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ABSTRACT 

Many of today’s interactive server applications are implemented 

using actor-oriented programming frameworks. Such applications 

treat actors as a distributed in-memory object-oriented database. 

However, actor programming frameworks offer few if any data-

base system features, leaving application developers to fend for 

themselves. It is challenging to add such features because the 

design space is different than traditional database systems. The 

system must be scalable to a large number of servers, it must work 

well with a variety of cloud storage services, and it must integrate 

smoothly with the actor programming model.  

We present the vision of an actor-oriented database. We then 

describe one component of such a system, to support indexed 

actors, focusing especially on details of the fault tolerance design. 

We implemented the indexing component in the Orleans actor-

oriented programming framework and present the result of initial 

performance measurements.  

1. INTRODUCTION 

1.1 Motivation 
The classic architecture for on-line stateful services has three-

tiers: a database tier accessed via queries and stored procedures; a 

middle tier that implements some application functions on a cache 

and passes others through to the database; and a stateless client 

tier that interacts with end-users. In this architecture, the database 

is the center of attention. Users submit requests that invoke 

functions that do some local processing and read and write the 

database. There is non-trivial logic in many of those functions. 

Often, the database is the primary bottleneck. Therefore, one 

purpose of the middle and client tiers is to offload the database, so 

the system can scale elastically by adding or removing 

inexpensive servers that run the middle-tier and client-tier.  

Many interactive applications developed today do much more 

than simply read and write the database. For example, they often 

manage a lot of state in the middle-tier, such as a knowledge base 

or image cache. Some of this state needs to be read and written at 

high rates. These applications perform heavy computation, such as 

rendering images or computing over large graphs. They monitor 

streams in near real-time to detect intrusion attempts or outlier 

measurements. To handle this memory and processor load, they 

need a large number of middle-tier servers.  

To support this interactive middle-tier functionality, applications 

manage what amounts to a distributed, in-memory object-oriented 

database. An application is distributed for scalability and geo-

distributed for low-latency access by users world-wide. It stores 

most data in-memory for fast response time. It encapsulates the 

data as objects, to share common functionality and ensure data 

integrity. Modeling the data as objects is quite natural, because the 

data often represents physical real-world objects. The objects 

comprise a database because many objects are standing objects, 

that is, they need to live beyond the lifetimes of the procedures or 

processes that created them. Some of them need to be persistent, 

that is, resilient in the face of failures. These applications often 

support a large community of users with intensive interaction and 

computation, hence use a lot of processor and memory resources. 

Thus, a deployment needs to scale out to a large number of 

compute servers independent of storage servers. 

For example, a large-scale multi-player game represents players 

as objects. Players interact with each other, and with abstract 

objects such as games, grid positions, lobbies, player profiles, 

leaderboards, in-game money, and weapon caches. In a real-time 

social app, people are objects that interact via chat rooms, mes-

sages, photos, and news items. An IoT application for buildings 

represents sensors as objects, which detect the state of a room: 

temperature, motion, light, moisture, and sound. More abstract 

objects infer when to start or stop the air conditioning, when to 

alert a security guard of a break-in, or when to shut off electricity 

and water due to a flood. Applications with similar characteristics 

can be found in the telemetry, mobile computing, and communi-

cations domains, among others. Together, these types of applica-

tions represent a large fraction of new application development. 

All of the above-mentioned applications have several aspects in 

common. First, since the real-world objects are independent, the 

software objects that model them do not share state. To 

communicate, they exchange messages asynchronously. If they 

need common access to state, then that state is modeled as other 

objects that they reference. To simplify the programming model, 

such objects are often  restricted to be single-threaded. Objects 

with these characteristics are called actors [8].  

Second, many, if not most actors that are in main memory 

represent the latest state of the modeled entity, not a stale, cached 

version whose freshest state is in persistent storage. Therefore, the 

application runs most requests using these “active” actors, not by 

executing stored procedures on persistent storage. 

Third, as a corollary to the previous point, these applications use 

storage more for persistence than querying. Hence, they typically 

use document stores, storing the state of an actor as a record, 

JSON document, or BLOB.  

Fourth, many actors are not stored persistently. For example, the 

state of a lobby actor in a game is the set of users connected to it. 

After a lobby recovers from a crash, different users may connect 

to it, so it is pointless to recover its state from storage. Some 

actors have read-only state, e.g., a price list of weapons in a game. 

Together, these four points suggest that an actor-oriented applica-

tion treats its actors as a database (DB). However, developers of 

such applications do not make heavy use of a database 

management system (DBMS). Rather, they typically use an actor 
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programming framework, such as Erlang [3], Akka [1], or Orleans 

[4]. These systems provide functions to activate, invoke, store, 

and recover actors. They often include a plug-in architecture to 

map actor state to storage, and publish-subscribe plumbing to 

stream events from external sources to actors and between actors. 

They rarely include more advanced DB functionality, such as 

queries, authorization, constraints, stream processing, and 

transactions—and when they do, the functionality is often quite 

limited. We view this omission as an opportunity. 

1.2 Actor-Oriented Databases 
We propose enriching a distributed actor framework so it becomes 

a full-function actor-oriented database (AODB) as shown in 

Figure 1. This extension entails adding plug-ins for transactions, 

indexing, queries, views, triggers, geo-distribution, and replica-

tion. Transactions would enable a set of actor invocations to be 

wrapped in an ACID transaction. Indexing would enable 

retrieving the set of active or persisted actors based on secondary 

key values. As in object-oriented databases (OODBs), queries 

could be executed over actors that are grouped into a collection 

[6]. Queries could be reused as view definitions or materialized.  

The distinguishing features of an AODB are that it scales out 

elastically to hundreds of servers, can use a variety of cloud 

storage services, and is compatible with the actor framework’s 

programming model.  

Scale-out is best satisfied by inexpensive servers that cloud 

vendors offer as virtual machines (VMs). An AODB cannot count 

on accessing a VM’s storage devices after the VM recovers from 

a failure, so it is driven to using cloud storage.  

Application developers want freedom of choice and to avoid 

being locked into a specific storage service. Therefore, an 

AODB’s storage must be able to reside on a wide variety of 

storage systems, such as page servers, BLOB servers, document 

stores, and SQL databases. They may be storage services 

managed by the cloud provider or open-source versions of these 

components running on VMs managed by the application user. 

An actor framework usually dictates the programming model for 

actor invocation, lifecycle, threading, communication, and excep-

tion handling. It may also control load balancing and caching. 

Developers want to work with one model, with no impedance 

mismatch to database functionality. Moreover, they value a 

framework with low cost of entry. Hence it must be possible to 

start developing applications in the framework without mastering 

all the database aspects first. 

