CMS logoCMS event Hgg
Compact Muon Solenoid
LHC, CERN

CMS-BPH-22-001 ; CERN-EP-2024-172
Measurement of the $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ effective lifetime from proton-proton collisions at $ \sqrt{s} = $ 13 TeV
JHEP 10 (2024) 247
Abstract: The effective lifetime of the $ \mathrm{B}_{s}^{0} $ meson in the decay $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ is measured using data collected during 2016-2018 with the CMS detector in $ \sqrt{s}= $ 13 TeV proton-proton collisions at the LHC, corresponding to an integrated luminosity of 140 fb$ ^{-1} $. The effective lifetime is determined by performing a two-dimensional unbinned maximum likelihood fit to the $ \mathrm{B}_{s}^{0} $ meson invariant mass and proper decay time distributions. The resulting value of 1.59 $ \pm $ 0.07 (stat) $ \pm $ 0.03 (syst) ps is the most precise measurement to date and is in good agreement with the expected value.
Figures & Tables Summary References CMS Publications
Figures

png pdf
Figure 1:
The tree-level (left) and penguin (right) Feynman diagrams for the decays $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $.

png pdf
Figure 1-a:
The tree-level (left) and penguin (right) Feynman diagrams for the decays $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $.

png pdf
Figure 1-b:
The tree-level (left) and penguin (right) Feynman diagrams for the decays $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $.

png pdf
Figure 2:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-a:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-b:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-c:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-d:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-e:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 2-f:
The signal efficiency as a function of the decay time for the $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (upper) and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ (lower) decays from simulation for each of the three data-taking years. The vertical bars indicate the statistical uncertainty, and the horizontal bars give bin widths. The curves show the fit results.

png pdf
Figure 3:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (left) and proper decay time (right) from data (points) and the results from the 2D UML fit projections (lines) for the 2016-2018 data set. The vertical bars on the data points indicate the statistical uncertainty. The solid, dotted-dashed, dashed, and dotted lines show the total fit, $ {\mathrm{B}^0} $ control channel, $ \mathrm{B}_{s}^{0} $ signal, and background contributions, respectively.

png pdf
Figure 3-a:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (left) and proper decay time (right) from data (points) and the results from the 2D UML fit projections (lines) for the 2016-2018 data set. The vertical bars on the data points indicate the statistical uncertainty. The solid, dotted-dashed, dashed, and dotted lines show the total fit, $ {\mathrm{B}^0} $ control channel, $ \mathrm{B}_{s}^{0} $ signal, and background contributions, respectively.

png pdf
Figure 3-b:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (left) and proper decay time (right) from data (points) and the results from the 2D UML fit projections (lines) for the 2016-2018 data set. The vertical bars on the data points indicate the statistical uncertainty. The solid, dotted-dashed, dashed, and dotted lines show the total fit, $ {\mathrm{B}^0} $ control channel, $ \mathrm{B}_{s}^{0} $ signal, and background contributions, respectively.

png pdf
Figure 4:
The proper decay time distribution from data (points) for events in the $ \mathrm{B}_{s}^{0} $ signal region with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.34-5.42 GeV and the results from the 2D UML fit projections (lines) for the 2016-2018 data set. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines show the $ \mathrm{B}_{s}^{0} $ signal, $ {\mathrm{B}^0} $ control channel, background, and total fit contributions, respectively.

png pdf
Figure 5:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-a:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-b:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-c:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-d:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-e:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 5-f:
Distributions of the $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass (upper) and decay time (lower) from data (points), along with the projections from the 2D UML fit for each year of data taking. The vertical bars on the data points indicate the statistical uncertainty. The dashed, dotted-dashed, dotted, and solid lines represent the signal, control channel, background, and total fit contributions, respectively.

png pdf
Figure 6:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-a:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-b:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-c:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-d:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-e:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-f:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-g:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-h:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 6-i:
The decay time distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ invariant mass in the range 5.17 $ < m < $ 5.22 (upper), 5.22 $ < m < $ 5.34 (center), and 5.42 $ < m < $ 5.57 (lower) GeV and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-a:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-b:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-c:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-d:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-e:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-f:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-g:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-h:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.

