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ABSTRACT 
Big data is a ubiquitous feature of large modern enterprises.  Many 
organizations generate huge amounts of on-line streaming data – 
examples include network monitoring, Twitter feeds, financial 
data, and industrial application monitoring.   Making effective use 
of these data streams can be challenging.  While Data Stream 
Management Systems can provide support for real-time alerting 
and data reduction, many applications require complex analytics on 
a data history to best make use of the streams. 

We have been developing technologies for data stream 
warehousing, starting with the DataDepot [14] system.  A data 
stream warehouse continually ingests data streams, computes 
complex derived data products, and stores long term histories.  To 
take advantage of new technologies, we have developed a next-
generation data stream warehousing system.  In this paper we 
describe the Tidalrace system, our motivations for developing it, 
and architectural features of Tidalrace that support data stream 
warehousing. 

1. INTRODUCTION 
Modern applications continually generate large volumes of 
streaming data, ranging from web clicks to financial transactions to 
instrumentation of industrial processes.  Making effective and 
beneficial use of these feeds is the focus of the “Big Data” field.  A 
significant aspect of the value of streaming data is its immediacy.  
If the data can be processed and analyzed rapidly, the managing 
entity can take advantage of emerging opportunities or react to 
critical alerts. 

Over the last decade, Data Stream Management Systems (DSMS), 
such as Borealis [1], GS Tool [7], Streambase [39], Storm [40], and 
Spark Streaming [38] have emerged to perform rapid processing of 
data streams.  These systems generally operate in-memory and have 
little permanent storage.  However, many applications require 
access to historical as well as real-time data. 

For example, the Argus system [44] is designed to detect end-to-
end service anomalies in the network of a very large Internet 
Service Provider (ISP).  Argus detects subtle service anomalies, 
such as excessive TCP retransmissions, by comparing the current 
state to historical trends. 

Traditionally, data warehouses operate on an alternating data 
loading / data querying cycle.  Data collected during operating 
hours is gathered and, when stable, loaded into the warehouse.  

During this process, querying is disabled.  While this mode of 
operation permits optimized data loading [11], it is slow to make 
data available.  Even moving from nightly data loading to e.g. 
hourly data loading is not satisfactory to perform mission critical 
operations such as network troubleshooting. 

The needs of some web applications (Facebook, Amazon, etc.) 
have led to real-time systems for signature collection.  Data streams 
can be considered to be collections of records generated by 
collections of entities.  Records of a particular entity are gathered 
together and summarized as the entity’s signature.  Streaming 
updates of signatures have been used for fraud detection [6], and 
are well suited to representing a customer’s interaction with a web 
site (e.g. shopping cart, friends list, etc.).  Since the signatures are 
easily partitioned using the entity’s ID, they can be scalably 
implemented using distributed key-value stores.  An interesting 
example of this kind of system is Muppet [26], which combines a 
DSMS front-end with a distributed key-value store back-end. 

However, many applications require complex analytics involving 
wide-ranging data fusion and aggregation.  For example, the 
Darkstar data warehouse [23] loads hundreds of data streams and 
maintains more than two thousand tables with real-time data 
loading and long-term histories. This data stream warehouse, which 
is built on top of DataDepot [7], supports networking research as 
well as real-time alerting and troubleshooting applications for 
AT&T network operations.  As discussed above, alerting generally 
requires access to both real-time and historical data [44]; 
troubleshooting alerts requires seamless access to current, recent, 
and historical data.  A similar tool is PRISM [30], which monitors 
the network for service disruptions due to maintenance activities.  
Darkstar has also supported long-term data mining studies, such as 
G-RCA [12] (Root Cause Analysis of network problems) and 
studies of IPTV set top box reliability [43].  

While we are most familiar with networking applications, many 
other big data applications, some recently discussed in the popular 
press, have similar requirements. 

• Semiconductor manufacturing: Tight control of the 
manufacturing processes and fast response to alerts is 
critical for modern semiconductor manufacturing.  As 
reported in the popular literature [21], Applied Materials 
has developed a suite of tools [2] for monitoring and 
alerting of semiconductor manufacturing facilities.  A 
14nm fabrication facility is expected to generate 140+ TB 
per year from a disparate collection of sensor streams.   

• Industrial Internet: More generally, large-scale 
manufacturing requires tight control of manufacturing 
processes and supply chains.  General Electric has 
recently announced a focus on organizing and analyzing 
the data streams produced in an industrial setting [19]. 

We argue that large-scale data stream warehousing can be greatly 
improved by adjusting the notion of consistency that one expects 
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from the warehouse.  Instead of requiring some type of strong 
consistency, the system should just try to make progress in the 
stream.  This principle applies to the base tables (which are sourced 
directly from the incoming streams) and also to the derived data 
products (i.e., materialized views).  For example, see Figure 1.  
Base tables R and S are sourced from external streams, and table T 
is defined to be their join.  When new raw data for S arrives, base 
table S can make progress (1).  Since S has been extended, T can 
also be scheduled for an update extending its progress (2).  As long 
as the system has adequate resources and continually advances a 
table to catch up with its sources, a user will be able to get a 
consistent view of the (hopefully recent) past. 

Table R source data

Table S source data

Base table R

Base table S

T = R      S

(1)

(2)

 
 Figure 1. Making progress in the stream. 

This approach to streaming data management is being promoted in 
the popular press, notably by Marz and Warren [31][32].   These 
authors argue that data stream analytics systems can be efficiently 
and readily built by abandoning strong consistency, and instead 
using a “make progress in the stream” approach.  These authors 
suggest that large-scale stream warehousing systems can be 
constructed from open-source tools including Storm, Hadoop, 
Cassandra, and Hbase.  However, these efforts do not address 
significant issues of data semantics, view maintenance, and query 
optimization that we discuss in this paper. 

1.1  Tidalrace 
We have been developing data streaming warehousing systems 
since 2005, and have built very large networking applications on 
top of them. One prominent result is the Darkstar [23] streaming 
data warehouse that is used to support networking research, 
network operations, and real-time network troubleshooting.  
Darkstar was built on top of the DataDepot system [14]; however 
we found it increasingly difficult to incorporate significant new 
features into the legacy code base. 

We have embarked on a project to develop a next-generation stream 
warehouse, Tidalrace, to support new and more demanding 
network monitoring and maintenance applications within AT&T  
Some of the more significant features and optimizations include 

• Support for temporal consistency. 

• Incremental in-the-past updates using partition revisions. 

• Streaming updates to valid-time temporal tables. 

• Partition re-organization 

• Partition-wise optimization 

• Distributed storage and execution 

We also intend to use the opportunity provided by a fresh-slate 
approach to experiment with novel query processing techniques 
and optimizations.  In this paper, we describe the organizing 
principles behind Tidalrace, how Tidalrace is structured, and its 
more significant features and optimizations. 

1.2 Related work 
In addition to DataDepot [14]and the works of Marz and Warren 
[31][32], several other projects have approached the problem of 
data stream warehouses. 

