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Abstract 

While there are known performance trade-offs 

between database page buffer pool and query 

execution memory allocation policies, little has 

been written on the impact of query compilation 

memory use on overall throughput of the 

database management system (DBMS).  We 

present a new aspect of the query optimization 

problem and discuss a solution implemented in 

Microsoft SQL Server 2005.  The solution 

provides stable throughput for a range of 

workloads even when memory requests outstrip 

the ability of the hardware to service those 

requests. 

1. Introduction 

Memory Management is a critical component of DBMS 

performance.  In modern systems, memory trade-offs are 

far more complex than the classic problems of database 

page buffer management or reserving memory for hashes 

and sorts during query execution [5].  Current systems use 

more ad-hoc queries that make query compilation 

memory more important in memory reservation policies.  

Furthermore, these ad-hoc deployments make it harder to 

provision hardware, and thus they are more often run at or 

beyond the capabilities of the underlying hardware. This 

requires intelligent trade-offs among other memory 

consumers in a DBMS, as every byte consumed in query 

compilation, query plan caches, or other components 

effectively reduces the available memory for caching data 

pages or executing queries.  As DBMS become more 

complex, it becomes harder to reason about the impact of 

memory use on overall throughput effectively. 

 

 

In our research we identified compile-intensive ad-hoc 

workloads that consume enough memory in query 

compilation to disturb the traditional memory 

consumption trade-offs between a database page buffer 

pool and query execution.  For these scenarios, overall 

system throughput was significantly reduced due to 

memory thrashing among components.  Oftentimes, the 

queries in question required so much memory to perform 

compilation that other components were effectively 

starved and no other work could proceed.  Even if the 

system has enough memory to service multiple 

simultaneous query compilations, allowing all of them to 

occur at the same time might not maximize throughput. 

Excessive concurrent compilation memory usage steals a 

significant number of pages from the database page buffer 

pool and causes increased physical I/O, reduces memory 

for efficient query execution, and causes excessive 

eviction of compiled plans from the plan cache (forcing 

additional compilation CPU load in the future). The 

interplay of these memory consumers is complex and has 

not been adequately studied. 

 

In this paper we present a solution to the above problem 

by providing a robust query compilation planning 

mechanism that handles diverse classes of workloads, 

prevents memory starvation due to many concurrent query 

compilations, and dynamically adjusts the load to make 

intelligent memory trade-offs for multiple DBMS 

subcomponents that improve overall system reliability 

and throughput.  This solution has been implemented and 

tested against Microsoft SQL Server 2005 and is part of 

the final product. 

2.   Memory Influence on Performance 

While a number of papers have addressed trade-offs 

between buffer and query execution memory ([2], [5]), no 

work has covered the impact of memory consumption 

from query compilation on system throughput. In this 

paper, we demonstrate that query compilation can impact 

system performance through its memory consumption for 
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large workloads and that steps can be taken to mitigate the 

negative impacts of memory starvation on system 

throughput.  As many DBMS installations run on 

dedicated hardware, the rest of this paper will assume, for 

simplicity, that almost all physical memory is available to 

the DBMS and that it is the only significant memory-

consuming process being run on the hardware. 

2.1   DBMS Subcomponent Memory Use 

Multiple subcomponents in a DBMS consume memory as 

part of normal operations.  In addition to the obvious 

consumers of memory such as buffer pools and query 

execution memory, modern DBMS have multiple kinds of 

caches and very complex queries that are difficult to 

optimize.  As the number of memory-consuming 

subcomponents within a DBMS has increased over time, 

the policies used to manage their interactions can be 

difficult to tune.  For example, if a new query attempts to 

allocate memory to execute, it may need to steal memory 

from another subcomponent.  Such subcomponents might 

be the buffer pool, the compiled plan cache, or other 

caches (such as over metadata or cached security tokens).  

Since a server DBMS is often under memory pressure, 

these implementation policy choices can significantly 

impact overall system performance.  