png pdf
Figure 7-i:
The invariant mass distribution for events with $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay time in the range 0.2 $ < t < $ 2.5 (upper), 2.5 $ < t < $ 3.5 (center), and 3.5 $ < t < $ 10.0 (lower)\unitps and the fit results for the 2016 (left), 2017 (middle), and 2018 (right) data-taking years.
Tables

png pdf
Table 1:
Sources of systematic uncertainties in the $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ effective lifetime measurement and their estimated values, along with the total systematic uncertainty.
Summary
In this paper, a measurement of the effective lifetime of the $ \mathrm{B}_{s}^{0} $ meson in the $ \mathrm{J}/\psi\mathrm{K^0_S} $ decay channel is presented. The analysis is performed using data collected by the CMS detector during proton-proton collisions at a center-of-mass energy of 13 TeV from 2016 to 2018, corresponding to an integrated luminosity of 140 fb$ ^{-1} $. The effective lifetime is extracted using a two-dimensional unbinned maximum likelihood fit to the invariant mass and proper decay time distributions of the $ \mathrm{B}_{s}^{0} $ meson. The decay $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $, which has a much larger event yield than the corresponding $ \mathrm{B}_{s}^{0} $ decay, is used as a control channel for estimating resolutions and systematic uncertainties. The measured value of the effective lifetime is $ \tau(\mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S}) = $ 1.59 $ \pm $ 0.07 (stat) $ \pm $ 0.03 (syst) ps, which is the most precise result to date. This measurement can be used to constrain the parameters that govern mixing and CP violation in the $ \mathrm{B}_{s}^{0} $ system and also to better understand the penguin contributions in measurements of $ \sin{(2\beta)} $ from $ {\mathrm{B}^0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ decays.
References
1 J. Albrecht, F. Bernlochner, A. Lenz, and A. Rusov Lifetimes of b-hadrons and mixing of neutral B-mesons: theoretical and experimental status Eur. Phys. J. ST 233 (2024) 359 2402.04224
2 N. Cabibbo Unitary symmetry and leptonic decays PRL 10 (1963) 531
3 M. Kobayashi and T. Maskawa $ C\hspace{-.08em}P $ violation in the renormalizable theory of weak interaction Prog. Theor. Phys. 49 (1973) 652
4 M. Ciuchini, M. Pierini, and L. Silvestrini Effect of penguin operators in the $ {\mathrm{B}^0} \to \mathrm{J}/\psi \mathrm{K}^0 C\hspace{-.08em}P $ asymmetry PRL 95 (2005) 221804 hep-ph/0507290
5 S. Faller, M. Jung, R. Fleischer, and T. Mannel The golden modes $ {\mathrm{B}^0} \to \mathrm{J}/\psi \mathrm{K}_\mathrm{S,L} $ in the era of precision flavour physics PRD 79 (2009) 014030 0809.0842
6 M. Jung Determining weak phases from $ \mathrm{B} \to \mathrm{J}/\psi P $ decays PRD 86 (2012) 053008 1206.2050
7 P. Frings, U. Nierste, and M. Wiebusch Penguin contributions to $ C\hspace{-.08em}P $ phases in $ \mathrm{B}_\mathrm{d,s} $ decays to charmonium PRL 115 (2015) 061802 1503.00859
8 LHCb Collaboration Measurement of $ C\hspace{-.08em}P $ violation in $ {\mathrm{B}^0} \to \psi( \to l^{+}l^{-}) \mathrm{K^0_S}( \to \pi^{+}\pi^{-}) $ decays PRL 132 (2024) 021801 2309.09728
9 R. Fleischer Recent theoretical developments in $ C\hspace{-.08em}P $ violation in the B system NIM A 446 (2000) 1 hep-ph/9908340
10 K. De Bruyn, R. Fleischer, and P. Koppenburg Extracting $ \gamma $ and penguin topologies through $ C\hspace{-.08em}P $ violation in $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ EPJC 70 (2010) 1025 1010.0089
