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Abstract
In this paper, we propose a radical new approach for scale-out
distributed DBMSs. Instead of hard-baking an architectural model,
such as a shared-nothing architecture, into the distributed DBMS
design, we aim for a new class of so-called architecture-less DBMSs.
The main idea is that an architecture-less DBMS can mimic any
architecture on a per-query basis on-the-fly without any additional
overhead for reconfiguration. Our initial results show that our
architecture-less DBMS AnyDB can provide significant speedup
across varying workloads compared to a traditional DBMS imple-
menting a static architecture.

1 Introduction
Motivation: Scale-out distributed architectures are used today

by many academic and commercial database systems such as SAP
HANA, Amazon Redshift / Aurora, and Snowflake [3, 10–12, 24] to
process large data volumes, since these allow scaling compute and
memory capacities by simply adding or removing processing nodes.
The two predominant architectural models used in academic and
commercial distributed databases are the shared-nothing (aggre-
gated) and the shared-disk (disaggregated) architecture [22].

While the shared-nothing (aggregated) architecture provides
high performance in case the data and workload are well partition-
able, its performance degrades significantly under skew, overload-
ing some resources while others are idle [5]. Moreover, dealing with
requirements such as elasticity in the shared-nothing architecture
is hard, since this always requires repartitioning the data even if
compute is the bottleneck [9]. This renders the shared-nothing
architecture less suited for modern environments such as the cloud
where elasticity is a key requirement.

On the other hand, the shared-disk (disaggregated) architec-
ture tackles the drawbacks of the shared-nothing architecture by
disaggregating storage and compute [17, 24]. This disaggregation
provides many new potentials especially for better skew handling
as well as providing elasticity independently for compute and stor-
age. Yet, the shared-disk (disaggregated) architecture has other
downsides. One major downside is that data always needs to be
pulled into the compute layer, resulting in higher latencies. While
this additional latency often does not matter for OLAP workloads,
it renders the shared-disk (disaggregated) architecture less suitable
for OLTP workloads, which require low latency execution to reduce
the potential of conflicts and provide high throughput.

Another observation is that these architectural models (shared-
nothing or shared-disk) are statically baked into the system designs
of today’s databases [5], expecting certain workload characteristics.
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Figure 1: Performance of AnyDB across a workload evolving
from partitionable OLTP (phase 0-2), over a skewed OLTP
(phase 3-5), to skewed HTAP (phase 6-8), and then to par-
titionable HTAP (phase 9-11). The y-axis only shows the
throughput of the OLTP transactions excluding the OLAP
queries in the HTAP phases.

However, modern workloads are versatile, e.g., HTAP containing
a mix of OLTP and OLAP queries [21]; even more, workloads are
often evolving over time or as in the cloud are not even foreseeable
for cloud providers. Consequently, databases following a static
architectural model are always kind-of-a compromise and cannot
provide optimal performance across a wide-spectrum of workloads.

Contributions: In this paper, we propose a radical new approach
for scale-out distributed DBMSs. Instead of hard-baking an archi-
tectural model statically into the DBMS design, we aim for a new
class of so-called architecture-less DBMSs.

The main idea of an architecture-less database system is that it
is composed of a single generic type of component where multiple
instances of this component “act together” in an optimal manner
on a per-query basis. To instrument these generic components at
runtime and coordinate the overall DBMS execution, each compo-
nent consumes two streams: an event and a data stream. While
the event stream encodes the operations to be executed, the data
stream shuffles the state required by these events to the executing
component, such that a component may act as a query optimizer
at one moment for one query but for the next as a worker execut-
ing a filter or join operator. Essentially, this instrumentation of
generic components by event and data streams flexibly shapes the
“architecture” of an architecture-less DBMS.

A key aspect of this execution model is that by simply changing
the routing of event and data streams between generic components,
an architecture-less DBMS can mimic different distributed architec-
tures and form traditional architectures as well as completely new
architectures. Another important aspect is, since we decide this
routing on a per-query basis, an architecture-less DBMS can simul-
taneously act as a shared-nothing system for one query while also
acting as a shared-disk (disaggregated) DBMS for another query
that runs concurrently with the first one. This opens up interest-
ing opportunities for executing mixed workloads (e.g., HTAP) or
adapting to evolving workloads.
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Also, an interesting aspect of this execution model is that it can-
not only mimic architectures on the macro-level (shared-nothing vs.
shared-disk) but also can adapt execution strategies on the micro-
level. For example, query execution in an architecture-less DBMS
can mimic various query processing models at runtime (tuple-wise
pipelined vs. vectorized vs. materialized [15]) and degrees of par-
allelism by simply instrumenting the generic components with
different event and data streams. The same holds also for other
components such as transaction execution and concurrency con-
trol.