One of the earliest descriptions of a stream warehouse is Moriae [3] 
which developed a history-enhanced event detection system.  
Moriae used a matching engine to determine when similar patterns 
occurred in the past to improve the system’s ability to match current 
events.  The Darkstar application Argus [44] uses stream history to 
identify network anomalies.  An early proposal to support hybrid 
querying of live and archived streams is OSCAR [4] , built on top 
of TelegraphCQ.  FastBit [36] takes a similar approach, using 
bitmap indices to accelerate queries.  Related systems include latte 
[42], HYPE [34], and DejaVu [9] which has been implemented on 
top of MySQL and extensively tested.   

Truviso [24] is a warehousing system that supports materialized 
views over continuously loaded data.  We expand on their 
innovation of revisions into a more general mechanism.  

The Tidalrace system described in this paper is based on our 
previous DataDepot [14] stream warehouse and our experiences 
with supporting Darkstar [23] and its applications.   

These systems have been built on top of DBMS stores; however 
using a DBMS is not a requirement.  Nova [33] is a system built on 
top of Hadoop and Pig to automate workflows.  Nova will 
propagate delta updates from raw data sources to derived data 
products; the authors give an example of the workflow from RSS 
news feeds to a deduplicated set of articles.  The workflow 
scheduling uses update triggers to propagate the deltas. 

Our approach to data stream warehousing is similar in spirit to that 
of Marz and Warren [31][32].  They suggest an approach which 
uses cloud-friendly append-only files.  Complex analytics can be 
supported by the equivalent of materialized views; new derived 
data product segments get computed when their source tables 
advance.   Marz and Warren also argue that derived data products 
do not require extensive replication since their values can always 
be recomputed from the base data.  These authors recognize the 
differences between event data and condition data (as we discuss in 
Section 4.4), and propose an append-only mechanism for storing 
valid-time temporal tables. 

Our approach to building a data stream warehouse has a similar 
philosophy, but with a greater emphasis on supplying semantics, 
especially those which enable users to make sense of temporarily 
inconsistent data, and to enable performance enhancing 
optimizations.  Especially notable differences include: 

• Explicit support and optimizations for late-arriving data, 
which is universal in large-scale data steam warehouses 
[14][24][29].   

• Explicit support for temporal consistency (Section 5.3). 

• A mechanism for streaming updates to valid-time 
temporal tables which supports efficient indexed access 
(Section 4.4). 



2. Data Workflow 
To motivate our approach, we describe a very simple network 
management example application, shown in Figure 2.  Raw data 
flows from external sources to be loaded into base tables, which are 
then available for queries.  In this case, the warehouse loads Twitter 
feeds, active round-trip-time measurements from probes in the 
network, and network link utilization data gathered via SNMP.   

While this data is useful in its own right, usually we want to derive 
actionable information from the raw data.  For example, from raw 
twitter feeds, we can remove personally identifying information 
and apply textual analysis to derive a streaming table of customer 
complaints about network service.  We can then combine customer 
complaints with the active measurement and link utilization feeds 
to derive a streaming table of service alerts [44].  Troubleshooting 
the service alerts might require real-time data from the active 
measurement and link utilization tables.  The service alerts can then 
be correlated with the customer complaint tables to derive 
knowledge about what types of network events have the most 
significant impact on customers.  Other tables – the hourly and 
daily aggregates of link utilization – are similar to traditional OLAP 
tables and are used for long-range network planning.  The tables 
which are populated with correlated and processed data are the 
derived tables, and are implemented as materialized views. 

Customer
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Twitter
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measurement
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Utilization

Service

alerts

Sentiment

analysis

Hourly

aggregate

Daily
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Raw

Data
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Figure 2.  Simple example application. 

This simple example of a streaming data warehouse illustrates 
several significant points.  First, while real-time loading of data into 
base tables is important, the value of a data stream warehouse 
comes from its ability to correlate and process raw data into real-
time actionable information.  This principle can be seen in Nova 
[33], DataDepot [14], and the works of Marz and Warren [31][32].  
Maintaining real-time derived information requires a mechanism 
that allows raw data to flow into the derived tables; the “update 
propagation” mechanism illustrated in Figure 1 has proven to be 
effective.  Finally, some tables need to be updated as rapidly as 
possible (in this case the bases tables and the service alerts table), 
while others should be updated when the data sources are stable to 
enable long-term data mining (the Sentiment analysis and the 
aggregate tables). 

                                                                    
1 Spanner [5] uses a globally synchronized real-time clock for 

maintaining consistency, but is intended more for supporting 
sophisticated applications than for large-scale data mining. 

3. Organizing Principles 
Our approach to data stream warehousing is motivated by three 
main principles: 

• On single-server systems, sequential writes are much 
faster than random I/O.  Scalable (i.e., non-POSIX) 
distributed file systems generally support write-once or 
append-only files.  Tidalrace uses write-once files to 
ensure good update performance on single-server 
installations and to allow the use of cloud-based storage 
systems.  

• In a large-scale distributed system, maintaining a current 
time-synchronized view of the system ranges from 
prohibitively expensive to infeasible1.  Instead of 
requiring traditional strong consistency, we will just 
ensure that our tables continually make progress in the 
stream. 

• A data stream warehouse must provide timely and 
eventually consistent data in order to be fully useful.  
However, in a large-scale stream warehouse, late-
arriving data is universal [14][17][24][29].  One of the 
principle services of a stream warehouse is to collate 
newly arrived data by its timestamp and provide services 
to ensure temporal consistency in query results. 

To manage these conflicting concerns, one tends to be drawn to 
particular design decisions 

Timestamp Partitioning:  Since newly arriving data is the 
(generally) most recent data, a natural data organization is to use 
horizontal partitioning on a timestamp attribute.  Ideally, all of the 
newly arrived data falls into a new partition.  Even if old data 
arrives (i.e., having a value in the timestamp field that is less than 
the maximum of the timestamps of the existing records), the 
number of affected partitions is generally small.  Furthermore, 
expiring obsolete data is simple, as the oldest data partitions can be 
simply dropped. 

In general, every table is horizontally partitioned, using the 
timestamp field value for the primary partitioning predicate.  Large 
tables may use additional partitioning predicates, and each 
horizontal partition may also be vertically partitioned (i.e. Section 
4.1). 

Write-once Files:  In-place incremental updates are difficult to 
support in large-scale data systems for several reasons.  For one, 
random access in disk storage is much slower than sequential 
access (and large-scale storage systems still require disk storage).  
For another, consistency in distributed storage is difficult and 
expensive to maintain.  Distributed non-POSIX file systems such 
as HDFS only support write-once (or append-only) files.  Finally, 
derived data products maintained as materialized views might not 
have a cheap and simple incremental update procedure – they might 
be e.g. machine learning models derived from an arbitrary R 
program.   

If the data stream warehouse is structured to concentrate updates to 
a small collection of data partitions, then updates to base tables can 
be efficiently propagated to the derived data products which depend 
on these base tables.  We have found (in the DataDepot project 
[14]) that the timestamp partitioning technique is very effective in 



localizing updates in most cases.   DataDepot also uses write-once 
files for derived tables.  Because of the efficiency and generality of 
write-once files, Tidalrace uses only write-once files for its data and 
indices (both base and derived tables). 