These AODB features affect the traditional design space of many 

database mechanisms. For example, you cannot assume that only 

objects that have been persisted need to be indexed. Nor can you 

assume the backing store supports indexing; most BLOB stores 

and some table stores do not. Thus, you cannot always rely on the 

indexing capabilities of the backing store. For transactions, there 

may not be a shared log, so updates to two actors on the same 

server may still require two-phase commit for atomicity. On the 

other hand, the actor environment may have features that help 

support DB features. For example, in an actor model where 

objects are not explicitly created and destroyed, referential 

integrity comes for free if based on object references. 

1.3 Comparison to Existing Systems 
AODBs are similar to OODBs in that programming language 

types and operations define the database interface, rather than 

embedding database types and operations into an independently 

defined language. However, an AODB differs from OODBs in its 

architecture and implementation. Most OODBs were targeted for 

design applications, with server-attached storage and function 

shipping to an object server (though a few did use data shipping).  

Distributed object systems from the 1980’s and 1990’s are similar 

to AODBs in their ability to scale-out. However, hardly any 

focused on database applications. One exception is Thor [11][12], 

but it used a custom object-server with server-attached storage. 

Some of today’s DBMSs offer high-performance transactions 

over a main memory database, often with stream processing. This 

targets similar workloads as an AODB. Like an AODB, the data 

in main memory is the latest state, while the data in storage may 

be stale—a reverse-cache architecture. But unlike an AODB, the 

programming model is stored procedures and SQL dialects with a 

fixed DBMS. Also, most such systems can scale out only if the 

data is fully partitionable, which many actor applications are not.  

AODBs are also similar to enterprise computing platforms, such 

as Java EE [9], in that they manage a middle-tier of application 

functionality that communicates with databases. However, they 

are not actor-oriented, in that their components are multithreaded 

and communicate via synchronous RPC. Applications sometimes 

use object-to-relational mappers, such as Hibernate or .NET 

Entity Framework, in which case the database functionality is in 

the database server, not the middle-tier. 

To enable scalability, middle-tier applications often use cache 

managers, such as memcached and Redis. However, these systems 

cache records or structures, not objects, and hence do not support 

actor-like functionality. 

An AODB is similar to graph databases that add query functional-

ity to an object-oriented programming language, such as Tinker-

Pop and Gremlin [14]. They could be integrated with an actor-

oriented language, though we do not know of any that do. Often, 

they implement the graph with their own representation, rather 

than interpreting application objects and object-valued properties 

as a graph, which would be the natural approach for an AODB. 

1.4 Contributions 
We are participating in a project to develop an AODB added to 

Orleans. Orleans has a plug-in architecture for durable storage, 

which enables actors to be read and written to different storage 

systems. A recent project has added geo-distribution [5], and a 

project to add distributed transactions is nearing completion [7].  

In this paper we describe our work on a third project, to enable 

actors to be indexed on secondary keys. Although indexing is well 

known database technology, we will see that the distinguishing 
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features of an AODB lead to different problems than those faced 

in building an indexing subsystem for a classical DBMS. 

The main contributions of the paper are as follows: 

 We introduce a new type of database system, AODB, to 

support scalable, fault-tolerant, distributed, actor-oriented 

applications.  

 We define the challenges of indexing in an AODB and list 

design requirements for an exemplary AODB, Orleans. 

 We describe a novel, extensible indexing architecture for 

AODBs that works with different types of storage systems. 

 We present an algorithm for fault-tolerant, eventually-

consistent and causally-consistent indexing in AODBs. 

 We describe our implementation of an AODB indexing 

system and present the results of experiments that show the 

relative performance of different features of that system. 

The rest of the paper focuses on adding indexing to an AODB. 

Section 2.1 gives background on Orleans, the actor framework in 

which we embed our solution. Section 2.2 discusses implications 

of Orleans features on the design of an AODB. Section 3 lays out 

requirements for an AODB indexing system. Section 4 describes 

the overall architecture of our indexing solution and the algorithm 

for maintaining reliable consistent indexes without the use of 

transactions. Additional implementation details are in Section 5. 

Section 6 gives some preliminary performance results. Related 

Work and the Conclusion are in Sections 7 and 8, respectively. 

2. ORLEANS 
The design space for an AODB component unavoidably depends 

on details of the actor framework in which it is embedded. Our 

indexing subsystem is embedded in Orleans, an open-source 

actor-oriented programming framework that extends the .NET 

Framework. Its main goal is to simplify the development of 

scalable, fault-tolerant, distributed applications. It is widely used 

by Microsoft (e.g., for the Xbox games Halo and Gears of War), is 

available as open source [15], and is used by many third parties. 

We give a brief introduction to Orleans, just enough to understand 

how we added indexing to it. A complete description is in [15]. 

2.1 Actors in Orleans 
Actors in Orleans cannot share state. Each actor has a location-

transparent identity, called its key, which is the only way to 

reference it. These two characteristics of actors enable the Orleans 

runtime to place each actor on any server. Typically, it distributes 

actors randomly across servers of a deployment, to minimize the 

chance that any server is a bottleneck; users can customize actor 

placement using plug-ins.  

Actors communicate asynchronously only. A method call 

immediately returns a promise, after which the caller can 

continue executing. It can later synchronously await for 

fulfillment of the promise (i.e., wait for the method call to finish 

executing and return). Under the covers, this interaction is 

realized by messages in each direction. 

If an actor is not currently running when one of its methods is 

invoked, the Orleans runtime chooses a server on which to 

activate the actor, executes the actor’s constructor on that server, 

and then performs the method call. It retains a reference to the 

actor in its distributed fault-tolerant actor directory so that future 

invocations can be directed to it. If an actor is idle for too long, 

the Orleans runtime calls the actor’s destructor and releases its 

resources. Since, this model of activate-on-demand is very similar 

to the demand-paging model of virtual memory, Orleans calls it 

the Virtual Actor Model. 

The mapping of actors to servers is dynamic. Each time an actor is 

activated, it may (and often does) execute on a different server 

than its previous activation. 

Actors are fault tolerant. If a server fails, Orleans detects the 

failure and updates its actor directory accordingly [4]. The next 

invocation of an actor that died on the failed server causes that 

actor to be re-activated on another server, just like any invocation 

of an inactive actor.  

Actors are single-threaded, and normally are non-reentrant. That 

is, a method call must execute to completion before the next call 

is processed. Optionally, an actor can be reentrant. In this case, 

the steps of method calls can be interleaved. However, even in 

this case, only one method call is allowed to be actively executing 

inside the actor at any given time. 