The potential of the proposed architecture-less database system
is shown in Figure 1. Here, we compared the performance when
running an evolving workload in a static shared-nothing archi-
tecture (blue line) based on an extended version of DBx1000 [25]
with AnyDB (orange line) our prototypical implementation of an
architecture-less database system. As we see, AnyDB is either able
to match or outperform DBx1000 depending on whether DBx1000’s
static architecture happens to suit a workload or not.

Outline: The remainder of this paper is structured as follows.
First, in Section 2 we give an overview of how we envision an
architecture-less database system. Second, in Sections 3 and 4 we
then discuss the opportunities that an architecture-less database
provides for OLTP, OLAP as well as HTAP and present initial ex-
perimental results in each of these sections using our prototypical
architecture-less database systemAnyDB. Finally, we conclude with
a discussion of future directions in Section 5.

2 An Architecture-less DBMS
In the following, we first give an overview of the general execution
model of an architecture-less DBMS. Then we present how typical
database workloads can be mapped to this execution model and
discuss the main challenges.

2.1 Overview of Execution Model
As shown in Figure 2, the main idea of an architecture-less database
system such as AnyDB is that the DBMS is composed only of generic
components, so-called AnyComponents (ACs). These generic ACs
can provide any database functionality, varying over time. That is,
by routing events and their required data to an AC, the AC can act as
a query optimizer in onemoment and in the next moment as a query
executor or any other component (e.g., log writer, etc.). This gives
an architecture-less DBMS the flexibility to shift its architecture
just in an instant without any downtime for reconfiguration, as we
discuss later.

To execute a complete SQL query (or a transaction composed of
several of database operations), multiple events and data streams
are routed through AnyDB from one AC to another. For example, as
outlined in Figure 2 (a), when executing a query in AnyDB calling
the query optimizer is one event that can trigger follow-up events
for executing the operators, e.g., scans and joins. The accompanying
data streams are responsible to shuffle the required state of an event
to the executing AC. Next, we focus on two important key design
principles that underpin the architecture-less DBMS:

• Fully Stateless / Active Data: ACs are designed to be fully
stateless meaning that events can be processed in any AC
and all state required to execute an event is being delivered to
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Figure 2: AnyDB is an architecture-less DBMS of generic
components called AnyComponents (ACs), executing ar-
bitrary logic. ACs are instrumented by events and data
streams. Depending on the incoming events an AC can act
as a Query Optimizer (QO) or aWorker (W) executing a scan
or a join operator or any other component, e.g., log writer,
etc. An AC can also produce new data and event streams for
other ACs. For example, an AC that acts as a scan operator
produces a data stream with results of the scan operation.

the AC via data streams, including table data but also catalog
data, statistics, and any other state. By designing ACs fully
stateless, we gain a high degree of freedom as any DBMS
function can be executed anywhere. This feature allows mim-
icking diverse architectures but also to support elasticity
for all database functions individually, i.e., additional ACs
can execute any DBMS function at any time. Moreover, in
architecture-less DBMSs data is active, meaning that data is
not pulled after an event is scheduled but it is pushed from
data sources actively to the ACs before it is actually needed
(We further discuss active data in Section 2.3).

• Non-blocking / Asynchronous Execution: A second key
aspect is that ACs are executing events in a non-blocking
manner. This means that an AC never waits for data of an
event if data is not available yet. Instead, another event with
available data is being processed. For example, a filter or a
join operator is only processed once its input data, a batch
of tuples, is arriving via the data stream. To provide this non-
blocking execution, ACs use queues to buffer input events
and data items. In addition, these queues decouple the execu-
tion between ACs as much as possible; i.e., ACs can process
events asynchronously from each other. This asynchronous
execution model, which is only implicitly synchronizing
the execution across ACs through events and data streams,
opens up many new opportunities, as we discuss later in this
paper.

At a first glimpse, the execution model of an architecture-less
DBMS seems to have similarities with existing approaches such as
scalable stream processing systems, function-as-a-service (FaaS) or
serverless DBMSs. However, there are crucial differences.