Because of the prevalence of late-arriving data (and the frequent 
need for fast answers), small incremental updates to existing 
partitions are common.  DataDepot would recompute these small 
partitions, which often introduces a significant inefficiency.  In 
Section 5.2 we discuss a technique for overcoming this inefficiency 
that implements incremental updates using write-once files. 

Loose Consistency:  Traditional data warehouse operations place 
a high value on the internal consistency of its tables.  However, the 
demands of real-time information from a data stream warehouse 
make the delays required for internal consistency untenable.  Data 
stream management systems operate in real-time, but within very 
narrow time windows.  A data stream warehouse loads disparate 
and widely-sourced data streams, with frequent late data, and 
cannot ensure operation within a narrow time window. 

To ensure real-time response when needed, data must be loaded 
whenever it becomes available; high-priority derived data products 
might be computed well in advance of lower-priority tables.  
Transient errors in derived data products (due to inconsistency, 
incomplete data, or even incorrect source data) can be tolerated in 
many cases when the need for real-time information exceeds the 
need for consistency.  However, these errors must be transient and 
labeled, and the user must understand and accept the implications 
of inconsistent data. 

The temporal inconsistency inherent in the leading-edge of data 
stream warehouse tables generally makes the transactional commit 
of individual records an avoidable overhead.  Because all correlated 
streams must be verified to be up-to-date, the batch-commit of 
update propagation is a better suited mechanism. 

Update Propagation:  We have argued that two traditional models 
for stream processing (data warehouse refresh and traditional data 
stream processing) are not suitable for data stream warehousing.  
Instead, we will simply try to advance the base tables (and 
transitively, the derived tables) to catch up to the source data 
streams.  Each advancement step propagates updates in a target 
table’s source(s) to the state of the target table, as illustrated in 
Figure 1.  Updates can be performed in a localized, and therefore 
readily distributed, manner.  We have found that data stream 
warehouse refresh via update propagation to be efficient and 
reliable [14].  While a naïve update propagation algorithm can 
suffer from the missing-update problem, we have published simple 
and provably correct update propagation algorithms in our previous 
work [22].   

Multi-Version Concurrency Control:  The need to ensure real-
time response recommends the use of Multi-Version Concurrency 
Control (MVCC).  Long-running queries do not block updates, 
updates do not block queries, and expensive updates do not block 
updates to their source tables.  In previous work, we identified the 
source of state data in a real-time table to be the need to block 
updates to the real-time table to compute an hourly aggregate 
summary [22]. 

In a single-writer scenario, MVCC can be inexpensively 
implemented [35].  When using write-once files, the 
implementation becomes simpler still [14].  We note that single-
writer does not mean that the update of a table must be single 
threaded, or even restricted to a single server, but rather that the 
computation have a single control and commit point.   

Temporal Consistency:  Continuous data loading generally entails 
a significant degree of uncertainty about whether or not all of the 
data for a given time period has arrived, or will arrive.  The 
traditional data warehouse approach is to wait for a time interval to 
pass, after which it declares that all data has arrived and performs a 
batch load.  However a) for many alerting and trouble-shooting 
applications, having the most up-to-date data is important enough 
that some data inconsistencies can be tolerated, and b) different 
streams have different arrival latencies, and need to be treated 
differently – one waiting interval does not fit all streams.  A short 
delay time (e.g. one hour) is likely to return inconsistent results; 
while a long delay time (e.g. one day) does not provide real-time 
answers. 

A data stream warehouse needs keep track of the “temporal 
consistency” of the streaming tables that it maintains [17].  Starting 
at the base tables, the system tracks the arrivals of new data and 
determines the completion status of each partition.  The temporal 
consistency of the base table gets propagated to the dependent 
materialized views.  By maintaining and supplying temporal 
consistency information of the tables in the stream warehouse, a 
data stream warehouse can maintain its tables using a loose 
consistency model and still provide consistency guarantees to 
users.  We return to this topic in Section 5.3. 

Temporal Description Tables:  Streaming data is often thought of 
as consisting of a stream of events – measurements that occur at a 
specific time or during a short and well-defined time period.  Event 
data generally needs description data to supply the necessary 
context for proper interpretation.  Description data describes 
conditions that last for a long time and are of an uncertain duration.  
For example, an event data stream might consist of temperature 
measurements from sensors in a machine room.  The temperature 
sensors themselves do not provide much meaningful information; 
they need to be correlated with a description table which specifies 
where each sensor is located. 

The need to provide context for event streams has led many data 
stream management systems to allow joins to relational data.  
However, the relational tables are generally snapshot tables.  A data 
stream warehouse cannot use snapshot tables for its description 
data because 1) the description tables change slowly but steadily 
over time, and 2) a data stream warehouse must often deal with in-
the-past joins: late arriving data, catch-up on blocked streams, 
reloads of problem data.  All description tables must be valid-time 
temporal tables [25].  Further, description tables receive streaming 
updates (e.g., a temperature sensor gets moved) and therefore must 
be maintained with timestamp-based partitioning in a manner 
similar to that of event tables.  We return to this topic in Section 4.4 

4. Tidalrace Architecture   
A data stream warehouse generally does not need a specific 
underlying database architecture – systems have been layered on 
top of the Daytona [14] and Postgres [24] DBMSs and on top of 
Hadoop/Pig [33].  We decided to take the opportunity of the full 
system redesign to develop a data stream warehousing system 
which is specialized to our needs. 

One issue that we needed to address was support for both 
distributed and non-distributed installations.  Our experience with 
Tigon-SQL [7] showed that an efficient and well-tuned DSMS can 
processes petabytes per day in a single 2U server.  A small-scale 
high-performance data stream warehouse system is essential for 
supporting operations at the “edge” of the network.  However, 
global network operations require very large scale warehouses, 
necessitating scalable storage and computation.  We therefore 



needed to develop a system which works well both as a small-scale 
single-server installation and as a large-scale distributed system. 

A second issue we faced is the need for multi-language support in 
the definition of materialized views.  While a large fraction of the 
derived data products we needed to support are readily described 
by SQL, others are not.  For example, many networking analyses 
require state-machine processing [17].  Other derived data products 
might be created using statistical analysis tools such R.  

 
Figure 3.  Tidalrace Architecture 

Figure 3 shows a top-level view of the Tidalrace architecture.  The 
state of the system – the data dictionary, the location and status of 
the data in index files, etc. – is stored in the Tidalrace metadata 
database.  The metadata database is used to perform transactional 
commits for update programs, and therefore must be a transactional 
(ideally ACID) database.  We use MySQL for this function, though 
other DBMSs can be used.  The metadata database is the only 
transactional component of Tidalrace, so transactional storage and 
synchronization does not present a scaling bottleneck.  Our 
experience with managing very large data stream warehouses with 
DataDepot [14] has shown that a metadata database of a few 
megabytes can manage a warehouse of many terabytes and 
thousands of tables, with an update rate which rarely exceeds a few 
update transactions per second.   