Orleans offers a simple declarative model of actor persistence, 

where an actor type identifies its persistent properties. Orleans 

maps those properties to persistent storage via a storage provider 

plug-in. The app specifies the storage provider (and hence the 

storage system) to use via a configuration attribute. Orleans uses 

the storage provider to populate an actor’s state when the actor is 

activated. An actor can call WriteStateAsync to save its state at 

any time, e.g., just before returning from a method call that 

modifies its state or just before it is deactivated. This approach to 

persistence decouples actor implementation from its storage. 

Developers often override this declarative persistence model with 

their own mechanism. For example, the developer can write 

custom code in the actor’s constructor to initialize the actor state 

from any source, and can include code to save the actor’s state in 

any method.  

2.2 Programming and Design Implications 
Orleans takes a middleware-centric approach rather than the 

database-centric one of standard 3-tier application architectures. 

We discuss here some of the implications of that difference for the 

programming model and design space for AODB features. 

An actor type provides a naming scope. For a given key, a factory 

associated with the type always returns a handle to the same 

virtual actor. However, there is not an explicit type extent, that is, 

an enumeration of the values of the type that are currently being 

used. This is unlike a DBMS where each database table has an 

explicit extent, namely its rows, but it is similar to most 

programming languages. Thus, an indexing mechanism must not 

rely on an explicit type extent. While it is certainly possible for an 

application to maintain explicit collections of actors as a basis for 

indexing, it is important that an indexing scheme does not impose 

overhead on actors that do not participate in the collection, and 

hence are not indexed. Thus, it could be useful for an actor to 

know whether it participates in an index, and, if so, which one. 

There are implicit extents in Orleans that could be targets for 

indexing, such as all currently running actors or all actors that 

have ever been initialized. While it might be possible to determine 

membership in such extents by other means, an index is an expli-

cit representation of such extents, which can simplify applications 

and avoid excessive interaction with the underlying run time. 

In an AODB, such as one based on Orleans, the unit of consist-

ency is a single actor rather than the database as-a-whole. Since 

other actors can only discover state changes of a given actor 

through calls to that actor, an actor knows when any state changes 



 

are visible to the “outside world”. Moreover, an actor is the 

authority on its state. This is unlike an object in a 3-tier architec-

ture, which might have an out-of-date cache of the authoritative 

state in a database. Thus, an actor can be relied upon to know an 

appropriate point at which to update an index in which it 

participates. 

One consequence of actor-centric consistency is that an actor, 

absent a multi-actor transaction capability, is never certain about 

the state of another actor. The other actor's state could have 

changed since the last communication with it. Thus, the only 

guarantee is that any method result reflects some internally 

consistent state of the actor. Any indexing mechanism by itself 

can offer no better guarantee than that a returned object at some 

point satisfied the search key. Experience with Orleans shows that 

developers can write effective systems with these soft guarantees. 

Also, separately, we are working on an optional transaction 

mechanism to provide hard guarantees. 

Fulfillment of promises is not guaranteed to be in the order of 

method calls in Orleans. If the sender needs ordering guarantees, 

it can hold off issuing a new request until it receives the result of 

the previous request. Thus, an indexing mechanism should not 

rely on implied order of method calls. On the other hand, it need 

not be concerned that an actor invoking it is blocked on its 

response, since the invocation is asynchronous. 

With Orleans’ virtual actor model, the activation and deactivation 

of actors is managed by the system rather than by applications. A 

method call on an actor will activate it if it is not already running. 

Thus, an indexing mechanism should avoid issuing additional 

method calls on the actors it indexes. For example, a hash index 

bucket might hold references to actors with different search keys. 

While it could consult each actor in the bucket to determine if it 

matches the current search key, that would activate inactive 

actors. It would be better to store the search-key value with each 

reference in the hash table. 

3. THE INDEXING PROBLEM 

3.1 Motivation 
The state of an actor type is defined by member variables called 

properties (a.k.a. attributes in some data models). Actor instances 

can be gathered into explicit collections. If an application needs 

access to a particular collection of actors, such as those with the 

same value of a property, the app needs to create and maintain the 

collection, i.e., a secondary index. This approach duplicates 

functionality for each such scenario in the application and hence 

complicates the code. Moreover, it is difficult to work out all 

possible failure cases in a distributed system, so applications are 

likely to miss some cases and end-up with inconsistent indexes. 

For these reasons, it is beneficial to add generic functionality to 

the framework that an application can use to index any actor if 

needed. 

In a conventional database system, an index serves only to accel-

erate existing functionality. In an actor app, by contrast, the index 

enables the functionality (e.g., find all players at a given location). 

In this sense, it is like a key-value store, where records can be 

accessed by a key only if an index was previously defined. 

3.2 Requirements 
Based on conversations with developers of actor applications, we 

identified the following requirements. The first two are familiar 

database features: access actors based on a property value or a 

range of property values; and optionally ensure uniqueness, i.e., 

ensure no two actors have the same value of the property.  

The remaining requirements differ from those found in classical 

database systems. First, in an actor system, it is usually sufficient 

for each index to be causally consistent with respect to its base 

actor type. By this, we mean the index may be updated after the 

actor update commits, rather than bracketing both updates in a 

transaction. However, the index update cannot be postponed 

indefinitely. That is, each index must be eventually-consistent 

with respect to its base type. Thus, after an indexed property is 

updated, the corresponding index must eventually be updated— 

ideally, shortly after the actor update. This implies that the 

indexing solution needs to be fault tolerant to ensure that an index 

update is never lost. 

Second, to make the indexing feature appealing to application 

developers, the API for accessing indexes should be tightly 

integrated into the actor programming language. For example, it 

should look very similar to the way actors are accessed based on 

their identity. 

Third, it must be possible to have an index only for active actors, 

that is, that are currently running. Actors are added to such 

indexes when they are activated and removed later when they are 

deactivated. This feature is independent of whether the actor’s 

state is saved in persistent storage. For example, a gaming 

application might want to access all active players at a given skill 

level, to offer them an ad hoc tournament. An actor’s active-status 

approximates recent use. An application could explicitly track 

recently-used actors in a collection and then index such actors by 

skill level. Supporting indexes on active actors allows a 

convenient substitute for such explicit tracking, and hence was 

requested by users we consulted. 

With the virtual actor abstraction, an actor's activation status is 

transparent to the application, in that all actors can be accessed, 

whether or not they are currently active. By indexing active 

actors, we expose actors’ activation status and thus break the 

virtual actor abstraction. Therefore, the indexing system must be 

sensitive to activation status by not activating inactive actors. It is 

not just an efficiency issue, as described at the end of Section 2.2. 