(1) First and foremost, while AnyDB also uses streams as a major
abstraction, AnyDB is different from stream processing engines,
since we target classical database workloads that process relations
but employ streams as a vehicle to on-the-fly adapt the database
architecture on a per-query basis. Still, our approach benefits from
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Figure 3: AnyDB can mimic diverse architectures simply by
using different routing schemes for events and data streams.
In (a), two servers act as a shared-nothing database while in
(b) additional resources (i.e., two servers with additional 4
ACs per server) are added andAnyDB acts as a disaggregated
architecture to deal with a higher query load. For simplicity,
we only show the events and data streams for (a). The gray-
shaded boxes around theACs, however, indicate in (b) which
ACs execute events of the same query.

techniques of scalable stream processing such as efficient data rout-
ing or for implementing fault-tolerance in AnyDB [8].

(2) Similar to function-as-a-service (FaaS), AnyDB relies on a
fully stateless execution model to provide elasticity. However, in
architecture-less DBMSs data (i.e., state) does not come as an after-
thought. In FaaS as offered today, a function is scheduled first and
then data must be pulled in from storage before the execution can
actually start [20]. Instead, as mentioned before, in architecture-less
DBMSs data is active, meaning that data is actively pushed from
data sources to the ACs before the event is actually being processed.
Moreover, while architecture-less DBMSs logically disaggregate
the DBMS execution into small functions like function-as-a-service,
we still allow executing events in a physically aggregated manner
and also allow shipping events to the data to make use of locality.

(3) Finally, there also exist serverless DBMS offerings such as
Amazon Aurora Serverless [1, 24], Snowflake Serverless, Azure SQL
Database Hyperscale [2, 18]. These aim to provide elasticity (similar
to FaaS), though, they still rely on static architectures and are thus
restricted to very distinct workloads (e.g., OLAP only). This is very
different from our architecture-less approach that can optimally
adapt to a given workload and provide elasticity at the same time.

2.2 Supporting OLAP and OLTP
In the following, we give a brief overview of how the execution
model above can be used to execute OLAP and OLTP workloads.
Later in Sections 3 and 4, we discuss the opportunities for these
workloads arising from our execution model.

Supporting OLAP: The basic flowwhen executing anOLAP query
in an architecture-less DBMS is shown in Figure 3. The initial event
is typically a SQL query that is sent from a client to any AC of the
DBMS – never mind which one – which then acts as the Query
Optimizer (QO). The main task of the QO is to come up with an

efficient execution plan like a traditional query optimizer in a static
DBMS architecture.

In contrast to traditional optimizers, however, the QO in an
architecture-less DBMS produces an event stream and initiates the
data streams that instrument the ACs for query execution. Impor-
tantly, the QO also determines the routing of a query’s events and
data through the architecture-less DBMS. Consequently, by these
routing decisions the QO defines the DBMS architecture perceived
by individual queries.

For example, as shown in Figure 3 (a), if a query touches only
one partition and there is moderate load in the system, then the QO
can route events of a query such that the architecture-less DBMS
acts as a shared-nothing architecture. However, in case the query
load in the system increases, servers with additional ACs are added
and the architecture-less DBMS executes queries in a disaggregated
mode simply by routing events differently, as shown in Figure 3 (b).

Supporting OLTP: The basic flow of executing OLTP transac-
tions is similar to executing OLAP read-only queries. Transactions
are also decomposed into event and data streams where routing
decisions define the architecture. A key difference to read-only
OLAP, however, is that in OLTP (1) transactions need to update
state and (2) concurrently running transactions need to coordinate
their operations to guarantee correct isolation. Both these aspects
are discussed below in the following (cf. Concurrency and Updates).

2.3 Key Challenges
There are different key challenges to enable efficient execution in
an architecture-less DBMS. One of them is the optimal routing of
events and data for a given workload. Another one is to handle
concurrency and updates. In the following, we briefly discuss the
main ideas how we aim to address these challenges. Some of these
ideas are already built into our prototype AnyDB while others
represent future routes of research.

Event and Data Routing: As mentioned before, a key challenge of
an architecture-less DBMS is to decide how to handle a query and
how to route its events, as part of query optimization. Depending
on requirements of an application (e.g., latency guarantees), load in
the system, and the workload, the query optimizer has to define an
optimal event routing. In our current prototype, we do not focus on
this problem but use an optimal decision to showcase the potential
of our approach. We believe however that this is an interesting
avenue for learned query optimizers.