Tidalrace updates its tables via a batch update propagation 
mechanism.  Data sources generally supply data in packages of new 
records; these packages arrive periodically and contain collections 
of records.  At the base tables, an update determines which 
packages haven’t yet been loaded into the base table, upacks the 
records in the packages, and loads them into the proper base table 
partitions.  When the update is complete, its effects are committed 
by recording the progress in the source stream and the new data in 
the base table via a transactional commit to the metadata database.  
For derived tables, an update program determines what parts of the 
derived table require an update, computes the new value of the 
updated partitions, and records the new partitions of the derived 
table via a transactional commit to the metadata database.  In both 
cases, partially executed updates have no effect on the state of the 
warehouse. 

Queries (including the computation part of a derived table update) 
read the state of the tables that they access at the start of the query, 
providing read isolation.  The effect is to implement a type of 
single-writer multiversion concurrency control [14].  Tables can be 
queried and updated concurrently, and a source table can be 
updated concurrently with an update of a dependent derived table. 

An update scheduler component schedules updates to base and 
derived tables.  Updates can be periodic or triggered (by the arrival 
of new packages or the update of a source table).  Ensuring that 

high-priority tables are kept current while scheduling all updates 
and avoiding resource overutilization is a topic of continuing 
research [15]. 

Our experiences with the Tigon-SQL [7], Daytona [18], and 
DataDepot [14] have shown that a compiled-query system offers 
very high performance while still enabling interactive ad-hoc 
queries.  We have developed a SQL compiler for Tidalrace, which 
compiles queries in less than 2 seconds.  In addition to enabling 
user access to Tidalrace-resident data, the query compiler is also 
the primary mechanism used to define materialized views.  The 
result of a compiled view definition is a table definition in the 
metadata database, and also a program which updates the 
materialized view. 

The query and the view update programs access Tidalrace-managed 
data using the Tidalrace storage manager, D3SM.  The storage 
manager provides indexed and non-indexed access to data 
partitions, hiding details of the data format and storage location.  
Section 6 discusses D3SM in greater detail. 

Tidalrace provides a collection of libraries that interface with the 
metadata database, and which perform functions that enable update 
propagation and transactional commit of updated or newly created 
data partitions.  Therefore, there is no requirement that materialized 
view update programs be generated using our query compiler - for 
example, one could define a materialized view as the output of an 
R program.  As in DataDepot [14], we can instead generate a 
wrapper update program that fetches data from Tidalrace, presents 
the data to an external view computation program, then loads and 
commits the result into Tidalrace.  Materialized view definition is 
much easier using a built-in view definition language, but the plug-
in capability of an external-view wrapper provides what is 
sometimes a critical flexibility. 

4.1 Data Model 
Each table in Tidalrace contains a collection of records; each record 
contains a collection of fields.  A field can be an atomic type 
(integer, date, string, etc.) or a structured type (range, list, map, 
etc.).  Access to structured types depends on the presence of 
serialization/deserialization methods for transmission to/from 
D3SM, and the ability of the query language to process the type. 

Every table in Tidalrace must have a timestamp field.  The name 
and data type of the timestamp field is an immutable property of a 
Tidalrace table.  The timestamp field is used for the primary 
(horizontal) partitioning predicate of a table, and refers to the Posix 
timestamp of the event occurrence time (or is a pair of Posix 
timestamps that define the valid time of a description – see Section 
4.4).  The timestamps allowed by Tidalrace are more restrictive 
than those allowed by DataDepot, but our experience with very 
large stream data warehouses has shown that every table  among 
the thousands we have encountered can be readily modeled with 
Posix timestamps - with a considerable savings in logical 
complexity.  The Posix timestamp can be represented with a variety 
of data types – integer, date_time, date, or float, but are converted 
to 64-bit integers for internal use.  

A table’s timestamp is used for its primary partitioning dimension.  
Each partition is labeled with a timestamp range [pl, ph).  An event 
record r with timestamp ts is assigned to partition p if pl ≤ ts < ph 
(partitioning of description tables is discussed in Section 4.4).  A 
large table can have additional orthogonal dimensions of 
partitioning.   



4.2 Base Tables 
Raw data continually arrives, most often as a collection of files 
(packages) transmitted from a data source.  Raw data is periodically 
loaded into a base table – the period can be very small, e.g. 1 
second.  Base table loading performs two important functions.  
First, it extracts and transforms the raw data.  For example, the 
source data might be compressed and in a csv format.  Base tables 
apply simple transformations to the source data, converting fields 
into internal binary representations.  Second, raw records get 
collated into base table partitions according to their timestamp 
field.  Ideally, most new records are collated into new partitions; 
however some will collate into existing partitions.  Base tables are 
select-project views over the raw data, and they have simple 
incremental update programs: append the new records.  Tidalrace 
uses write-once files, so existing files can’t be appended; instead 
we create add-on (revision) partitions to store the additional 
records.  These revision partitions are linked to the original 
partition, as described further in Section 5.2. 

4.3 Update Propagation 
Tidalrace supports deep and complex DAGs (Directed Acyclic 
Graphs) of materialized views.  An essential service of a data 
stream warehouse is to propagate updates from the base tables to 
all (immediately or transitively) dependent derived tables.  
Furthermore, we need to minimize the amount of recomputation at 
the dependent derived tables caused by an update to a base table.  
Tidalrace uses the source vector protocol [22] for update 
propagation, which we summarize below. 

Each derived table is dependent on one or more source tables, 
which might be base or derived tables.  Metadata associated with 
each derived table states the timestamp range of a source records 
that can affect a derived table record with a particular timestamp. 
Let D be the derived table, S be the source table, and D.ts, S.ts be 
their timestamps.  Tidalrace uses this pair of bounding functions to 
determine the timestamp range of records of D affected by a record 
of S: 

�. �� ≥ � ��. �� + 
�� � + � 

�. �� ≤ � ��. �� + 
�� � + � 

The parameter m allows for the expression of discrete ranges (e.g. 
encountered in aggregation), while parameters a and b allow for 
timestamp variation and band joins.  When a partition of S is 
updated, the affected partitions of D must be updated.  These can 
be determined by using the bounding functions to determine the 
timestamp range, (and thus the collection of derived table 
partitions) which can be affected by data in the source table 
partition.  In most cases, the Tidalrace SQL compiler can 
automatically determine these bounds for derived tables defined by 
a query. 

Another piece of table metadata is its generation, which increments 
each time the table is updated.  Each table partition is labeled with 
the generation is which it was updated.  Derived table partitions are 
also labeled with a compact representation of the generation(s) of 
the source table partitions they were computed from.  The source-
vector protocol uses this information to determine if the source data 
for a derived table partition is more recent (further along in the 
stream) than the derived table partition, indicating that the derived 
table partition should be updated. 

By using the source-vector protocol and comparing all source 
partitions to the derived table partitions, the update propagation 
program can determine all derived table partitions that need 

updating.  The decision of which derived table partitions to update 
(usually, all) is left to the scheduler. 