It is a semantic issue in that it will increase the set of active actors 

due to system behavior, rather than application behavior. 

Fourth, the index implementation should work with any persistent 

storage system, with only minor customization. In particular, it 

should work with storage that does not support indexing, such as 

BLOB stores or key-value stores. This entails explicitly storing 

and maintaining the consistency of the index as another storage 

object. We call this an AODB-managed index. On the other 

hand, the indexing system should use the indexing functionality of 

the storage system, if it exists. We call this a storage-managed 

index. 

Indexing should be optional. It should impose no overhead to an 

application that does not use it. It should also be orthogonal to 

other features, meaning that it can be used with any combination 

of other AODB features. 

4. INDEXING ARCHITECTURE 
The high-level design of our indexing system is shown in Figure 

2. The generic indexing functionality of an actor is encapsulated 

in an abstract actor type IndexableActor. An actor type C must 

inherit from IndexableActor to enable any of its properties to 

be indexed. For each property p of C that is indexed, the 

IndexableActor actor maintains two copies, a before-value and 

after-value, which are the values of p before and after its last 

update. These values are needed to do the corresponding update to 

p’s index.  



 

 

A method that updates C’s state S must also update indexes that 

are affected by updates to S. To do this, it calls the index handler 

associated with C, passing it the before-value and after-value of 

each indexed property. An empty before-value or after-value indi-

cates an insert or delete, respectively. The index handler accesses 

the index registry to find information about the indexes defined 

on C. It includes the list of indexed properties of C and the type of 

index defined on each property, e.g., point vs. range, or 

centralized vs. distributed index. This information is gathered 

from the index annotations defined on C and enables the index 

handler to invoke the appropriate index actor for each of C’s 

indexes. There is a singleton instance of the index handler for C 

on each server, which is shared among all actors of type C. The 

actors of type C discover their corresponding index handler as a 

part of their initialization.  

We now refine this high-level view and show how indexing 

requirements and aspects of the actor framework and cloud 

storage architecture influence its design. 

4.1 Programming Interface 
For many real-world user scenarios, indexes in an actor program 

not only optimize the program’s performance, but also enable the 

core functionality of accessing a collection of actors. The explicit 

definition of indexes is part of the application program itself. 

Application programmers want the definition to be succinct, 

intuitive, and customizable, and to integrate smoothly with the 

programming language.  

The generic actor type IndexableActor needs to know which 

properties are indexed and needs to be notified about each update 

to an indexed property. The syntax should allow for compile-time 

type checking, to ensure that the properties being indexed are 

indeed part of the actor’s state. To do this, a certain amount of 

compiler magic and careful interface design is needed. To 

simplify the explanation and avoid boilerplate, we describe it in 

terms of class definitions. However, in fact, interface definitions 

are also involved. The interface of an actor is separate from the 

class that implements it and user programs only use the interface 

to interact with the actor. 

The IndexableActor actor type is the super-type of all 

indexable actors and is defined to be generic, parameterized by an 

ordinary class that contains all the properties of the actor 

including the ones being indexed. For example, for the indexable 

actor type Player, an ordinary class PlayerProperties is 

defined. Each instance  of Player includes an instance of 

PlayerProperties, which contains all of ’s properties. The 

indexed properties in PlayerProperties are annotated with an 

attribute “[indexed]”, which the indexing system can find using 

reflection. To pick up indexing functionality, Player inherits from 

IndexableActor<PlayerProperties>.  

Our use of inheritance to enable indexing functionality was a 

compromise between programmability and ease of implementa-

tion. The main disadvantage is that it is not orthogonal to other 

features, when used in a language that supports only single 

inheritance. For example, in Eldeeb and Bernstein [7], an actor 

enables transaction functionality by inheriting from 

TransactionalActor. For an implementation to offer both 

indexing and transactions to an application, it would also need to 

allow an actor to inherit from IndexableTransactionalActor. 

Clearly, the number of combinations of features grows 

geometrically with number of AODB features, and is hence 

undesirable from both a programmability and implementation 

perspective. Replacing inheritance with a more suitable 

mechanism is a high-priority item for future work. 

Ordinarily, a client accesses an actor by feeding its key k to the 

actor type’s factory, like this: 

Player p = ActorFactory.GetActor<Player>(k) 

Suppose Location is in PlayerProperties and has been 

tagged as [indexed]. To retrieve players based on an index, one 

can invoke a direct lookup method on the class, or use the 

Language-Integrated Query (LINQ) facility of .NET to write: 

IQueryable<Player> result = 

          from p in ActorFactory.GetActors 

                      <Player, PlayerProperties>() 

          where p.Location == "Redmond" 

          select p; 

Passing the PlayerProperties type to the GetActors method 

in the above LINQ query looks redundant, because 

PlayerProperties was passed as a type parameter to the 

IndexableActor type that Player indexes. However, this deep 

access to the generic type parameters is not supported in many 

languages, such as C# and Java. 

The decision to have an index is made at class-definition time, not 

dynamically at any time via a CreateIndex operation. In an 

AODB, indexes are an integral part of the application, not just an 

optimization for query processing. If any change to the choice of 

indexes is required, application code will change. These modifica-

tion will be applied the next time the application is deployed. 

4.2 Capturing Updates to Indexed Properties 
Any indexing mechanism on actors requires a way to capture 

changes in the target actors. IndexableActor plays the role of 

an interceptor that automatically captures the changes from actors. 

This interception happens by calling the UpdateIndexes method 

of the parent IndexableActor type. This method is also 

implicitly called whenever actor tries to persist its state. By 

default, before-values and after-values of the properties of the 

actor are used for denoting the modifications. However, this is not 

always the most efficient way to capture an update to an indexed 

property. For example, the property could be a compound 

structure that is indexed as a whole, but whose components are 

independently updated. 

To give the app developer flexibility in representing updated 

properties, we define a class MemberUpdate that encapsulates an 

update to an indexed property and offers methods to get the 

property’s before-value and after-value of the property. The 

instances of MemberUpdate are produced by an implementation 

of the UpdateGenerator interface that are employed in the 

UpdateIndexes method. An UpdateGenerator takes the current 

properties of the actor and a previously generated MemberUpdate 

if one is already stored inside the actor left over from a previous 

index update. Then, it produces a new instance of MemberUpdate 

that represent the change. This new instance of MemberUpdate is 

stored inside the actor to be used in the next index update. 