11 K. De Bruyn and R. Fleischer A roadmap to control penguin effects in $ \mathrm{B}_\mathrm{d}^0 \to \mathrm{J}/\psi\mathrm{K^0_S} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi \phi $ JHEP 03 (2015) 145 1412.6834
12 M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami In pursuit of new physics with $ \mathrm{B}_\mathrm{d}^0 \to \mathrm{J}/\psi {\mathrm{k}^0} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi \phi $ decays at the high-precision frontier JPG 48 (2021) 065002 2010.14423
13 M. Z. Barel, K. De Bruyn, R. Fleischer, and E. Malami Penguin effects in $ \mathrm{B}_\mathrm{d}^0 \to \mathrm{J}/\psi\mathrm{K^0_S} $ and $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi \phi $ PoS CKM 111, 2023
link
2203.14652
14 K. De Bruyn et al. Branching ratio measurements of $ \mathrm{B}_{s}^{0} $ decays PRD 86 (2012) 014027 1204.1735
15 CMS Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ decay in proton-proton collisions at $ \sqrt{s} = $ 13 TeV PLB 842 (2023) 137955 CMS-BPH-21-006
2212.10311
16 CMS Collaboration Measurement of properties of $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-} $ decays and search for $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ with the CMS experiment JHEP 04 (2020) 188 CMS-BPH-16-004
1910.12127
17 CMS Collaboration Measurement of b hadron lifetimes in pp collisions at $ \sqrt{s} = $ 8 TeV EPJC 78 (2018) 457 CMS-BPH-13-008
1710.08949
18 ATLAS Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-} $ effective lifetime with the ATLAS detector JHEP 09 (2023) 199 2308.01171
19 LHCb Collaboration Measurement of $ \tau_\mathrm{L} $ using the $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi \eta $ decay mode EPJC 83 (2023) 629 2206.03088
20 LHCb Collaboration Analysis of neutral B-meson decays into two muons PRL 128 (2022) 041801 2108.09284
21 LHCb Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-} $ decay properties and search for the $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ and $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-}\gamma $ decays PRD 105 (2022) 012010 2108.09283
22 LHCb Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to \mu^{+}\mu^{-} $ branching fraction and effective lifetime and search for $ {\mathrm{B}^0} \to \mu^{+}\mu^{-} $ decays PRL 118 (2017) 191801 1703.05747
23 LHCb Collaboration Measurement of the $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi \eta $ lifetime PLB 762 (2016) 484 1607.06314
24 LHCb Collaboration Effective lifetime measurements in the $ \mathrm{B}_{s}^{0} \to \mathrm{K}^+\mathrm{K}^- $, $ {\mathrm{B}^0} \to \mathrm{K}^+\pi^- $ and $ \mathrm{B}_{s}^{0}\to \pi^+ \mathrm{K}^- $ decays PLB 736 (2014) 446 1406.7204
25 LHCb Collaboration Measurements of the $ \mathrm{B}^+ $, $ \mathrm{B}^0 $, $ \mathrm{B}^0_\mathrm{s} $ meson and $ \Lambda^0_\mathrm{b} $ baryon lifetimes JHEP 04 (2014) 114 1402.2554
26 LHCb Collaboration Measurement of the $ \overline{\mathrm{B}}_{s}^{0}\to \mathrm{D}_\mathrm{s}^-\mathrm{D}_\mathrm{s}^+ $ and $ \overline{\mathrm{B}}_{s}^{0}\to \mathrm{D}^-\mathrm{D}_\mathrm{s}^+ $ effective lifetimes PRL 112 (2014) 111802 1312.1217
27 LHCb Collaboration Measurement of the effective $ \mathrm{B}_{s}^{0} \to \mathrm{J}/\psi\mathrm{K^0_S} $ lifetime NPB 873 (2013) 275 1304.4500
28 LHCb Collaboration Measurement of the effective $ \mathrm{B}_{s}^{0}\to \mathrm{K}^+\mathrm{K}^- $ lifetime PLB 707 (2012) 349 1111.0521