4.4 Description Tables 
As discussed in Section 3, a data stream warehouse ingests two 
types of streams: event streams, which refer to observations at a 
particular point in time or measurements over a small and well-
defined time interval, and description streams, which refer to 
conditions that hold over long and indeterminate periods of time.  

For example, a data stream warehouse for networking applications 
might receive a stream of SNMP measurements of the number of 
bytes transmitted over a network link during a 5-minute interval.  
While this information has value, to be truly useful to the analyst 
these records should be correlated with a database that describes 
the transmission speed of these links.  Suppose that a link has 
transmitted 200 Gbits during the last 5 minutes.  If the link speed is 
1 Gbit/sec, then the link utilization is 67% (close to saturation), 
while if the link speed is 10 Gbit/sec, then the link utilization is 7% 
(low). 

Description tables change slowly, so they are often modeled as 
snapshot tables, e.g. [1].  However we have observed in a sampling 
of description tables that a significant number of rows (1% to 5%) 
are modified each day.  A data stream warehouse must often 
perform in-the-past correlations: ad-hoc queries, late-arriving data, 
catch-up processing on delayed streams, and loading new tables 
with an e.g. 2-week initial data load.  Therefore description tables 
must be stored as valid-time temporal tables [25]. 

Conventionally, a valid-time temporal table is stored as a RDBMS 
table which receives continual updates which are processed in-
place.  Let description table D have fields (K, I, V) where K is an 
entity key (e.g. a customer ID), I is a valid time interval [tl, th), tl < 
th, and V is the value associated with key K during interval I. 

IP_address TimeRange Speed 

4.3.2.1 [12:15,1:15) 1 Gbytes/minute 

4.3.2.1 [1:15,-) 2 Gbytes/minute 

1.2.3.4 [12:00,-) 5 Gbytes/minute 

Figure 4.  LinkSpeed table. 

Let’s consider a simple concrete example.  Suppose that table 
BytesTransferred has schema (IP_address, ts, Bytes), where 
IP_address is the IPV4 address of the link interface, ts is the starting 
time of the 5-minute measurement interval, and Bytes is the number 
of bytes transferred during that interval.  To determine the link 
utilization, we need to correlate records in BytesTransferred against 
the LinkSpeed table, shown in Figure 4.  The key K of the 
LinkSpeed table is the field IP_address (the IPV4 address of the 
link interface), I is the field TimeRange, and V is the field Speed.  
The record (4.3.2.1, [12:15,1:15), 1 Gbytes/minute) means that for 
timestamps ts such that 12:15 ≤ ts < 1:15, the interface at 4.3.2.1 
had a transfer speed of 1 Gbyte per minute. 

Given a record of BytesTransferred with value b(4.3.2.1,1:05, 3 
Gbytes), we can compute the link utilization by finding the record 
l in LinkSpeed such that b.IP_address = l.IP_address and b.ts lies 
in the range l.TimeRange (i.e., b.ts stabs the interval l.TImeRange).  
In this case, b matches against record l(4,3,2,1,  [12:15,1:15), 1 
Gbytes/minute), so we can compute the link utilization to be 60% 
(since 4.3.2.1 can transfer 5 Gbytes in 5 minutes).  If 10 minutes 
later we receive the record b’(4.3.2.1, 1:15, 3 Gbytes), we would 
match this record against l’(4.3.2.1, 1:15, 2 Gbytes / minute) and 
compute a utilization of 30%. 



Suppose that description tableD is updated with (k,v,ts), where k is 
a new key, v its value, and t1 indicates that k received value v at 
time t1.  Then (k, [t1,∞),v) is inserted into D.  Next suppose that D 
is updated with (k,v’,t2).  Then the original record is modified to be 
(k,[t1,t2),v) and (k,[t2,∞),v’) is inserted into D. 

IP_address TimeRange Speed 

4.3.2.1 [12:15,1:15) 1 Gbytes/minute 

4.3.2.1 [1:15,-) 2 Gbytes/minute 

1.2.3.4 [12:00,2:05) 5 Gbytes/minute 

1.2.3.4 [2:05,-) 10 Gbytes/minute 

Figure 5.  LinkSpeed after an update. 

For an example, suppose that the LinkSpeed table of Figure 4 
receives an update (k=1.2.3.4, v=10 Gbytes/minute, ts=2:05).  This 
update stabs the TimeRange of an existing record in LinkSpeed.  
Therefore the TimeRange field of the existing 1.2.3.4 record 
bounded by 2:05, and a new record is added to the LinkSpeed table.  
The result is shown in Figure 5. 

Modifying existing records does not fit well with our write-once 
architecture.  We make use of a controlled degree of duplication to 
enable streaming updates to valid-time temporal tables. 

Recall that each data partition in Tidalrace is marked with a 
timestamp range [pl, ph); records with a timestamp in this range are 
stored in this partition.  Description tables have a time interval for 
their timestamp; a record with interval [tl, th) is stored in a partition 
with timestamp range [pl,ph) if [tl,th) intersects [pl,ph).  A record 
in partition p with timestamp range [pl, ph) lies only [pl, ph).  When 
performing an interval-stabbing join (i.e., given (k, t) return the v 
(if any) such that there is a record (k,[tl, th),v) where tl ≤ t < th), 
search the partition p with timestamp range [pl, ph) such that pl ≤ t 
< ph. 

This type of data organization has several benefits: new updates do 
not affect old partitions, description tables are managed in the same 
way that event tables are, and old data is easily expired by dropping 
partitions.  However, the benefit comes with a significant cost – a 
space blowup in the storage of the description table.  If we cut a 
new description table partition once per day (e.g. we might receive 
a new current-snapshot once a day), then storing a 2-year history 
requires a 730X space blowup. 

We have found that description tables are generally much smaller 
than event tables, so some degree of duplication is acceptable.  
Furthermore, we can merge old and stable description table 
partitions into partitions which span a much larger interval.  We 
have already implemented this type of partition merging in 
DataDepot [14]; its implementation in Tidalrace is part of our 
partition maintenance procedures, as described in Section 5.1. A 
730X space blowup can easily be brought down to a manageable 
10X blowup, depending on how fast the source data becomes stable 
(see Section 5.3).  Finally, small and incremental updates can be 
handled with partition revisions (see Section 5.2). 

4.5 Table Segments 
Our experience in managing large data stream warehouses has 
shown that schema change is a continual headache.  A common 
practice in data warehouse management is to include “dummy” 
fields in a large table.  These fields can be renamed as new fields 
are added to the table, avoiding a massive restructuring operation 
for the historical portion of a large table.  We make use of the highly 
temporal nature of a streaming table to enable dynamic schema 
change. 

In Tidalrace, a table is partitioned into segments.  The invariant 
properties of a segment are the fields (names and data types), 
indices, and defining query or program (for derived tables).  The 
only invariant property of a table is its name and its timestamp field 
– which must exist in every segment.  Each segment has a 
timestamp interval [sl, sh) which defines the region of validity for 
a segment: each partition in a segment has a timestamp interval [pl, 
ph) which is contained in [sl, sh), and the collection of segment 
timestamp intervals partitions the table’s data window. 