 

Within a DBMS, it is possible for a subcomponent to 

respond to memory pressure by releasing unneeded or 

“less valuable” memory.  Caches can often be freed and 

repopulated later, and buffer pool memory works 

similarly.  However, other subcomponents may or may 

not be architected to quickly respond to memory pressure.  

When such approaches are insufficient to meet memory 

needs, the server reaches a “memory deadlock”, and some 

user operation is terminated to reduce memory pressure 

and allow others to proceed.  Each DBMS subcomponent 

uses memory differently, and this can impact the 

heuristics and policies required to maximize overall 

performance.  For example, a database page buffer pool 

caches disk pages for more efficient access to data.  The 

buffer pool would prefer to consume all available free 

memory that is not in use elsewhere to cache pages, as 

this has the potential to save future disk I/O costs.  Query 

execution uses memory to speed sorts, spools, and hash 

operations.  This component can often reserve memory at 

the start of a query execution for its operations, spilling to 

disk if its reservation is too small.  Modern DBMS also 

can have a number of caches for compiled plans, and the 

size of each of these caches must be valued against the 

use of that memory for caching data pages or improving 

query execution performance.  Often, the local code for 

memory allocation in each subcomponent is not written to 

be aware that memory will likely come from another 

subcomponent or to recognize the value of that memory 

use compared to the current memory request.  Poor 

consideration of the value of the memory utilized in each 

subcomponent can cause a heavily-loaded system to 

become unbalanced and perform sub-optimally. 

 

Query compilation (and, more specifically, query 

optimization) consumes memory differently than other 

DBMS subcomponents.  Many modern optimizers 

consider a number of functionally equivalent alternatives 

and choose the final plan based on an estimated cost 

function. This process uses memory to store the different 

alternatives for the duration of optimization.  Some 

optimizers contain memory-saving structures (such as the 

Memo in the Cascades Framework [4] used in Microsoft 

SQL Server) to detect duplicates and avoid exploring any 

portion of the query plan space more than once.  Even 

with such structures, the memory consumed during 

optimization is closely related to the number of 

considered alternatives.  For an arbitrary query, the total 

memory consumed during optimization may be large and 

hard to predict.  This makes it difficult to understand 

memory consumption performance trade-offs in relation 

to other DBMS subcomponents.  While work has been 

done on dynamic query optimization, where the number 

of considered alternatives (and thus the amount of 

memory consumed) is related to the estimated cost 

function for the query, no work, to our knowledge, has 

been done on the value of consuming more memory 

optimizing a query in a memory-constrained workload. 

2.2   DBMS Design vs. System Throughput 

Modern x86-based systems have 32-bit address spaces, 

and this poses limits on the available size of the memory 

available to a DBMS when implemented within a single 

process.  The common-case on the Windows 2003 Server 

operating system limits a process to 2GB of virtual 

address space (3GB is possible with restrictions).  Of this, 

roughly a quarter is needed for process-management tasks 

such as thread stacks, mapping DLLs into the process, etc.  

While techniques ([8]) exist to allow some 

subcomponents, such as the buffer pool, to remap pages in 

and out of the address space, this is generally difficult to 

use for complex structures with pointers.  In effect, this 

places a practical limit for a server process about 1.5GB 

of memory. 

 

The combination of limited memory/virtual address space 

and a diverse set of memory consumers poses challenges 

to the DBMS implementer when trying to guarantee good 

system throughput
1
.  A naïve approach of placing caps on 

                                                           
1  In DBMS where separate processes are used for each 

subcomponent, memory trade-off choices between/among 

components are just being performed by the operating system 

instead of the DBMS implementer.  While we have not 

performed experiments on such a configuration, we expect 

that there would be opportunities to improve performance if 

hints or other techniques were used to influence the operating 

system scheduling/page allocation decisions. 
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each memory subcomponent to avoid memory starvation 

does not always work due to the varied nature of 

workloads and the inability of the system to plan for work 

in the future without additional guidance from the user.  