29 LHCb Collaboration Measurement of the $ \mathrm{B}_{s}^{0} $ effective lifetime in the $ \mathrm{J}/\psi f_0 $ final state PRL 109 (2012) 152002 1207.0878
30 LHCb Collaboration Measurement of the effective $ \mathrm{B}_{s}^{0} \to \mathrm{K}^+\mathrm{K}^- $ lifetime PLB 716 (2012) 393 1207.5993
31 Heavy Flavor Averaging Group Averages of b-hadron, c-hadron, and $ \tau $-lepton properties as of 2021 PRD 107 (2023) 052008 2206.07501
32 CDF Collaboration Observation of $ B^0_s \to J/\psi K^{*0}(892) $ and $ B^0_s \to J/\psi K^0_S $ decays PRD 83 (2011) 052012 1102.1961
33 R. Fleischer and R. Knegjens Effective lifetimes of $ \mathrm{B}_{s}^{0} $ decays and their constraints on the $ \mathrm{B}_{s}^{0}$-$\overline{\mathrm{B}}_{s}^{0} $ mixing parameters EPJC 71 (2011) 1789 1109.5115
34 Particle Data Group Review of particle physics PRD 110 (2024) 030001
35 CMS Collaboration Description and performance of track and primary-vertex reconstruction with the CMS tracker JINST 9 (2014) P10009 CMS-TRK-11-001
1405.6569
36 Tracker group of the CMS Collaboration The CMS phase-1 pixel detector upgrade JINST 16 (2021) P02027 2012.14304
37 CMS Collaboration Track impact parameter resolution for the full pseudo rapidity coverage in the 2017 dataset with the CMS phase-1 pixel detector CMS Detector Performance Note CMS-DP-2020-049, 2020
CDS
38 CMS Collaboration The CMS experiment at the CERN LHC JINST 3 (2008) S08004
39 CMS Collaboration Performance of the CMS Level-1 trigger in proton-proton collisions at $ \sqrt{s} = $ 13 TeV JINST 15 (2020) P10017 CMS-TRG-17-001
2006.10165
40 CMS Collaboration The CMS trigger system JINST 12 (2017) P01020 CMS-TRG-12-001
1609.02366
41 CMS Collaboration Precision luminosity measurement in proton-proton collisions at $ \sqrt{s}= $ 13 TeV in 2015 and 2016 at CMS EPJC 81 (2021) 800 CMS-LUM-17-003
2104.01927
42 CMS Collaboration CMS luminosity measurement for the 2017 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2018
link
CMS-PAS-LUM-17-004
43 CMS Collaboration CMS luminosity measurement for the 2018 data-taking period at $ \sqrt{s} = $ 13 TeV CMS Physics Analysis Summary, 2019
link
CMS-PAS-LUM-18-002
44 T. Sjöstrand et al. An introduction to PYTHIA 8.2 Comput. Phys. Commun. 191 (2015) 159 1410.3012
45 D. J. Lange The EvtGen particle decay simulation package NIM A 462 (2001) 152
46 E. Barberio and Z. Was PHOTOS --- a universal Monte Carlo for QED radiative corrections: version 2.0 Comput. Phys. Commun. 79 (1994) 291
47 GEANT4 Collaboration GEANT 4 --- a simulation toolkit NIM A 506 (2003) 250
48 CMS Collaboration Performance of the CMS muon detector and muon reconstruction with proton-proton collisions at $ \sqrt{s}= $ 13 TeV JINST 13 (2018) P06015 CMS-MUO-16-001
1804.04528
49 CMS Collaboration CMS tracking performance results from early LHC operation EPJC 70 (2010) 1165 CMS-TRK-10-001
1007.1988
50 R. Frühwirth Application of Kalman filtering to track and vertex fitting NIM A 262 (1987) 444
51 J. Podolanski and R. Armenteros Analysis of V-events Philosophical Magazine 45 (1954) 13
52 J. E. Gaiser Charmonium spectroscopy from radiative decays of $ \mathrm{J}/\psi $ and $ \psi' $ PhD thesis, Stanford University, SLAC Report SLAC-R-255, 1982
link
53 N. L. Johnson Systems of frequency curves generated by methods of translation Biometrika 36 (1949) 149
54 S. Jackman Bayesian analysis for the social sciences John Wiley & Sons, New Jersey, USA, 2009
link
55 CMS Collaboration HEPData record for this analysis link
Compact Muon Solenoid
LHC, CERN