The default implementation of UpdateGenerator captures both 

before and after values of an indexed property inside an instance 
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Figure 2. High-level index-system architecture 

 



 

of MemberUpdate, but programmers can provide their own 

UpdateGenerator implementations. Using a user-defined 

UpdateGenerator in the example of a compound property 

above, the MemberUpdate might include the full before-value but 

the after-value of only components that changed, thus avoiding 

redundant storage of identical before and after portions. 

Programmers can determine the special UpdateGenerator for 

the specific indexed properties using an additional parameter to 

the [indexed] annotation. 

Each call to UpdateIndexes of an actor creates a dictionary of 

property names to MemberUpdates. This dictionary is passed to 

the index handler for processing the updates with respect to the 

indexes defined on each property of the actor type. 

4.3 Processing Updates to Indexed Properties 
The simple design of Figure 2 ignores the possibility of failures 

during actor and index updates. This possibility is especially 

troublesome for AODB-managed indexes, where the indexing 

system has to write into both actor storage and index storage.  

It is tempting to use transactions to simplify fault tolerance. This 

is problematic for two reasons. First, most actor systems do not 

support distributed transactions. Second, transactions add cost due 

to concurrency control and two-phase commit, which is annoying 

given that most users only require eventual and causal 

consistency. We therefore consider designs both with and without 

transactions.  

If transactions are not used, then the process of updating an 

indexed actor must execute as a multi-step workflow. A correct 

implementation of actors and storage must satisfy the following 

invariants: 

P1. (Consistency of actor and indexes) For each update request R 

to an indexed actor , if R’s update to  succeeds (that is, ’s 

updated state can be read), then eventually all of ’s indexes are 

updated to be consistent with ’s updated state.  

P2. (Causality) An index state is never ahead of actor states it 

refers to. That is, if an index for value v of property P refers to 

actor , then .P=v or .P=v where v was written to .P after v. 

To design a workflow that satisfies these invariants, we require 

index updates and their inverses (i.e., undo operations) to be 

idempotent. Most index updates are naturally so. For example, to 

change the value of an actor ’s indexed property P from u to v, 

we delete a reference to  from u’s index entry and add it to v’s 

index entry. When re-executing the update, if  is not found in u’s 

index entry then no action is needed; if it is found in v’s index 

entry then it need not be added again. In ambiguous cases, each 

update can be identified by a version number or similar state 

variable, which is written to the index along with the updated 

value or tombstone to ensure idempotence.  

In the following description of the workflow, most writes to 

storage are lazy. These writes execute periodically but frequently, 

so that under high load they persist the result of many update 

operations to the relevant actor. Batching writes improves 

throughput under high load at the cost of some latency in replying 

to the relevant request. 

Figure 3 shows a workflow that satisfies the above invariants. It 

starts with an update request R from some caller K to an indexed 

actor . Downstream, for each actor, such as , there is a 

Workflow Queue actor WQ that manages requests to process 

index updates on behalf of . There is also an Index actor that 

processes lookups and writes to an index over . We assume each 

actor is single-threaded and non-reentrant. The steps are as 

follows: 

1. When   has finished processing R and before it writes ’s 

updated state to storage, it creates a workflow record wR and calls 

WQ to append wR to the queue. 

2. Next, WQ eagerly writes wR to WQ’s storage and sends an 

acknowledgement to  when it is done. If there is already an in-

progress storage write to the queue, then WQ waits for the write to 

complete before issuing another, which includes other workflow 

records that have been added to the queue in the meanwhile. This 

batching improves throughput under high load. 

If  times out waiting for a reply from WQ, then it assumes 

(possibly incorrectly) that wR was not written to storage. So  un-

does the update it performed for R and throws an exception to K. 

3. This step applies if and only if  updated a property that has a 

unique index. In this case for each unique index that is affected by 

the update to ,  tries to insert the new value into the index. If it 

succeeds (i.e., there is no duplicate), then it marks the new index 

entry as tentative, and marks the index entry for ’s previous 

value as tentatively deleted. After all tentative updates are written 

to storage,  continues with step 4. If any tentative insertion fails, 

then  undoes any previous tentative updates, undoes its update to 

’s state, and throws an exception to K.  

Subsequent lookup operations should ignore entries flagged as 

tentative and should ignore a tentatively-deleted flag by treating 

the index entry as present, for two reasons. First, R might fail and 

the updates will be undone. And second, even if R succeeds, since 

 has not yet been written to storage, reading the corresponding 

index updates would violate causality. 

4. Actor  adds the identity of the workflow record wR to its state 

and writes its state to storage. After the storage update completes, 

it replies to K, thereby completing the call.  

5. There is a dispatcher DWQ associated with WQ that executes 

workflows in batches. In each batch, for a workflow record wR on 

actor , in step 5.1 DWQ ensures that the update to  occurs before 

updates to any of ’s indexes by first calling  to check that  

still has a reference to wR and wrote it to storage. It might not, 

because the update that generated wR did not complete, or because 

wR was processed by an earlier execution of DWQ, but there was a 

failure before it deleted wR from storage. If it does not hold, then 

DWQ undoes any updates it did to unique indexes and writes them 

lazily to storage. Then it deletes wR from the queue in storage.  

 

If  still has a reference to wR, then in step 5.2 the dispatcher 

updates the relevant index entries. This includes changing 

tentative updates to unique indexes into permanent ones. It does 

these index updates in batches, per index. Next, if the index is 
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durable, in step 5.3 it lazily writes the index to storage. After the 

write completes, in step 5.4 it deletes wR from the queue and lazily 

writes the updated queue to storage.  

6. Finally, in step 6.1 the dispatcher calls  one last time to delete 

the pointer to wR from ’s state. Since the state of  has changed, 

in 6.2  lazily writes its state to storage. 

4.4 Correctness 
We need to show that the protocol for actor updates is correct, 

despite any failures that might occur. In Orleans, there are two 

main categories of failures: server failure and message timeout. If 

a server fails, all actors on that server lose their memory state and 

disappear. A message timeout occurs when a method call does not 

return to the caller within its timeout period. An individual actor 

never fails. It can catch exceptions, but it cannot silently die.  

To explain why the workflow in Section 4.3 is correct, we need to 

show that properties P1 (consistency of actor and indexes) and P2 

(causality) always hold, despite the failure of any step in the 

workflow. We argue correctness by analyzing each workflow 

step, in turn. 

Step 1: Actor  updates its memory state and sends wR to WQ. 

Since  is non-reentrant, its state cannot be read until it returns to 

K in step 4. Therefore, P1 and P2 are trivially satisfied.  