A second challenging aspect is the efficient data routing. As
mentioned before, this aspect is important for latency hiding. We
utilize the decoupling of data streams from events in our execution
model to solve this challenge. The main observation is that in DBMS
execution one often knowswhich data is accessedway ahead of time
before the data is actually being processed. For example, complex
OLAP queries need to be optimized and compiled, often taking up
to 100ms in commercial query optimizers in our experience, while
we already know which tables contribute to a query before query
optimization. In AnyDB we make use of this fact and initiate data
streams as early as possible. Once initiated a data stream actively
pushes data to the AC where, for example, a filter operator will be
executed once query optimization finished. We call this feature data
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beaming as data is often available at an AC before the according
event arrives, entirely hiding latencies of data transfers. We analyze
the opportunities of data beaming for OLAP later in Section 4.

Concurrency and Updates: In general, updates are supported in
AnyDB by event streams directed towards the storage which in-
gests these events and produces acknowledgment events when the
updates have been processed, as required for transaction coordina-
tion in OLTP. A major challenge in handling updates thus is to hide
latencies of updates as much as possible. Again, to hide latencies of
updates and decrease the overall latency of executing a transaction,
operations of one transaction are represented as events and exe-
cuted asynchronously by ACs. For example, an update can be sent to
the storage by one AC while other (independent) operations of the
transaction can progress on other ACs. Only the commit operation
at the end of a transaction needs to know if the write successfully
persisted and thus needs to wait for the acknowledgment event
coming from the storage. As we show later in Section 3, this asyn-
chronous model for OLTP provides many interesting opportunities
and results in higher performance under various workloads.

Another challenge that is harder to solve is to efficiently handle
concurrency. A naïve way would be to implement a lock manager
using events representing lock operations and data streams provid-
ing the state of the lock table. A more clever way, however, is to
rethink concurrency protocols and route events and data streams
such that their processing order already captures the requirements
of a particular isolation level for concurrency control, as we discuss
later in Section 3.

Fault-Tolerance and Recovery: Fault-tolerance and recovery are
twomajor challenges anyDBMSneeds to address. For an architecture-
less DBMS this is a challenge due to the asynchronous (decoupled)
execution of multiple ACs where individual ACs might fail.

Again, a naïve approach would be to implement standard write-
ahead logging by sending log events from ACs to durable storage.
For recovery the DBMS could be stopped and the log could be used
to bring the DBMS into a correct state. Again, in an architecture-
less DBMS we believe that we can do better and learn from the
streaming community. For example, as the entire execution of a
DBMS is represented as streams, another direction is to make the
streams reliable, such that upon AC failure the streams (events and
data) can be rerouted to another AC [8]. Applying these ideas is
again an interesting avenue of future research.

3 Opportunities for OLTP
In the following, we discuss the various opportunities emerging
from an architecture-less DBMS when executing OLTP workloads
and show initial results when compared to existing execution mod-
els of static architectures (shared-nothing and shared-disk). For all
initial experiments in this paper, we use the two dominant transac-
tions of the TPC-C benchmark (i.e., payment and new-order) [23].

3.1 Opportunity 1: Duality of Disaggregation
As indicated earlier in Figure 1, for partitionable OLTP workloads
an architecture-less DBMS can achieve nearly the same through-
put as an (aggregated) shared-nothing architecture. Key to this is
the duality of disaggregation in the architecture-less DBMS. The
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Figure 4: Duality of Disaggregation. (a) shows how a trans-
action is logically disaggregated into individual events for
each operation. (b) shows physically aggregated execution
of events by routing the stream to one AC. (c) shows event
routing for fully intra-transaction parallel execution. (d)
shows balanced intra-transaction parallel execution.

architecture-less DBMS distinguishes logical disaggregation of the
DBMS design and physical disaggregation of the DBMS execution.
Logically, the DBMS is entirely disaggregated into independent
fine-grained functionality interacting via events and data streams.
However, while the logical execution is disaggregated into many
small events, physically the events can still be executed in an aggre-
gated manner if desired. This opens up the opportunity to achieve
high data locality if desired as all events can be executed close to
the data, e.g., a partition of the database.