As an example, if one limits the amount of memory any 

single query can use to execute to 50% of the total 

available memory, then no single query can monopolize 

all system resources for a long period of time.  

Unfortunately, if the workload only consists of one single, 

long-running query, the system does not perform as well 

as it might if that query could consume all memory during 

its execution. 

 

Even within a subcomponent, memory allocation policies 

can be difficult to tune to achieve system stability.  For 

example, if many large queries are compiling 

simultaneously, each compilation can consume a 

significant fraction of system memory.  Two query 

compilations can deadlock each other if both are waiting 

for memory consumed by another compilation.  Even if 

the system aborts most of these queries to allow a few to 

complete, those aborted queries may be resubmitted to the 

system by client code. 

 

A central controlling mechanism is necessary to ensure 

that the overall system will perform well and be stable in 

all situations.  Making proper decisions to receive, 

evaluate, and arbitrate requests for memory amongst 

multiple consumers can improve system stability and 

increase throughput, even when the system is running at 

or beyond the capabilities of the hardware.  This approach 

is described in more detail in the following section. 

3.   Memory Broker 

SQL Server 2005 uses a “Memory Broker” to manage the 

physical memory allocated to DBMS subcomponents.  

The broker accounts for the memory allocated by each 

subcomponent, recognizes trends in allocation patterns, 

and provides the mechanisms to enforce policies for 

resolving contention both within and among 

subcomponents.  This subcomponent enables a DBMS to 

make better global decisions about how to manage 

memory and ultimately achieve improved throughput.  

The details of the Memory Broker are beyond the scope 

of this paper, but we provide an overview of the 

component to place the rest of our solution in context for 

the reader. 

 

The Memory Broker monitors the total memory usage of 

each subcomponent and predicts future memory usage by 

identifying trends.  If the system is not using all available 

physical memory, no action is taken and the system 

behaves as if the Memory Broker were not there.  If the 

future memory total is expected to exceed the available 

physical memory, the broker predicts the actual amount of 

physical memory that the subcomponent should be able to 

allocate (accounting for requests from other 

subcomponents). The broker also sends notifications to 

each subcomponent with its predicted and target memory 

numbers and informs that subcomponent whether it can 

continue to consume memory, whether it can safely 

allocate at its current rate, or whether it needs to release 

memory.  The computation of target memory amounts and 

the notification of each subcomponent can happen several 

times a second.  In our implementation, the overhead of 

this mechanism is extremely small.  It is still possible to 

have out-of-memory errors if many subcomponents 

attempt to grow simultaneously.  The system relies on the 

ability of various subcomponents to make intelligent 

decisions about the value of optional memory allocations, 

free unneeded or low-value memory, and reduce the rate 

of memory allocations over time. 

 

The Memory Broker provides an indirect communication 

channel for one subcomponent to learn about the overall 

memory pressure on the system. It also helps to mitigate 

“wild” swings in subcomponent memory allocations and 

tends to make the overall DBMS behave more reliably by 

reducing probability of aborting long-running operations 

such as compiling and/or executing a query. 

 

DBMS subcomponents impose different requirements on 

a memory subsystem through their usage patterns that can 

impact how the Memory Broker operates. For example, 

the database page buffer pool contains data pages that 

have been loaded from disk.  Replacement policies can be 

used to remove older pages to load currently needed 

pages, but they can also be used to enable the buffer pool 

to identify candidates necessary to shrink its size.  The 

value of each page in memory is a function of the simple 

replacement cost (i.e. a random I/O to re-read the page) 

plus some value based on the probability that this page 

will be used again in the near future.  Other caches can 

support shrinking using the same technique.  

 

The memory consumed during query execution is usually 

predictable since many of the largest allocations can be 

made using early, high-level decisions at the start of the 

execution of a query.  For example, the size of a hash 

table can often be predicted based on by-products of the 

cardinality estimates used in a cost-based optimization 

process, and this memory can be allocated once for the 

whole hash table at the start of a query execution.  Unlike 

caches, however, the execution of queries may require 

that memory be allocated for the duration of the query.  