If ’s server fails, then ’s state is lost and its caller K will time 

out waiting for a reply to R. When  is activated again, it has no 

information about wR, since wR is not written to ’s storage until 

step 4. Possibly,  appended wR to WQ before  failed. We will 

show in step 5 that WQ will remove any downstream effects of wR 

in this case. Hence, wR has no effect, as required by P1 and P2. 

Step 2: Actor  asks WQ to write workflow record wR to storage. 

This has no effect on the state of  or its indexes, and hence has 

no effect on P1 and P2.  

Step 3: If there are no uniqueness violations or failures while 

updating the unique indexes, then like step 1, step 3 finishes in a 

state where ’s state cannot be read and tentative updates in 

unique indexes will be ignored. Hence, P1 and P2 are trivially 

satisfied.  

If any of ’s updates to unique indexes fails, it undoes any 

previous tentative updates to the indexes and to ’s state. Thus,  

and its indexes revert to their original states, so P1 and P2 are 

trivially satisfied. If there is a failure before this undo activity 

finishes, then it will be repeated when wR  is processed in step 5. 

Step 4: After this step, ’s state can be read. Thus, P1 requires 

that later steps ensure that indexes are eventually updated. 

Step 5: This step updates ’s indexes. Dispatcher DWQ first 

checks that  has a reference to wR. If so, then since  is non-

reentrant,  must have completed step 4. Hence, updating the 

indexes will satisfy P2. If not, then DWQ undoes tentative updates 

to unique indexes, thereby deleting all effects of R, and trivially 

satisfying P1. 

If  did complete step 4, then DWQ makes tentative updates 

permanent, and after they are in storage, it deletes wR from WQ. If 

WQ fails before finishing this work, it is reactivated by a reliable 

reminder service [4]. On recovery, it will process wR again, which 

is safe since index updates are idempotent. Thus, index updates 

are eventually processed, satisfying P1. 

4.5 Transactions 
Consider how we could use transactions to simplify recovery. One 

possibility is to group steps 1-4 into a transaction. This requires 

updating at least two actors (the queue and ) and possibly unique 

indexes. Since these actors are almost certainly not co-located in 

storage, this will require independent writes to storage and hence 

two-phase commit (2PC). They can do the writes in parallel, 

rather than sequentially, as in Section 4.3. However, there is an 

extra write in 2PC, which partly neutralizes this advantage.  

Another possibility is to avoid the workflow entirely and do all 

the updates in a transaction. This too requires two rounds of writes 

for 2PC, so there is no improvement in latency. Depending on the 

concurrency control protocol used to update the indexes, it may 

entail more delay and/or aborts. It is not obvious to us which of 

the strategies will have the best throughput and latency. Exploring 

these alternatives is a topic for future work. 

5. IMPLEMENTATION DETAILS 
This section discusses more detailed aspects of the types of 

indexes we implemented. 

5.1 Index Variants 
There are three dimensions for the possible index types in an 

AODB: the type of query that can be directly answered using the 

index lookup, i.e., equality, range, or spatial query; the target 

collection of actors that is being indexed, i.e., only active actors or 

all persisted actors; and the way an index is distributed among 

multiple servers, i.e., logically partitioned based on key, 

physically partitioned based on actor location, or directly 

managed by the underlying storage. Each point in this three-

dimensional space represents a specific index type with special 

consistency properties and fault-tolerance requirements.  

In this paper, we focus on equality queries using hash indexes, 

over all initialized actors or over only active actors. An initialized 

actor is one that was activated at least once and whose state is in 

persistent storage. Once initialized, it remains initialized forever, 

even if it is subsequently deactivated. An active actor can be 

indexed whether or not it has persistent state. An index over 

initialized actors is called an I-index, and an index over active 

actors is called an A-index. 

5.2 Distribution and Partitioning 
Next, we discuss possible distribution strategies. The simplest 

form of index is a single actor that maintains the whole index. 

Even though it is a single point of contention, it is a practical 

option for small indexes with a low access rate. In fact, it can 

handle a moderately high update rate by batching updates, as we 

will see in Section 6.1.  

In many cases, distributed indexes are preferable because they 

scale out. An index can be divided into buckets, where each 

bucket is a distinct actor. In theory, buckets can overlap, but to 

simplify index update and fault-tolerance processes, we ensure 

they are disjoint. There are two major ways that index entries can 

be partitioned into buckets: logically based on key or physically 

based on location. 

In logical partitioning, each bucket is assigned a set of indexed 

value(s) it can contain. For example, when indexing the Location 

of Players, one way to assign buckets is by hashing the Location 

of each player. For a given Location, its hash value plus 

Location’s index identifier uniquely identifies the actor maintain-

ing that bucket of the index. 



 

Ordinarily, actors with the same value of the indexed property are 

randomly distributed across servers. Therefore, a disadvantage of 

logical partitioning is that to process an update to an actor’s 

indexed property, the actor’s accesses to the index buckets are 

likely to be remote.  

Another problem is providing users with consistent results. Often, 

an update to an actor’s indexed property requires deleting the 

actor from one index bucket and inserting it into another one. 

Suppose the delete precedes the insert, and in between them, a 

caller issues two read requests, for all actors with the old value 

and for all with the new one. The reader fails to read the actor 

with the in-flight update, with no obvious fallback to find it. 

Instead, we should insert into the new bucket before deleting from 

the old one. This might result in seeing the actor in both buckets. 

But the reader can recover by checking the indexed property when 

accessing the actor. Unfortunately, this insert-before-delete 

strategy cannot be guaranteed when updates to index buckets are 

batched. For example, if one player moves from Location X to 

Location Y, while another player moves from Y to X, and if X 

and Y hash to different buckets, then the first bucket to be written 

to storage will cause one of the deletes to precede its 

corresponding insert. 

In physical partitioning, an index has one bucket on each AODB 

server. The actors that are instantiated on a server send their index 

updates to the local index bucket on the same server. One benefit 

of this approach is that index updates are always handled locally. 

Another is that index updates are atomic, because moving an actor 

reference from the old inverted list to the new one can be done as 

one operation on the bucket. A third benefit is fault tolerance, in 

that a server failure causes actors and their indexes to fail 

together. This leaves the other servers in a consistent state. This 

property makes physically partitioned indexes a natural choice for 

indexing active actors (i.e., A-indexes), as it is fault-tolerant by 

design if the unit of failure is a server.  

A downside of physical partitioning is that each index lookup 

requires a fan-out to all buckets on all servers. However, these 

lookups happen in parallel and the first result returned from one of 

the servers can be streamed back to the user.  