For example, an OLTP transactionmay consist of an event stream
like in Figure 4 (a). Yet, this logical disaggregation does not mandate
disaggregated execution. In the contrary, any sub-sequence of these
events can be physically aggregated and executed by a single AC.
As shown in Figure 4 (b), the entire event stream of a transaction
can be executed by a single AC. In fact, this physical aggregation
of events establishes a shared-nothing architecture that performs
on par with the static shared-nothing architecture of DBx1000 as
shown earlier in Figure 1.

The Gist: Through the duality of logical vs. physical disaggre-
gation, we believe that an architecture-less DBMS can efficiently
mimic diverse architectures ranging from entirely aggregated shared-
nothing to fine-grained disaggregated as required, simply shifting
between those by adapting event and data routes.

3.2 Opportunity 2: Execution Strategies
Along with the freedom of achieving different architectures on the
macro-level, the execution model in an architecture-less DBMS also
provides broad freedom to layout parallel execution strategies in
an optimal manner on the micro-level.

Generally, as explained earlier, transactions are represented as
event streams flowing through the architecture-less DBMS. Impor-
tantly for transaction execution, this event-based execution allows
diverging from typical execution models in OLTP that aim for inter-
transaction parallel execution and allows investigating also other
forms of parallelism. For example, event-based execution naturally
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brings opportunities to ad hoc parallelize execution within a sin-
gle transaction to achieve intra-transaction parallelism, especially
when contention prohibits inter-transaction parallel execution.

The efficiency of this freedom to change the transaction exe-
cution on the micro-level becomes also visible in Figure 5. When
running a partitionable OLTP workload in the first phase (0-2),
AnyDB mimics not only a shared-nothing architecture but also
uses classical inter-transaction parallelism. Afterwards it uses intra-
transaction parallelism in the second phase (3-5) for the highly
skewed, contended OLTP workload, where 100% of TPC-C pay-
ment transactions operate on one warehouse only.

The baseline DBx1000 in this experiment uses a shared-nothing
model and is thus bound by the resources that are assigned to one
partition resulting in 0.7 M txn/s. In such a case, our architecture-
less DBMS allows to simply shift from inter- to intra-transaction
parallelism by routing events of a single transaction to several
ACs, i.e., shifting from Figure 4 (b) to (c). Such intra-transaction
parallel execution may accelerate transactions in contended OLTP
workload, as already proven by architectures such as DORA [19].

However, just like any design decisions in a static architecture,
also static intra-transaction parallelization does not always prove
beneficial either. For example, Figure 5 shows that with naïve intra-
transaction parallelism, where every independent operation of a
transaction is farmed out to a different AC, AnyDB only achieves
0.8 M txn/s (orange squares), barely exceeding the inter-transaction
parallel execution of the DBx1000 baselines (blue lines). The main
reason is that the overhead of parallelizing within a transaction
dominates the execution.

The architecture-less DBMS addresses the challenging paral-
lelization of transactions in the following way: generally, the repre-
sentation of transactions as event streams allows the architecture-
less DBMS to route independent sub-sequences of events (i.e., sub-
sequences of operations) to multiple ACs for parallel execution.
Thus, the challenge in an architecture-less DBMS is to split a trans-
action into suitable sub-sequences of events and route them to dif-
ferent ACs, balancing the amount of work versus overhead. In our
experiments, for example, we partition the TPC-C payment trans-
action into one sub-sequence with several brief update statements
and a second sub-sequence with a long range scan, as depicted in
Figure 4 (d).

Finding an optimal splitting and routing of event sequences of
transactions depends on many factors. One important point is that
the individual sub-sequences of operations have similar execution
latencies, such that the overall latency of the transaction is mini-
mized. Finding such an optimal routing of events is an opportunity
for learning query optimization and scheduling, as mentioned be-
fore. As shown in Figure 5, with this balanced intra-transaction
parallelization AnyDB achieves 1.2 M txn/s (orange triangle) with
only 2 ACs, outperforming the baseline (blue lines) and AnyDB’s
naïve parallelization (orange square) by 3.2x and 3x in throughput
per thread, respectively.