Therefore, the subcomponent may be less capable to 

respond to memory pressure from a Memory Broker at 

any specific time.  However, it can potentially respond to 

memory pressure based on the shape of the query and the 

relative position of the operators being executed.  A 

“stop-and-go” operator (where all input rows are 

consumed before output rows are returned), such as a sort, 

can be used to identify sections of a query plan that are 

277



not needed after the sort is materialized.  Often memory 

allocations for a query execution are batched to avoid the 

overhead of many, small allocation and deallocation calls, 

so there is a trade-off that must be made to find the right 

balance between returning memory to the system early or 

efficiently.  Optional caches and spools in a query plan is 

another area where dynamic memory choices could be 

made based on memory load.  These operators can be 

written to make them use memory dynamically based on 

what is available to the system at the time that they are 

run.  Other techniques, such as queuing execution 

requests until memory can be reserved, can also be used 

to limit the rates at which memory is consumed by this 

subcomponent.  The introduction of memory 

subcomponent prediction, memory targets, and 

notifications enable subcomponents to react to memory 

pressure dynamically and proactively before out-of-

memory conditions are required. 

 

Query compilation also uses memory in ways interesting 

to a Memory Broker component, and this is discussed in 

detail in the next section. 

4. Query Compilation Throttling 

Query compilation consumes memory as a function of 

both the size of the query tree structure and number of 

alternatives considered.  Beyond dynamic optimization, 

which has traditionally been based on estimated query 

runtime and not memory needs, there are no published 

techniques to avoid memory use during query compilation 

for standard approaches. 

 

Our analysis of actual compile-intensive workloads 

showed that high memory consumption is typically 

caused by several medium/large concurrent ad hoc 

compilations in a workload instead of one or few very 

large queries.  This makes intuitive sense, as DBMS users 

probably realize when they are writing a large query and 

may take steps to isolate it.  Many smaller queries pose a 

more significant challenge, as each query appears 

reasonable to the author. While it may not be easy (or 

desirable) to modify the main optimization algorithm to 

account for memory pressure, it is possible to change the 

rate at which concurrent optimizations proceed to respond 

to memory pressure. In this section, we describe a query 

compilation planning mechanism that handles multiple 

classes of workload goals, dynamically adjusts to system 

memory pressure, and interacts with the dynamic 

programming algorithms used in many modern optimizers 

to make intelligent decisions about memory use during 

the compilation process.  This system improves overall 

system throughput and reduces resource errors returned to 

clients when the system is under memory pressure. 

4.1   Solution Overview 

We propose a query compilation throttling solution that 

responds to memory pressure by changing the rate at 

which compilations proceed.  If we assume that memory 

use roughly grows with compilation time, throttling at 

least some compilations restricts the overall memory 

usage by the query optimization subcomponent and can 

improve the system throughput.  Blocked compilations 

wait for resources to become available before continuing.  

If the compilation of a query remains blocked for an 

excessively long period of time, its transaction is aborted 

with a “timeout” error returned to the client.  Properly 

tuned, this approach allows the DBMS implementer to 

achieve a balance between out-of-memory errors and 

throttle-induced timeouts for a variety of workloads.  Our 

approach gives preference to compilations that have made 

the most progress and avoids many cases where a 

compilation is aborted after completing most, but not all, 

of the compilation process. 