The primary purposes of a segment are to describe the available 
fields in the segment’s partition, and to describe how to access 
missing fields (either treating them as NULL values or supplying 
default values).  For example, suppose that in table 
CustomerPurchaseHistory, in segment 1 the fields are (string 
Customer, string item, int ts).  After gathering data for a long 
period, the analysts want to add an additional field string Store.  The 
location is added for segment 2, with a corresponding change in the 
defining query. 

Next, the analyst poses an aggregation query, grouping by 
Customer and Store.  This query can cross segment boundaries by 
supplying a default value (e.g. the empty string or “Not Available”), 
as is common practice. 

Changes in indices can also cause expensive restructurings of 
existing tables.  By specializing segments with the set of supported 
indices, indices can be added and dropped without restructuring, 
and queries can still seamlessly cross segment boundaries.  The 
query plan will in general need to be specialized to the data segment 
– an access plan index available in segment 2 but not segment 1 is 
valid only for segment 2; a different plan is required for segment 1.  
Multiple access plans are supported by Tidalrace’s partition set 
processing, as described in Section 5.5. 

5. Optimizations 
The efficient functioning of Tidalrace relies on a collection of 
optimizations, which are enabled by the basic Tidalrace 
architecture.  We describe some of these optimizations in this 
section. 

5.1 Partition Reorganization 
Data warehouses that ingest real-time data feeds and archive them 
for long time windows face a tension in the methods used to store 
the data.  Fast updates are best served by write-optimized storage: 
row-oriented, small uncompressed partitions.  However the 
maintenance of a very large warehouse can be best served by read-
optimized or storage-optimized formats.  A technique that has been 
used is to transform the storage format of a data partition when 
enough time has passed that the data has become stable 
[14][27][37]. 

The use of file-oriented single-writer multi-version concurrency 
control (see Section 4) allows the reorganization of stable partitions 
to occur as a background task (a partition update conflicts with a 
partition reorganization, so the reorganized partition must be 
stable) with no impact on data loading or querying.  Data 
reorganization tasks can be scheduled as low-priority tasks that 
execute as time permits and during off-peak hours.  The types of 
table reorganization that can be performed include: 

• Partition merging.  Frequently updated tables are best 
served by small partitions to minimize partition 
rebuilding and index construction due to updates.  
However, opening many small partitions is inefficient for 
queries, and a very large number of partitions places a 
burden on the metadata database.  The space overhead of 



description tables (see Section 4.4) can be greatly 
reduced by merging stable partitions. 

• Column-oriented storage: While row-oriented storage 
allows for fast updates, column-oriented storage can offer 
many benefits, most notably reduced I/O cost when only 
a few of many fields are accessed, and the potential for 
aggressive compression.  

• Compression: While fast updates are best supported by 
uncompressed storage, stable older data partitions should 
be compressed to reduce storage and I/O transfer costs.  
Old archival data partitions which are infrequently 
queried can be aggressively compressed. 

• Storage hierarchy: New data is generally the most 
frequently accessed, and should be stored high in the 
memory hierarchy (RAM disk or SSD) while older data 
can be migrated to disk storage. 

5.2 Revision Partitions 
A key distinction between a DSMS and a data stream warehouse is 
the need to load and propagate late-arriving data [14].  The primary 
mechanism in Tidalrace and related systems [24] for dealing with 
late-arriving data is to recompute the affected partitions of derived 
tables.  However, partition recomputation can become prohibitively 
expensive for large tables which experience frequent late arrivals. 

A method for the efficient processing of late-arriving data was 
proposed for the Truviso system [24], which we call partition 
revisions.  The idea is to process and summarize updates to the 
source data, to allow query-time correction of stored partitions. 

With an abuse of notation, let D be a derived table defined by query 
Q over source(s) S, i.e. D=Q(S).  Suppose that there are programs 
P and R such that 

Q(S+∆S) = P(S,R(∆S)). 

Then alongside S we can store R(∆S) and combine S and R(∆S) 
using P at query time.  If R(∆S) is small and P is fast, then storing 
the revision R(∆S) is more efficient than recomputing D. 

When phrased in terms of table partitions, an anchor partition is a 
regular partition, computed using query Q.  A revision partition is 
computed using R.  In the metadata database, partition revisions 
inherit the anchor partition’s properties (e.g., timestamp range, 
source vector [22], etc.), but are marked as being revisions, and 
have their own generation metadata (see Section 4.3).  The 
collection of revisions to an anchor can be thought of as being 
chained to the anchor, as illustrated in Figure 6. 

Anchor
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Revision
Generation 6

Generation 6Generation 4Generation 3

Derived Table D

Anchor

Generation 5

Revision

Generation 6

Generation 7

Revision
Generation 7

Generation 4Generation 3

Source Table S

dep=5

dep=7

 
Figure 6.  Partition anchors and revisions 

In [24], the only tables that can have revision chains are aggregation 
tables which reference associative aggregates only.  The programs 
P and R are derived using the well-known sub-aggregate and super-
aggregate technique [28].  However, many defining queries have 
simple P and R programs – for example selection/projection 
queries.  In Section 4.2, we describe how updates to existing base 
table partitions use the revision technique.  Base tables are a 
projection view of the raw data: the program R is projection query 
Q and program P takes the union of the anchor and the revision. 

By representing updates to existing base table partitions using the 
anchor/revision technique, we represent the delta to the base table 
in a readily accessible form.  In Figure 6, the revisions in the source 
table S are explicitly tracked.  After the 5th update to D (creating 
the anchor with generation 5), the source S has two additional 
updates, creating revisions with generations 6 and 7, respectively.  
The next time that D is updated, the update protocol can observe 
from the anchor partition’s metadata that it has all data up to 
generation 5 of S.  The corresponding anchor partition of S has 
generation 5, but also has two revisions with generation 6 and 7.  
Instead of recomputing the anchor partition of D, we can compute 
a revision using program R on the generation 6 and generation 7 
revisions – creating a generation 6 revision to the anchor.  The 
anchor and its revision now contain data up to revision 7 of the 
source S.  This explicit representation of deltas allows up to chain 
the revision technique arbitrarily far up the derived table 
dependence DAG, subject only to the defining queries having 
suitable P and R programs. 

In addition to selection/projection and aggregation queries, we can 
define inexpensive P and R programs for the queries which 
maintain the valid-time description tables, and for outer-join 
queries in which the outer join is a foreign-key to primary-key join 
– which are commonly used to join event data to description data.  
In fact, the need to support incremental updates to description tables 
has been a major motivation for developing revision partitions in 
Tidalrace, given their prevalence in data stream warehouses. 

The need to maintain revisions and to apply program P at query 
time is an overhead which is acceptable for the active portion of a 
table, but can which can be eliminated for stable data.  Revision 
flattening is one of the partition reorganization programs we run as 
a maintenance procedure (see Section 5.1). 