The Gist: Generally, we envision, that the freedom of the ex-
ecution models on the micro-level in an architecture-less DBMS
can enable new parallel transaction execution models spanning any
design between pure inter-transaction to aggressive (fine-grained)
intra-transaction parallelism on a per-transaction level.
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Figure 5: OLTP performance of AnyDB versus the shared-
nothing DBx1000 under partitionable and skewed OLTP.
In phases 0-2 AnyDB acts as a shared-nothing DBMS us-
ing an inter-transaction parallel execution model while in
phases 3-5 AnyDB acts as a shared-disk DBMS using an
intra-transaction parallel execution model. Note that for
DBx1000, 4 transaction executors (TEs) perform like a sin-
gle TE due to high contention between transactions.

3.3 Opportunity 3: Concurrency Control
In OLTP workloads, especially under high contention, concurrency
control (CC) causes significant coordination effort and challenges
efficient parallelization [4]. In an architecture-less DBMS, the event-
based nature of transactions provides the opportunity to transform
CC to a streaming problem. Thereby, the architecture-less DBMS
can improve the efficiency of traditional CC schemes and opens
many opportunities for novel CC schemes, as discussed next.

Transforming Traditional Concurrency Control: Interestingly, many
traditional CC protocols are stream-like already and thus benefit
from a direct mapping to the asynchronous (non-blocking) execu-
tionmodel of the architecture-less DBMS. For example, a pessimistic
lock-based CC scheme [6] needs to match incoming lock requests
with its lock state. This can be mapped to a streaming join on an
event stream containing lock requests and a data stream containing
the lock state of the requested item. Similarly, verification in opti-
mistic CC protocols [16] joins the read/write set of a transaction
which is one data stream with the current state of the database
which is another data stream. Despite these benefits for traditional
CC protocols, the architecture-less DBMS offers opportunities for
novel coordination-free CC schemes vastly outperforming the tra-
ditional approaches, as explained in the following.

Novel Streaming Concurrency Control: The key idea of rethink-
ing CC schemes is that they can be enabled by efficiently ordering
events of (conflicting) transactions flowing through the architecture-
less DBMS, rather than actively synchronizing execution of con-
current transaction using traditional CC schemes causing high
coordination overhead especially under high contention. Here, the
streaming execution of transactions brings new opportunities de-
spite high contention.

Concurrency control in AnyDB can be implicitly and coordination-
free encoded into event routes. That is, for consistency of concur-
rent transactions it suffices to route their events in a consistent
order through ACs which execute the conflicting operations. For
example, considering two TPC-C payment transactions accessing
the same warehouse, AnyDB can guarantee consistency by simply
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Figure 6: Data beaming can effectively shorten query execu-
tion for disaggregated execution of OLAP workloads and in
the best case hide latencies of data shuffling completely.

routing their events to all involved ACs in the same order. Thereby,
AnyDB enables intra-transaction parallelism, routing independent
events through different ACs and also provides CC without the
need to actively synchronize operations at the same time.

Note that event-ordering does not violate our non-blocking
(asynchronous) execution model of ACs. Operations (i.e., events) of
conflicting transactions simply remain in the ACs’ input queues for
ordering while other events can still be executed. In Figure 5, we
see that this instantiation of AnyDB called streaming CC (orange
pentagon), yields 1.7 M txn/s for TPC-C payment under high con-
tention (phases 3-5). This is much closer to the performance of the
uniform (partitionable) execution of TPC-C payment in phases 0-2.

The Gist: Along the properties of event streams, we envision
novel CC protocols, that avoid active synchronization, as discussed.
Moreover, the streaming CC enables new directions where events
are gradually rerouted depending on the load, e.g., at first all events
for a specific transaction are routed to a single AC until this AC
becomes overloaded. Then AnyDB may transparently repartition
event streams while still guaranteeing consistent event order.

4 Opportunities for OLAP and HTAP
Previously, we have described that the execution model of an
architecture-less DBMS provides many opportunities for OLTP.
In the following, we discuss further opportunities for OLAP as well
as mixed HTAP workloads.

Especially for OLAP, operations encoded in the event streams
are data intensive (e.g., a join of two large tables). Therefore, data
streams must efficiently bring data to wherever events are executed
as if data access was local to facilitate the architecture-less DBMS.
While this aspiration of “omnipresent” data appears challenging,
we observe that in DBMSs one often knows data to be accessed
way ahead of time before actually processing it. For example, in
OLAP data is only accessed and processed after several milliseconds
of query optimization and compilation. Hence, we propose data
beaming, a technique initiating data streams early and pushing data
to ACs where events will be executed.

