state of the art methods for matrix factorization, 
namely Accelerated Proximal Gradient (APG) [41], Singular 
Value Thresholding (SVT) [4] and optSpace [17].  

Table 1 shows the comparison between all techniques on the basis 
of recovery accuracy measured in terms of MAE (34). 

^
,,

,
m nm n

m nMAE

 
                                                           (34) 

Where, ,m n


 
and 

^
,m n  are the actual and predicted ratings 

and  is the cardinality of the rating matrix . It’s the standard 
measure for benchmarking algorithm for recommender system 
design. 

It can be observed that our algorithm gives better recovery 
accuracy than the other standard algorithms compared against. 
Our algorithm performs around 4% better than optSpace and 
around 7.5% improvement is shown with respect to SVT in terms 
of mean absolute error.  APG algorithm shows erratic behavior 
and does not give 100% coverage, i.e. not all ratings can be 

predicted in all the cases. The values shown in table 1 are the best 
case values. On the other hand, our algorithm ensures 100% 
coverage and consistently perform well for various test sets and 
multiple runs. Even for best case results, our algorithm is able to 
achieve a decrease of 2% in MAE values over APG. By RS 
standards, this improvement is substantially relevant.  

Table 1. Mean Absolute Error for Various Algorithms 

Algorithm Mean Absolute Error 

EBCS-BD (proposed) 0.6185 

APG 0.6307 

OptSpace 0.6437 

SVT 0.6645 

 

Mean absolute error is a measure of overall accuracy of the 
algorithm. However, for each user what’s important is how close 
the predictions to his /her actual choice are. Hence, in table 2 we 
show the spread of prediction error of various algorithms. 
Prediction error, PE=n indicates that the error between the actual 
and predicted ratings is n. The values shown in the table are the 
percentage of ratings having the stated prediction error. On this 
measure also, our algorithm performs the best, with most of 
ratings having an error of less than 2.  

Table 2. Spread of Prediction error 

Algorithm PE=0 PE=1 PE=2 PE=3 PE=4 

EBCS-BD 38.47 54.71 6.60 0.18 0.02 

APG 37.67 52.34 8.82 1.04 0.12 

OptSpace 36.67 53.10 7.99 1.99 0.14 

SVT 35.40 53.46 8.71 1.27 0.16 

 

It’s important for a RS design algorithm to not just be accurate but 
be sufficiently fast. A faster algorithm ensures that the model can 
be updates more frequently and also online computation of rating 
can also be carried out more efficiently. 

Table 3. Run Times for Various Algorithms 

Algorithm Run Times (seconds) 

EBCS-BD (proposed) 170.61 

APG 276.05 

OptSpace 1159.89 

SVT 265.74 

 

The run times for various algorithms is shown in table 3. The 
times are for all three phases combined i.e., split, perform matrix 
factorization and combine to yield final estimate. It’s evident that 
our algorithm is considerably faster than other algorithms. Our 
algorithm (because of use of MM approach) is almost 1.5 times 
faster than APG and SVT, nearest to it in terms of time 
requirement. This aids in design of an efficient recommender 
system. 

5. CONCLUSION 
In this work, we propose a novel recommender system design 
approach based on the latent factor model implemented on a 
distributed platform. Existing latent factor based models aim to 
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recover the rating matrix as a product of a dense item and a dense 
user latent factor matrix. We also propose to recover the rating 
matrix as a product of user and item factor matrices, but do not 
impose the dense structure constraint. We claim that the user 
latent factor matrix is dense but for the item latent factor matrix 
the same doesn’t hold true. This is because every user will 
demonstrate certain degree of affinity towards all traits but, no 
item can concurrently possess all the traits. Hence, we promote 
recovery of a dense user and a sparse item latent factor matrix. 

Along with this, we also argue that the various traits defining the 
items are not independent. This correlation and interdependence 
between the items is captured by use of an elastic-net 
regularization based penalty term. This addition promotes a group 
sparsity effect in the sparse item factor vector - correlated factors 
are selected together. We show that our proposed formulation 
naturally fits into the blind compressive sensing framework with 
an add-on elastic net penalty term.  

We also derive and efficient algorithm for solving our problem 
formulation using Majorization minimization approach. Use of 
MM technique helps in breaking complex and computationally 
intensive optimization problem into simple iterative procedure. 
Thus, use of MM method greatly reduces the computational 
burden and run times.  

Also, we employ divide and combine approach to employ our 
formulation efficiently on a distributed platform to very large 
rating matrices.  

In this work we have experimented on the movielens dataset. It is 
shown that our algorithm outperforms other collaborative filtering 
techniques compared against. Our algorithm is able to achieve 
improved quality of prediction and a reduction in mean absolute 
error. Also, our algorithm using MM approach ensures that the 
run times for our design is much smaller than for other algorithms. 
Hence, our design incorporates two basic requirements of 
recommender systems – high accuracy and smaller execution.   
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