5.3 Temporal Consistency 
In our development of data stream warehouses, we argue that one 
cannot expect to obtain a consistent “now” snapshot in time of the 
state of the system.  Ignoring data quality issues for the moment, 
one can only hope to obtain a snapshot view of the system up to 
sometime in the recent past. A major service of a data stream 
warehouse is to inform the users of what parts of the database (e.g. 
how recent) are suitable for their analyses.  Furthermore, some 
analyses need data which is more solid than others.  
Troubleshooting queries will generally demand the most recent 
data possible, while data mining queries generally require high-
quality time-synchronized data.  Alerting queries fall in between. 

In our discussions of warehouse maintenance procedures, we have 
often used phrases along the lines of, “when the partition is stable”, 
for example in the context of partition reorganization in Section 5.1.  
The system needs a mechanism for determining or imputing 
stability – meaning that a partition is not expected to be updated 
ever again.  The meaning of stability for data maintenance is related 
to the meaning of suitability of data for data mining. 

Some derived tables perform expensive computations to compute 
partition values – large-scale aggregation, data mining, etc.  It is 



generally desirable to wait until the source data is stable before 
triggering updates to partitions in expensive derived tables.  If the 
defining query does not have efficient P and R programs, one 
cannot use the partition revision technique (see Section 5.2), so the 
ad-hoc technique of “wait until 5 minutes after the hour to compute 
hourly summaries” still leads to frequent expensive computation 
due to late arriving source data. 

In a large scale data stream warehouse that ingests hundreds of 
distinct data feeds obtained from worldwide sources, no single rule 
can be applied to judge the stability of each of the data sources.  
Data streams tend to have individual periodicities (e.g. 5-minute 
measurements vs. daily dumps), different latencies (data arrives 1 
minute late vs. 1 hour late) and different degrees of disorder. 

Contrary to the first paragraph, many analyses cannot ignore issues 
of data quality, especially issues of data completeness.  In some 
cases one can estimate how much data should arrive during a time 
period, and mark a partition according to how complete the 
partition seems to be. 

Determining stability and completeness at a base partition can be 
challenging; determining stability and completeness at derived 
table partitions computed from correlations over many tables is far 
more challenging.  We have previously published a framework for 
tracking and imputing temporal consistency [17], which we 
summarize here. 

In a data streaming system, punctuations [41] are used to track 
progress and enable out-of-order processing [29].  Our mechanism 
for tracking temporal consistency adapts punctuations to a data 
stream warehouse setting.  Instead of applying to the stream as a 
whole, we annotate partitions with consistency markers.  A simple 
collection of consistency markers is 

• Open : source data exists for the partition. 
• Closed : no new data will arrive for the partition. 
• Complete : Closed, and all expected data has arrived. 

Consistency markers are assigned to base table partitions based on 
imputation rules which must be tailored for the base table.  This 
simple collection of markers has simple imputation rules for 
derived table partitions: Open if some source is Open, Closed 
(Complete) if all sources are Closed (Complete). 

A far richer collection of markers is generally required.  For 
example one might define WeaklyClosed and StronglyClosed 
markers to support different types of users.  Our previous work [17] 
has more details on the topic. 

Tidalrace metadata about partitions includes the collection of 
temporal consistency markers.  We are currently engaged in 
researching imputation rules at the base tables using the data 
streams we ingest. 

Our experiments with loading live data, as discussed in Section 7, 
provide an insight into data latencies and determining when base 
table partitions can be labeled as closed.  In Figure 7 and Figure 8, 
we show the range of timestamps associated with data in the 
Darkstar and edge network performance data, respectively (these 
data feeds are discussed in greater detail in Section 7) .  Each 
package in the Darkstar feed is supposed to represent a 300 second 
range, however the minimum time range in the packages is 352 
seconds.  For the edge network data, each package is supposed to 
represent a 60 second range, but the minimum time range in the 
packages is 166 seconds.  Correspondingly, each partition in the 
Darkstar table has 1.1 revisions while each partition in the edge 
table has 3.45 revisions (See Section 5.2 for a discussion of 
partition revisions). 

 
Figure 7.  Time ranges for Darkstar network performance 

data. 

 
Figure 8.  Time ranges for edge network performance data. 

However, for determining when a partition can be labeled closed, 
the edge network data is far better behaved than the Darkstar data.  
The 99th percentile of the package time range of the edge data is 
600 seconds; the maximum is 601 seconds.  Therefore we can infer 
that a partition can be marked as closed if it represents data 600 
seconds older than the most recent.  The median package range of 
the bps data is 397 seconds, but the 99th percentile is 973 seconds 
and the maximum is 2196 seconds.  Therefore we can infer that data 
that is 973 seconds older than the most recent can be marked as 
closed with a 99% certainty. 

5.4 Distributed Storage and Queries 
Tidalrace can make use of either local or distributed storage for its 
data and index files, as discussed in Sections 4 and 6.  The 
distributes storage only needs a put/get interface, and can use a file 
system such as HDFS which distributes the blocks of a file across 
the cluster, or one such as Amazon Dynamo [8] that stores files on 
specific servers. 

When a user submits a query, data partitions can be fetched from 
the distributed file system and cached in a local file system for local 
evaluation, as is done for HDFS.  However, one can observe that a 
distributed query system can be made more efficient by shipping 
subqueries to the servers that contain the data partitions, which 
return query results that are combined for the return result.  For 
example, an aggregation query can be broken into subaggregate 
queries sent to the remote servers, with a superaggregate query 
combining the results.   

Join-free queries can be efficiently implemented using remote 
subqueries, but join queries still require data transfers to bring 
together records correlated from different range variables.  We can 
make two observations.  First, in a data warehousing system, a large 
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amount of the query workload is generated by the queries used to 
update derived tables.  This workload is (relatively) constant, and 
can be analyzed and used to optimize update performance [11] – in 
particular, which tables are often joined together.  Additional 
information can be collected from query logs.  Second, we have 
observed that joins are almost always band joins; data from similar 
time periods are usually more relevant than data from distant time 
periods. 

Since data from similar time periods tends to be correlated with 
each other, one natural way to distribute data is by hashing on the 
timestamp of the data.  For example, data with a timestamp in [1:00, 
1:05) is assigned to servers 1, 6, and 11; [1:05, 1:10) to server 2, 6, 
and 12, and so on.  However, this assignment scheme concentrates 
work on a few servers during their active time period.  Other issues 
arise: different data sets have different natural periodicities and 
partition sizes.  A high volume event data stream of e.g. web clicks 
might be best partitioned into 1-minute segments, while a stream of 
15-minute measurements has a natural periodicity of 15 minutes. 

We can make use of co-location schemes to co-locate oft-joined 
data.  A co-location scheme is a combination of an identifier (e.g 
XYZ), and a sequence number for the identifier; so XYZ(5) is the 
5th instance of co-location scheme XYZ.  For every table T that uses 
co-location scheme XYZ, there is a mapping from sequence 
number s to a timestamp range [tlo, thi).  This mapping is generally 
a function of the form tlo(s) = a*s+b, with a corresponding 
function for thi.  A co-location identifier is used the key to hash to 
a collection of storage servers.  If a partition with timestamp range 
[plo, phi) overlaps the timestamp range of its co-location scheme 
with sequence number s, the partition is stored at the corresponding 
set of servers. 