 
Figure 1 Memory Monitors 
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Blocking is implemented through a series of monitors that 

are acquired during compilation.  The blocking is tied to 

the amount of memory allocated by the task instead of 

specific points during the query compilation process.  As 

different optimization alternatives and techniques may 

consume different amounts of memory, this approach 

handles both differing optimization techniques and 

remains stable as code changes over multiple software 

releases. This provides a more robust mechanism to 

control the impact of compilation on overall system 

memory load over a wide variety of schema designs and 

workload categories.  These monitors contain 

progressively higher memory thresholds and 

progressively lower limits on the number of allowed 

concurrent compilations as illustrated in Figure 1.  The 

monitors are acquired sequentially by a compilation as 

memory usage for that task increases and are released in 

reverse order if memory use decreases during compilation 

or at the end of the compilation process.  If memory is not 
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available at the time of acquisition, the compilation 

process is blocked until memory becomes available when 

other compilations, executions, or memory requests 

elsewhere in the system are completed.  A timeout 

mechanism is used (with increasing timeouts for later 

monitors) to return an error to the user if the system is so 

overloaded that a compilation does not make any progress 

for a long period of time.  

 

Restraining compilations effectively avoids some cases 

where many simultaneous compilations consume a 

disproportionately high fraction of the available physical 

memory.  Since memory is a scarce resource, preserving 

some fraction of it for use by the database page buffer 

pool and query execution allows these components to 

more efficiently perform their functions.  Blocking some 

queries can reduce the need for other subcomponents to 

return memory from caches if many large, concurrent 

compilations occur.  This can spread memory use over 

time instead of requiring other subcomponents to release 

memory.  The intended goals of this approach are to 

improve maximum throughput and to enable that 

throughput to work for larger client loads on the system, 

as outlined in Figure 2. 

 
Figure 2 Expected Throttling Results 
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Our implementation uses three monitors. Experimental 

analysis showed that dividing query compilations into 

four memory usage categories balanced the need to 

handle different classes of workloads and limiting the 

compilation time overhead of the mechanism.  Query 

compilations that consume less memory than the first 

monitor threshold proceed unblocked. The first threshold 

is configured differently for each supported platform 

architecture to allow a series of small diagnostic queries 

to proceed without acquisition of the first (smallest) 

monitor.  This enables an administrator to run diagnostic 

queries even if the system is overloaded with queries 

consuming every available „slot‟ in the memory monitors.  

The first monitor allows four concurrent compilations per 

CPU and is used to govern “small” queries. Typically, 

most OLTP-class queries would fall into this category.  

The second monitor is required for larger queries, 

allowing one per CPU.  Many TPC-H queries [6], which 

require the consideration of many alternatives, would be 

in this category.  The final governs the largest queries and 

allows only one at a time to proceed.  This class of query 

uses a sizable fraction of total available memory on the 

system. The largest memory-consuming queries are 

serialized to avoid starvation of other subcomponents and 

allow the query to complete compilation.  This approach 

allows us to restrict compilation, in most cases, to a 

reasonable faction of total memory and allow other 

subcomponents to acquire memory. 

 
Figure 3 Compilation Throttling Example 
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Figure 3 contains a simplified example to describe how 

query compilation throttling might work in practice.  In 

this example, Q1 and Q2 start compiling at approximately 

the same time.  However, Q1 consumes memory at a 

faster rate than Q2.  This could occur if the query was 

larger, the tables contained more complex schemas, or 

perhaps that thread of control received more time to 

execute.  Q1 then blocks at the first monitor, as denoted 

by the first flat portion of the graph of Q1‟s memory use.  

This occurred because other queries (not shown in the 

example) were consuming enough resources to induce 

throttling.  Once enough memory is available, Q1 

continues, blocks again at the next monitor, eventually is 

allowed to continue, and finally finishes compilation.  At 

the end of compilation, memory used in the process is 

freed and the query plan is ready for execution.  Q2 

executes in a similar manner.  It waits much longer to 

acquire the first monitor (meaning that the system is under 

more memory pressure or that other compilations are 

concurrently executing and using memory).  Q2 finishes 

and frees memory, but it did not require as much memory 

as Q1 to compile.  In this example, Q3 is actually blocked 

by Q2 and only proceeds once Q2 is finished and releases 

its resources.  From the perspective of the subcomponent 

author, the only perceptible difference in this process 

from a traditional, unblocked system is that the thread 

sometimes receives less time for its work.  The individual 

thread scheduling choices are made by the system based 

on global goals that effectively prioritize earlier over later 

compiles when making scheduling (and thus allocation) 