In the following experiment, we demonstrate the effect of data
beaming with a simple OLAP query. Based on CH-benCHmark
Q3 [7], our query reports all open orders for all customers from

states beginning with “A” since 2007 via 3 (filtered) scans and 2 joins.
In Figure 6, we display the effect of data beaming in several degrees
for this query: (1) In blue, the baseline does not utilize beaming,
but instead passively pulls in data when needed. (2) In orange, the
build sides are beamed during query compilation, then joins are
executed. (3) In green, build and probe sides are beamed.

To detail the efficiency of data beams, we implement two variants:
one where data beams only need to shuffle locally (not over the
network) and one where they shuffle data across the network. The
solid lines in Figure 6 demonstrate the runtime using local beaming
via shared-memory queues [14] (e.g., to hide NUMA latencies)
and the dashed lines show the beaming across the network for a
disaggregated architecture using DPI-flows [13]. On the x-axis as
reference point for query compile time, 30ms marks the time taken
by a commercial DBMS (DB-C) to compile this query.

Figure 6 (a) shows that the overall query execution time with
beaming is only slightly higher than query compile time (green
line), whereas without beaming (blue line) the query execution time
has additional latency of 20ms, since data transfer is not overlapped
with query compile time. In detail, Figures 6 (b) and (c) show the
individual effects of data beaming on the build and probe side (with-
out query compilation overhead), respectively. We see that beaming
can reduce the runtime of the smaller build side almost to 0ms. For
the larger probe side, beaming also reduces the runtime from 30ms
to less than 10ms. Notably, the disaggregated architecture (which
needs to shuffle data across the network) performs even better than
the aggregated architecture, as DPI offloads event and data transfers
to the InfiniBand NICs acting as a co-processor in AnyDB.

The previous experiment demonstrated the utility of data beam-
ing to hide data transfer latencies in OLAP workloads. Besides
hiding transfer latencies, data beaming can also be used to achieve
other goals such as resource isolation, e.g., for HTAP workloads.
The idea is that in HTAP workloads, we can use data beams to route
data intensive analytical queries to additional compute resources
disaggregated from storage while latency-sensitive transactions are
executed close to the data.

The HTAP workloads in Figure 1 (phase 6-11) outline such sce-
narios, where the OLAP query of the previous experiment is exe-
cuted in parallel to the OLTP workload. Here, AnyDB executes the
OLAP query independently of the OLTP workload, only sharing
storage resources, whereas the OLAP query in the static DBx1000
uses the same transaction resources for OLAP queries as for the
OLTP workload. Thereby, AnyDB simultaneously provides higher
OLTP and OLAP performance than DBx1000.

The Gist: In general, we envision AnyDB to establish flexible
architectures through described data beaming as well as optimal per
query/transaction event routing, opening up new paths to hybrid
architectures and supporting various types of deployments.

5 Conclusions and Future Directions
In this paper, we have proposed architecture-less DBMSs, a radical
new approach for scale-out distributed DBMSs. In addition to the
discussed opportunities, we see many further interesting research
directions arising from the architecture-less approach:
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Elasticity for Free: Flexible event routing and data beaming open
up opportunities, apart from resource isolation, for transparent
elasticity without additional latencies. Considering events are self-
contained and state is always beamed, elasticity for execution of
event streams just means consistent routing of events and their
state to an elastic number of ACs. Even more, as mentioned before
since all events and data are both delivered as streams to ACs, these
streams could be repartitioned or rerouted to distribute load in the
system adaptively.

Transparent Heterogeneity: The stateless execution model in con-
junction with the opportunity for elasticity further facilitates trans-
parent (ad hoc) integration of heterogeneous compute resources
per query, including but not limited to accelerators (e.g., FPGAs or
GPUs) and programmable data planes (e.g., programmable NICs or
switches). Moreover, since events fully describe what to do and data
streams deliver all required state, event execution (how to do it) can
be specialized for FPGAs, etc. without any impact nor dependencies
on the rest of the DBMS.

Crossing Clouds and More: Finally, data beaming is an interesting
concept generally hiding data transfer cost not only within but
also across data centers. This opens up opportunities for DBMS
deployments across on-premise, cloud offerings, and the edge with-
out paying significant latencies for data transfer. For example, an
architecture-less DBMS for HTAP workload may run transactions
for daily business on-premise and may ad hoc beam data to cloud
resources for sporadic reporting, combining the benefits of both
platforms efficiently.
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