Physical partitioning of I-indexes has a serious drawback. If an 

index is physically partitioned and if an indexed actor  located 

on server S previously existed on another server S', then  might 

still have an index entry on S' (something that cannot happen with 

an A-index). Therefore, an update to an I-indexed attribute of  

requires a fanout lookup to partitions on all servers, followed by 

removing the previous index entry if one exists, and then updating 

the index bucket on S. This is much more expensive than  

updating a logically partitioned I-index, which can usually be 

done with a blind write. Overall, we believe that physically-

partitioned I-indexes are not worth offering. 

5.3 Handling Data Skew 
The values of the indexed attributes are not always uniformly 

distributed among the index buckets. When dealing with a very 

large number of actors, special techniques are needed to handle 

this skew. 

The index skew problem happens when an index bucket 

overflows. Skew can be either real or artificial. Artificial skew 

happens when the buckets are too coarse-grained. It can be 

mitigated by having finer-grained buckets, e.g., more buckets for 

a hash-index distributed across many servers. This requires a 

repartitioning of buckets, which can be minimized by any form of 

dynamic hashing, such as consistent hashing [10].  

Real skew arises when a large number of actors have the same 

value of an indexed property. In this case, finer-grained buckets 

do not help. A solution is to define a logical super-bucket 

comprised of multiple physical buckets. When an ordinary bucket 

reaches its configuration-defined maximum size, it is converted to 

a super-bucket. The physical buckets of a super-bucket can be 

chained in a list with the super-bucket as header. Or the super-

bucket can contain a list of pointers to the physical buckets. The 

latter is preferable, since it enables parallelizing delete operations, 

and fast access to the last bucket for insertions. Also, for I-

indexes, it enables parallel retrieval of physical buckets from 

storage. 

Another skew problem arises when the access rate on an index 

exceeds the ability of a single actor to serve it. Since reads usually 

predominate, this problem can be addressed by enabling an actor 

to allow multiple concurrent read threads and one write thread. To 

avoid interference between readers and the writer, the actor can 

use a multi-version representation of its state. This is a general-

purpose capability that can apply to any type of actor, not just 

index buckets.  

5.4  Implementation Status 
So far, we have implemented the following features: I-indexes and 

A-indexes; AODB-managed and storage-managed indexes; the 

fault-tolerant, multi-step workflow for index update; single-bucket 

indexes; distributed indexes partitioned by key-value; physically-

partitioned A-indexes; indexes that have very large buckets due to 

data skew; a programming interface that is integrated into the 

Orleans actor framework; and a modularized way of capturing 

updates from actors. Features that are high on our list are range 

indexes, and using transactions as appropriate for reducing I/O 

and simplifying fault tolerance. 

The implementation is approximately 6K lines of C#. Nearly all 

of it is at application level, with just a few changes to the Orleans 

runtime library for performance-sensitive operations. We plan to 

release it soon as open source.  

6. PERFORMANCE 
We evaluate our indexing system in the exemplary three-tier setup 

shown in Figure 4. Multiple clients concurrently invoke methods 

on actors that are hosted by an actor middle tier. Both front ends 

and middle tier servers are virtual machines hosted in Microsoft 

Azure. Persisted actors, indexes, workflow records, and auxiliary 

data are stored in Azure Table, one of Microsoft’s hosted key-

value stores.  

 

We have experimented with moderately sized setups of up to 20 

middle-tier servers. We overprovision the front ends to ensure 

they are not the bottleneck, typically with twice as many servers 

as the middle tier. Each client and server is an Azure “A4 worker 

Cloud Storage 
(Azure Table) 

Actor Middle Tier: Orleans 
(Azure VMs) 

Front end Clients 
(Azure VMs) 

Figure 4. Performance evaluation configuration 



 

role,” which is an 8-core 1.6GHz processor with 14GB of 

memory. The middle-tier servers run the latest Orleans release, 

version 1.3.1. The clients run the Orleans 1.3.1 client library, 

which enables calls to actors executing in the middle tier. 

The performance numbers that we present here are preliminary 

and not comprehensive. There is a lot of room for optimizing the 

system before using it in production. These results are intended to 

give the reader intuition about the behavior of our indexing 

system, but not its absolute performance.  

To emphasize the latter point: The latest release of Orleans runs at 

~200K requests/second on their nightly load test on 25 servers, on 

a private cluster outside of Azure. In this load test, each client call 

has two hops, which implies 16K requests/second per server (i.e., 

2*(200K/25)). Our baseline tests run at less than half that number. 

To have high confidence in our absolute numbers, we need to 

investigate the source of this discrepancy. 

6.1 Scalability of A-Indexes 
A major feature of Orleans is that it scales out to many servers. It 

is important that indexed actors scale out too. To test this, we ran 

a workload consisting entirely of updates to non-persistent actors. 

The middle-tier application consists of a single actor type with 

one indexed attribute. We compare three partitioning and 

distribution strategies for a hashed index:  

 a single-bucket cluster-wide index  

 an index that is partitioned logically based on key values, and  

 an index that is partitioned physically, with one partition per 

server that indexes all actors on that server. 

For a given number of servers, we did successive runs of two 

minutes, where each run offered more load (i.e., requests/second) 

than the previous run. To get stable numbers, we found it was 

important to gradually increase load in this way, rather than 

flooding the system with the maximum load it could handle and 

waiting for it to stabilize. For each run, we measured throughput, 

average latency, and 90th-percentile latency. Starting with a 

relatively low request rate as the offered load from the front ends, 

we gradually increased the request rate until either the average 

latency of completed requests reached one second or the 90th-

percentile latency reached 3 seconds (whichever came first), and 

recorded that as the throughput for that number of servers. We did 

this for 5, 10, 15, and 20 servers, with a comparable number of 

servers doing the load generation. The variance across runs was 

typically 5-10% and never more than 15%. We omit error bars, 

since they would make the graph unreadable. 

A quick look at the graph in Figure 5 shows that throughput grows 

as a function of the number of servers, validating the absence of 

any major bottlenecks. It also shows a similar difference between 

the throughput with no index and with each of the different index 

types. We found this to be surprising. Whereas an index update to 

a one-bucket or per-key index usually adds an RPC to the 

execution, an index update to a per-silo index is a local call, which 

should be much faster. After some investigation, we discovered 

that our technique for ensuring per-silo calls were local was 

effectively doing an RPC through the entire network stack and 

hence was much slower than it should be. Avoiding this overhead 

is a future-work item. 