decisions. 
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4.2  Extensions 

We have extended this approach with two novel 

extensions.  First, we have made the monitor memory 

thresholds for the larger gateways dynamic.  In our 

experiments, some customer workloads perform best with 

different gateway values.  In other words, the relative 

balance of optimal subcomponent memory use is not 

constant across all workloads.  For example, one 

workload may use a fixed set of queries that rarely need to 

be compiled, while another workload may only use 

dynamic, ad-hoc SQL statements.  The impact from these 

workloads on compilation memory would be very 

different.   

 

Our solution acts upon this realization by leveraging the 

reported “target” memory consumption level for the query 

subcomponent.  This target is the desired allocation level 

reported by the broker to each subcomponent, and it is a 

reflection of the memory usage activity of each 

subcomponent over time.  This allows the query sub-

system to throttle compilation memory more aggressively 

when other subcomponents are heavily using memory, 

making the system even more responsive to memory 

pressure.  The thresholds are computed attempting to 

divide the overall query compilation target memory across 

the categories identified by the monitors. For example, the 

second monitor threshold is computed as [target] * F / S, 

where F and S are respectively the fraction of the target 

allotted to and the current number of small query 

compilations. In other words, small queries together can 

consume up the F fraction of the target, after which the 

top memory consumers are forced to upgrade to the 

medium category. The values of the F fractions were 

identified with a long process of tuning and 

experimentation against several actual workloads.  

Dynamic adjustment of the monitor thresholds gives 

additional ability to control memory during query 

compilation.  

 

Another extension to our solution leverages the 

notification mechanisms to determine that the system will 

likely run out of memory before an individual compilation 

completes.  When this happens, we can return the best 

plan from the set of already explored plans instead of 

simply returning out-of-memory errors.  As not all query 

plans are efficient, we reserve this approach to very 

expensive queries that consume a relatively large fraction 

of total available memory during compilation.  While 

there is no strict guarantee that picking a sub-optimal plan 

will be better than an out-of-memory error for a large 

query, in practice we found that this often would improve 

overall throughput.  By restricting this to late in the 

optimization process, it is more likely that at least one 

reasonable plan has been found already because most of 

the search space has been explored.  Additionally, modern 

dynamic optimizers may place more speculative 

optimization alternatives late in the process, so skipping 

these may not hurt average query plan quality. 

 

Both techniques allow the system to better handle low-

memory conditions. 

5. Experimental Results 

Standard database benchmarks (TPC-H, TPC-C [6]) 

contain queries with moderate or small memory 

requirements to compile.  Large decision support systems 

run queries with much higher complexity and resource 

requirements. To evaluate our solution, we developed a 

performance benchmark based on a product sales analysis 

application created by a SQL Server 2005 customer. For 

the purposes of this paper, we will refer to that benchmark 

as the SALES benchmark. 

5.1   SALES Benchmark 

The SALES application is a Decision Support System 

(DSS) which uses a large data warehouse to store data 

from product sales across the world. This application 

submits almost exclusively ad-hoc queries over 

significant fractions of the data.  Many users can submit 

queries simultaneously.  The customer runs a number of 

large-CPU systems over read-only copies of their 

database at or near capacity to handle their user query 

load due to their unpredictable, ad-hoc workload. 

 

The SALES benchmark uses a somewhat typical data 

warehouse schema, meaning that it has a large fact table 

and a number of smaller dimension tables. The largest 

fact table from the database contains over 400 million 

rows.  An “average” query in this benchmark contains 

between 15 and 20 joins and computes aggregate(s) on the 

join results.  As a comparison, TPC-H queries contain 

between 0 and 8 joins with similar numbers of indexes per 

table.  The data mart in our experiments contains a 

snapshot of the data from the customer‟s application and 

is 524 GB in size. 