A table can be associated with multiple co-location schemes, which 
increases its degree of replication but also its availability for local 
joins.  We are developing co-location scheme optimization 
algorithms as part of our on-going research [13].  Related projects 
include CoHadoop [10], which co-located HDFS-resident data; 
however it does not have the mechanism of co-location schemes. 

5.5 Partition-wise Optimization 
As we have discussed, joins in a data stream warehouse are almost 
always band joins on the table’s timestamp.  Since the primary 
partitioning dimension is on the timestamp, a natural way to process 
queries is to partition the work to be done on the table timestamps.  
This type of partitioning fits naturally with data distribution 
through co-location schemes, and with the variant processing that 
can be required by table segments (Section 4.5). 

Suppose that query Q joins tables T1 through Tn.  A partition set is 
a collection of partitions PS = ({P1},…,{P n}), where Pi is a set of 
partitions of table Ti.  The partitions in a partition set are joined in 
one unit of processing.  If the join has partition sets (PS1, … PSj), 
the result of the join is the union of the individual partition set joins. 

Suppose that the optimizer has determined a left-deep join order, 
e.g. T1, …, Tn.  Suppose further that the optimizer has analyzed the 
band-join predicates in the query to compute a collection of 
bounding functions between the timestamps of each table (e.g. 
similar to the bounding functions in 4.3).  A collection of partition 
sets can be found by  

1. Determining the collection of partitions referenced in T1, 
P1. 

2. Divide P1 into {P1,1,…,P1,m). 
3. For each j from 1 though m 

a. For each Tk from k=2 through n 

i. Use the bounding functions from Tk to T1 .. Tk-1 
to determine timestamp band for Tk, and 
therefore Pj,k 

There are a variety of interactions between the optimizer and the 
selection of partition sets – duplicate access to partitions, 
minimizing memory use of hash tables, etc.  Recent work on 
incorporating horizontal partitioning into a cost based optimizer 
includes [20]. 

6. Storage Manager 
The Tidalrace storage manager, D3SM, provides an insulating layer 
between the query system and the actual data storage.  A data 
partition might be in local or distributed storage; might be stored in 
a row-oriented or a column-oriented format, and might be 
compressed.  The D3SM API requires that the query system specify 
the fields and indices to be accessed, the storage type (local or 
distributed) and the record layout (row-oriented or column-
oriented).  D3SM will fetch and cache (in the case of distributed 
storage) and open the requisite files and thereafter present a 
uniform API for index and record access.  By requiring that the 
fields and indices be specified before partition access time, D3SM 
can fetch and open a minimum number of files. 

Our metadata database allows us to store a partition in multiple 
locations; each copy of the partition can use a different storage 
system (e.g., local vs. distributed), and different storage properties 
(e.g. row-oriented vs. column oriented).  This feature allows for 
considerable flexibility in configuring a large distributed 
warehouse.  For example, a server can load and store data locally 
for fast access, as well as publish the data on a distributed file 
system. 

7. Implementation Status 
We have implemented a prototype version of Tidalrace with initial 
versions of the features described in this paper, except for remote 
query execution.  Preliminary performance results are 
encouraging:: data loading at 100k+ records per second per thread, 
and aggregation at 500k records per second per thread. 

We are evaluating Tidalrace by using it to build two different data 
stream warehouses.  With the first stream warehouse, we are 
evaluating Tidalrace for use with the Darkstar [23] data warehouse.  
This large-scale warehouse is built on a cluster using HDFS for 
distributed storage.  We chose to focus on two sources that were 
difficult to load into DataDepot.  The first stream delivers about 2.5 
million records every 5 minutes, related to internal network 
measurements.  The second delivers a stream of Syslog messages 
from network elements, delivering about 13,000 records every 
minute. 

Both of these raw data sources need to be correlated with 
description tables describing the network configuration.  The 
network measurements stream joins against two description tables 
to provide context for the measurements (similar to the scenario 
described in Section 4.4). The Syslog table joins against a 
description table for data repair: some records have missing server 
names, so they are filled in by a lookup in the description table.  Of 
the three description tables, two are sourced by daily snapshots of 
an authoritative table, and one is source by daily snapshots and a 
stream of incremental updates. 

The second stream warehouse processes high-speed network 
measurements at the edge of the network.  These measurements are 
used to compute Key Performance Indicators (KPIs) to be used in 
Darkstar, as well as other systems.  Because the stream warehouses 
must be situated near the networking equipment, we are restricted 



to using a small 2U server and local storage for developing the 
warehouse.  The data is delivered in four streams with one package 
delivered per minute per stream.  On average, 740,000 records are 
delivered per minute with peaks to 2.4 million records per minute. 

Tidalrace performance is sufficient to load these data streams with 
plenty of spare capacity.  In the experimental Darkstar cluster, the 
network measurement data is loaded at a rate of 80,000 records per 
second per thread.  This measurement includes the time to build one 
index and to transfer the data and index to HDFS (on a local file 
system, the load rate is 110,000 records per second per thread). The 
Syslog records are loaded at a rate of 5000 records per second per 
thread – this low rate reflects a high cost to extract the records from 
their source.  In the edge network warehouse, each stream is loaded 
at a rate of 25,000 records per second per thread.   

We built derived tables in both warehouses.  In the Darkstar 
warehouse, we defined a derived Syslog table that performs data 
repair by using a join against a description table.  This table updates 
at a rate of 70,000 records per second per thread, including the time 
to build 4 indices and move the data and indices to HDFS.  In the 
edge network warehouse, we build a derived table that performs 
feature extraction and aggregation.  This table updates at a rate of 
500,000 records per second per thread, including the cost to build 
one index. 

8. Conclusions 
We are developing Tidalrace, a next-generation data stream 
warehousing system.   Our efforts in data stream warehousing were 
driven by the need to develop a highly responsive data system to 
support real-time network monitoring for applications ranging from 
service quality management to network security to long-term 
networking research. 

Data stream warehousing provides real-time data loading as well as 
long data histories and deep analytics.   Real-world data provides 
many challenges: late-arriving data, highly heterogeneous data 
arrival patterns and latencies, frequent changes in data schemas.  To 
address these challenges, we have been performing research into 
data stream warehousing technologies.  These techniques include 
streaming description tables (Section 4.4), update propagation 
(Section 4.3), schema change (Section 4.5), temporal consistency 
(Section 5.3), incremental updates (Section 5.2), partition 
reorganization (Section 5.1), partition co-location (Section 5.4) and 
partition-wise query planning and optimization (Section 5.5).  We 
launched the Tidalrace project to have a clean slate in which to 
implement these new techniques. 

Data stream warehousing presents many interesting challenges that 
are open research areas: real-time scheduling, data quality, 
temporal consistency, and query optimization are a few.  One 
motivation of developing Tidalrace as a new system is to have a 
platform with which to explore these research areas. 
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