We define the scalability ratio as the fractional-increase in 

throughput divided by the fractional-increase in the number of 

servers. Ideally, we would like the ratio to be 1.0, but in fact it 

was significantly less. For example, with no index the throughput 

increases from 38K to 84K when going from 5 servers to 20 

servers, which means the scalability ratio is 0.56, calculated as 

follows: ((84K/38K) / (20/5)) = .56. For the one-bucket, per-key, 

and per-silo cases, the scalability ratio is .61, .56, and .68, 

respectively. 

 
Figure 5. The performance scalability of different A-Indexes 

Next, we study the effect of adding different numbers of A-

indexes to a non-persistent actor type. Each index is over a string-

valued property and is stored in one bucket. The configuration 

uses 5 servers. The results, in Figure 6, show that adding one 

index reduces peak throughput by 33%, due to the overhead of 

capturing updates and forwarding them to index buckets. The 

incremental cost of adding more indexes is lower, an additional 

6%-13% per index. 

 
Figure 6. Effect of adding A-indexes for non-persistent actors 

 

6.2 Effect of Actor Persistence on Indexing 
Although some actors are only memory resident, many can also 

be persisted. We conducted an experiment to find out the effect of 

actor persistence on the performance of different index types.  

In this experiment, we consider a single actor type C with a string 

property p. There are 10,000 instances of C initialized on 5 

servers. The only operation done on the actors of C is UpdateP, 

which updates the value of p with a value selected randomly from 

1000 predefined values and then persists the actor. We 

experimented with different index types: A-index, I-index and 

storage-managed index. The non-fault-tolerant and fault-tolerant 

variants of our AODB-managed I-index are represented as NFT I-

index and FT I-index respectively, where the latter uses the 

workflow mechanism explained in Section 4.3. The storage-

managed index (SM I-index) uses a key-value store as its 
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backend. The results are shown in Figure 7 and compared to a 

baseline that has no-index on C. 

 

Figure 7 The effect of index type on update throughput 

As you see in Figure 7, there is not a big difference between the 

performance of various indexing mechanisms if actors are 

persisted. The reason is that storage is network-attached and the 

indexing throughput is bounded by the throughput of network 

connections initiated from each server. In the default storage 

model supported by Orleans, each actor is persisted individually. 

The writes to storage are not batched, which puts an upper bound 

on the per-server throughput of operations on persistent actors. 

Extending the Orleans storage model to support batch writes is a 

subject for future work.   

For persisted actors, some of the overhead related to indexing is 

hidden by the necessary storage access. Hence, in this scenario, 

the relative update throughput of A-Index is as high as 90% of the 

update throughput for actors without an index. 

To quantify this effect in isolation, we ran a simple experiment to 

measure the combined effect on update throughput of persisted vs. 

non-persisted actors and of indexed vs. non-indexed actors using 

an A-index. In this experiment, updates to the index are 

propagated lazily. The results are summarized in Figure 8.  

By persisting actors, throughput drops by 82%, from 35K to 6K. 

We ran 4K actors/server with 5 servers and overprovisioned 

storage bandwidth, to ensure that this performance drop is entirely 

due to processor overhead. By adding a non-persistent A-index to 

non-persistent actors, throughput drops by 34%. When combining 

both features, with an A-index over persistent actors, throughput 

drops by 85%, which is only slightly more than adding persistence 

alone. Since indexes are updated lazily, most of the overhead of 

updating the A-index overlaps with the update I/O.  

 Persisted Actor Non-persisted Actor 

Indexed 5,400 23,600 

Not Indexed 6,200 34,800 

Figure 8. Comparing the effect of indexing and persistence on 

update throughput (expressed in updates/second) 

7. RELATED WORK 
We compared AODBs to existing systems in the introduction. 

Although we do not know of work on indexing that closely relates 

to this paper, our indexing work is somewhat similar to 

approaches to supporting a database cache in middle-tier servers. 

For instance, MTCache by Larson et al. [11] caches relations in 

the middle tier as materialized views. However, the cached data is 

read-only and updates are always performed on the base data. It 

uses SQL Server replication features to propagate changes in the 

base data one complete transaction at a time in commit order (i.e., 

the caches are transactionally consistent but may not reflect the 

latest state). A similar approach is infeasible in actor-oriented 

databases because it relies on a (not generally available) mecha-

nism to trigger index updates from inside the storage system. 

A lot of work has been done on maintaining materialized views. 

The special case of lazily maintaining views is related to our work 

as the same technique can be used to lazily update indexes. 

However, systems like the one proposed by Zhou et al. [18] rely 

on capabilities of the relational database system, namely a version 

store to access before images of rows and transactions to update 

the base table and create delta information atomically.  

A recent work by Tang et al. [16] proposes a transparent indexing 

middleware component between applications and log-structured 

key-value stores, such as BigTable, HBase, or Cassandra. The 

approach is to store an inverted index as a table alongside the base 

data and to enrich the API with a GetValue method. Since this 

index middleware is oblivious to the programming framework, it 

can be used in an AODB as a storage-managed index. 

Tai et al. describe an optimized replication strategy for indexing 

when many indexes are supported on the same table [16]. Using 

their optimized strategy, the number of replicas is less than twice 

the number of indexes. This strategy could be applied to the 

storage for our AODB indexes, thereby offering the benefit of 

multiple indexes along with the fault tolerance benefit of 

replication. 

We note that ActorDB [1] also casts itself as a database inspired 

by the actor model. However, there are some significant differ-

ences between that system and our AODB approach. An actor in 

ActorDB is essentially a shard of a larger database, running as an 

independent DBMS instance. For example, in an ActorDB 

database that supports blog posts, each actor might contain tables 

for the posts and comments for a single user. As in AODBs, actors 

in this approach do not share state, but unlike AODBs, that state 

in ActorDB is always persistent. Further, there is no direct actor-

to-actor messaging in ActorDB. Rather, applications interact with 

one or more actors using SQL inside transactions. Relative to 

Orleans, another difference is the actor life cycle: ActorDB actors 

are explicitly created and destroyed. 

8. CONCLUSION 
We presented our vision of an actor-oriented database system and 

the distinctive challenges in building one. We described an 

indexing component for an AODB, which exemplifies many of 

these challenges. We identified requirements for indexing actors 

in an AODB and a system design that satisfies them. In particular, 

we explained how to make indexes fault-tolerant and provided 

details of our implementation. Our preliminary measurements 

suggest that our implementation has good performance. 

Achieving the vision of a fully functional AODB requires further 

research on the other database features that are missing from actor 

frameworks, including transactions, queries, views, stream 

processing, triggers, and replication. This calls for a tailored 

design of these components and their underlying algorithms to 

keep up with scalability, fault tolerance, and programmer 

friendliness of actor frameworks. 
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