 

We executed this benchmark against SQL Server 2005.  It 

features dynamic optimization, meaning that the time 

spent optimizing a query is a function of the estimated 

cost of the query.  Therefore, more expensive queries 

receive more optimization time.  In our experiments, the 

queries in the SALES benchmark use one to two orders of 

magnitude more memory than TPC-H queries of similar 

scale. 

 

Our benchmark models the basic functionality of the 

application and contains 10 complex queries that are 

representative of the workload.  To simulate the large 

number of unique query compilations, our load generator 

modifies each base query before it is submitted to the 

database server to make it appear unique [7] and to defeat 

plan-caching features in the DBMS.   
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This is an example of a typical query tree in the SALES 

Benchmark: 

 
Figure 4 Typical SALES Query Tree 
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In the benchmark, we define a limit for the response time 

of each query based on the original customer 

requirements. Benchmark runs which violate these 

response time limits are considered invalid. 

5.2   Execution Environment/Results 

We execute the SALES benchmark using a custom load 

generator which simulates a number of concurrent 

database users who submit queries to the database server. 

For these experiments, we use a server with 8 Intel Xeon 

(32-bit) 700 MHz x86-based processors and 4GB of main 

memory. The server is using 8 SCSI-II 72GB disks 

configured in as a single RAID-0 drive array on a 2-

channel, 160 MB/channel Ultra3/Ultra2 SCSI controller.  

The software on the machine is Microsoft Windows 2003 

Enterprise Edition SP 1 and Microsoft SQL Server 2005.  

This system is a typical medium server installation and 

should reasonably reflect the hardware on which scaling 

problems are currently being seen in DBMS installations 

today. 

 

Queries in this benchmark generally compile for 10-90 

seconds and execute for 30 seconds to 10 minutes.  In 

each subcomponent, these queries consume nontrivial 

amounts of memory to compile and execute.  They also 

access large fractions of the database and thus put 

pressure on the database page buffer pool.  Therefore, 

these subcomponents are actively competing for memory 

during the execution of this benchmark. Failed queries are 

retried up to 15 times by the client application to mimic 

the customer behavior.  The probability that a query will 

be aborted due to memory shortages is high, and the cost 

of each failure is also high (as the work will be retried).  

This places a high value on biasing resource use towards 

those operations likely to succeed on the first attempt.  

 

Our experiments measure the throughput and reliability of 

the DBMS while running both at and beyond the 

capabilities of the hardware.  “Throughput” in this context 

means the number of queries successfully completed per 

unit of time.  Through experimentation, we determined 

that this benchmark produces maximum throughput with 

30 clients on this hardware configuration. Throughput is 

reduced with fewer users. Increasing the number of users 

beyond 30 saturates the server and causes some 

operations to fail due to resource limitations.  To measure 

the effect of running the system under memory pressure, 

we performed experiments using 30, 35, and 40 clients.   

 

The benchmark imposes extreme loads on the server, and 

it takes some time for the various structures in each 

subcomponent to warm up and become stable enough to 

measure results.  The results presented in this section do 

not include this warm-up period and the data starts at an 

intermediate time index.  There is some fluctuation in the 

numbers reported because of the different sizes of the 

queries being executed and the non-deterministic 

interplay of a number of different clients attempting to 

proceed at once in a complex system.  Experiments were 

run multiple times, and the results were repeatable for all 

types of runs presented.    

5.2.1   Throughput Results 

Figure 5 presents throughput results for the query 

workload for 30 clients.  For each graph, the darker line 

with diamond points represents the results when throttling 

was enabled.  The lighter line with square points 

represents the non-throttled data.  The points represent the 

number of successful query completions since the last 

point in time.   

 

Throttling improves overall throughput by approximately 

35% for the 30 client case, allowing a sustained 

completion of 30-40 queries per time slice in the 

benchmark.  Un-throttled compilations in this benchmark 

will consume most available memory on the machine and 

starve query execution memory and the buffer pool.  

Throttling also helps the 35 and 40 client cases.  As 

visible in Figure 6 and Figure 7, the throughput is lower 

in each of these cases when compared to the 30 client 

case.  However, throttling still improves throughput for a 

given number of clients for each of these client loads.  
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Figure 5 Throughput - 30 clients 
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Figure 6 Throughput - 35 clients 
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Figure 7 Throughput - 40 clients 
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Since the data volumes are very large in this benchmark, 

almost every complex execution operation is performed 

via hashing.  Therefore, each query execution is bound by 

the maximum size of these hash tables and the CPU work 

required to build and probe these structures.  

 

5.2.2   Reliability Results 

We also measured the percentage of successful query 

attempts in the system.  This is a metric of the probability 

of any given query compilation/execution attempt will 

succeed.  Retries are counted as separate submissions in 

this approach. As was the case in the previous section, the 

darker diamond line represents the results when throttling 

is enabled, while the lighter line with square points 

represents the results when throttling is not enabled.  The 

graphs shown in Figures 8-10 represent the 30, 35, and 40 

client runs seen in the previous section. 

 
Figure 8 Reliability - 30 clients 
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Figure 9 Reliability - 35 clients 
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Figure 10 Reliability - 40 clients 
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The 30 client run demonstrates that both versions 

complete almost all operations without error once the 

system has reached a steady state.  The non-throttled 

version has an occasional but infrequent error, and this 

shows that 30 clients represents the limit for the non-

throttled approach on this hardware configuration.  

Interestingly, the throughput numbers are still higher in 

the throttled code.  This leads us to believe that the errors 
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are not the significant reason for the difference in 

performance, at least in the 30 client case.  We conclude 

that this is likely related to resource allocations such as 

memory. 

As additional clients are added to the system, the stress on 

the system is increased and the probability of any 

individual query failing also increases (either in 

compilation or execution).  We can see this in the results 

shown in Figure 9 and Figure 10.  The percentage of 

failures starts to increase as the system aborts operations 

to free memory.  The system also starts to behave less 

reliably once we increase the load substantially.  Figure 

10 is representative of the issue – over time, the system 

may abort no queries or most queries as it tries to service 

the requests.  However, throttling does improve the odds 

that a query is completed successfully, even under more 

extreme memory loads.  We conclude that this approach 

helps in achieving the goals outlined in Figure 2 by 

improving throughput for regular operations and allowing 

the system to maintain some of these gains over more 

extreme loads for this class of application. 

6. Related Work 

Much work has been done on database page buffer pool 

allocation/replacement strategies and execution/buffer 

pool trade-offs, however neither of these works 

specifically address compilation memory or memory from 

other DBMS caches.  [2] and [5] are representative of the 

field. [5] discusses the trade-offs associated with query 

execution memory and buffer pool memory.  [2] covers 

different execution classes for different kinds of queries 

and fairness across queries. [3] discusses the integration 

of cache state into query optimization. [1] covers the 

concept of cross-query plan fragment sharing.  

7. Conclusions 

We introduce a new form of memory/performance trade-

off related to many concurrent query compilations and 

determine that using excessive amounts of memory in a 

DBMS subcomponent can impact overall system 

performance.  By making incremental memory allocations 

more “expensive”, we can introduce a notion of cost for 

each DBMS subcomponent that enables more intelligent 

heuristics and trade-offs to improve overall system 

performance.  Our approach utilizes a series of monitors 

that restrict the future memory allocations of query 

compilations, effectively slowing their progress.  

In our experiments, we demonstrate that throttling query 

compilations can improve overall system throughput by 

restricting compilation memory use to a smaller fraction 

of overall memory, even in ad-hoc workloads.  This 

improves overall throughput and increases service 

reliability, even under loads beyond the capability of the 

hardware.  In our experiments, we were able to improve 

system throughput by 35%. 
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