
Managing Query Compilation Memory Consumption to

Improve DBMS Throughput

Boris Baryshnikov, Cipri Clinciu, Conor Cunningham, Leo Giakoumakis, Slava Oks, Stefano Stefani

Microsoft Corporation

One Microsoft Way

Redmond, WA 98052 USA

{borisb,ciprianc,conorc,leogia,slavao,stefanis}@microsoft.com

Abstract

While there are known performance trade-offs

between database page buffer pool and query

execution memory allocation policies, little has

been written on the impact of query compilation

memory use on overall throughput of the

database management system (DBMS). We

present a new aspect of the query optimization

problem and discuss a solution implemented in

Microsoft SQL Server 2005. The solution

provides stable throughput for a range of

workloads even when memory requests outstrip

the ability of the hardware to service those

requests.

1. Introduction

Memory Management is a critical component of DBMS

performance. In modern systems, memory trade-offs are

far more complex than the classic problems of database

page buffer management or reserving memory for hashes

and sorts during query execution [5]. Current systems use

more ad-hoc queries that make query compilation

memory more important in memory reservation policies.

Furthermore, these ad-hoc deployments make it harder to

provision hardware, and thus they are more often run at or

beyond the capabilities of the underlying hardware. This

requires intelligent trade-offs among other memory

consumers in a DBMS, as every byte consumed in query

compilation, query plan caches, or other components

effectively reduces the available memory for caching data

pages or executing queries. As DBMS become more

complex, it becomes harder to reason about the impact of

memory use on overall throughput effectively.

In our research we identified compile-intensive ad-hoc

workloads that consume enough memory in query

compilation to disturb the traditional memory

consumption trade-offs between a database page buffer

pool and query execution. For these scenarios, overall

system throughput was significantly reduced due to

memory thrashing among components. Oftentimes, the

queries in question required so much memory to perform

compilation that other components were effectively

starved and no other work could proceed. Even if the

system has enough memory to service multiple

simultaneous query compilations, allowing all of them to

occur at the same time might not maximize throughput.

Excessive concurrent compilation memory usage steals a

significant number of pages from the database page buffer

pool and causes increased physical I/O, reduces memory

for efficient query execution, and causes excessive

eviction of compiled plans from the plan cache (forcing

additional compilation CPU load in the future). The

interplay of these memory consumers is complex and has

not been adequately studied.

In this paper we present a solution to the above problem

by providing a robust query compilation planning

mechanism that handles diverse classes of workloads,

prevents memory starvation due to many concurrent query

compilations, and dynamically adjusts the load to make

intelligent memory trade-offs for multiple DBMS

subcomponents that improve overall system reliability

and throughput. This solution has been implemented and

tested against Microsoft SQL Server 2005 and is part of

the final product.

2. Memory Influence on Performance

While a number of papers have addressed trade-offs

between buffer and query execution memory ([2], [5]), no

work has covered the impact of memory consumption

from query compilation on system throughput. In this

paper, we demonstrate that query compilation can impact

system performance through its memory consumption for

This article is published under a Creative Commons License Agreement
(http://creativecommons.org/licenses/by/2.5/).
You must attribute the work to the author and CIDR 2007 if you copy,

distribute, display, perform the work, make derivative works or make

commercial use of the work.
3rd Biennial Conference on Innovative Data Systems Research (CIDR)

January 7-10, 2007, Asilomar, California, USA.

275

large workloads and that steps can be taken to mitigate the

negative impacts of memory starvation on system

throughput. As many DBMS installations run on

dedicated hardware, the rest of this paper will assume, for

simplicity, that almost all physical memory is available to

the DBMS and that it is the only significant memory-

consuming process being run on the hardware.

2.1 DBMS Subcomponent Memory Use

Multiple subcomponents in a DBMS consume memory as

part of normal operations. In addition to the obvious

consumers of memory such as buffer pools and query

execution memory, modern DBMS have multiple kinds of

caches and very complex queries that are difficult to

optimize. As the number of memory-consuming

subcomponents within a DBMS has increased over time,

the policies used to manage their interactions can be

difficult to tune. For example, if a new query attempts to

allocate memory to execute, it may need to steal memory

from another subcomponent. Such subcomponents might

be the buffer pool, the compiled plan cache, or other

caches (such as over metadata or cached security tokens).

Since a server DBMS is often under memory pressure,

these implementation policy choices can significantly

impact overall system performance.

Within a DBMS, it is possible for a subcomponent to

respond to memory pressure by releasing unneeded or

“less valuable” memory. Caches can often be freed and

repopulated later, and buffer pool memory works

similarly. However, other subcomponents may or may

not be architected to quickly respond to memory pressure.

When such approaches are insufficient to meet memory

needs, the server reaches a “memory deadlock”, and some

user operation is terminated to reduce memory pressure

and allow others to proceed. Each DBMS subcomponent

uses memory differently, and this can impact the

heuristics and policies required to maximize overall

performance. For example, a database page buffer pool

caches disk pages for more efficient access to data. The

buffer pool would prefer to consume all available free

memory that is not in use elsewhere to cache pages, as

this has the potential to save future disk I/O costs. Query

execution uses memory to speed sorts, spools, and hash

operations. This component can often reserve memory at

the start of a query execution for its operations, spilling to

disk if its reservation is too small. Modern DBMS also

can have a number of caches for compiled plans, and the

size of each of these caches must be valued against the

use of that memory for caching data pages or improving

query execution performance. Often, the local code for

memory allocation in each subcomponent is not written to

be aware that memory will likely come from another

subcomponent or to recognize the value of that memory

use compared to the current memory request. Poor

consideration of the value of the memory utilized in each

subcomponent can cause a heavily-loaded system to

become unbalanced and perform sub-optimally.

Query compilation (and, more specifically, query

optimization) consumes memory differently than other

DBMS subcomponents. Many modern optimizers

consider a number of functionally equivalent alternatives

and choose the final plan based on an estimated cost

function. This process uses memory to store the different

alternatives for the duration of optimization. Some

optimizers contain memory-saving structures (such as the

Memo in the Cascades Framework [4] used in Microsoft

SQL Server) to detect duplicates and avoid exploring any

portion of the query plan space more than once. Even

with such structures, the memory consumed during

optimization is closely related to the number of

considered alternatives. For an arbitrary query, the total

memory consumed during optimization may be large and

hard to predict. This makes it difficult to understand

memory consumption performance trade-offs in relation

to other DBMS subcomponents. While work has been

done on dynamic query optimization, where the number

of considered alternatives (and thus the amount of

memory consumed) is related to the estimated cost

function for the query, no work, to our knowledge, has

been done on the value of consuming more memory

optimizing a query in a memory-constrained workload.

2.2 DBMS Design vs. System Throughput

Modern x86-based systems have 32-bit address spaces,

and this poses limits on the available size of the memory

available to a DBMS when implemented within a single

process. The common-case on the Windows 2003 Server

operating system limits a process to 2GB of virtual

address space (3GB is possible with restrictions). Of this,

roughly a quarter is needed for process-management tasks

such as thread stacks, mapping DLLs into the process, etc.

While techniques ([8]) exist to allow some

subcomponents, such as the buffer pool, to remap pages in

and out of the address space, this is generally difficult to

use for complex structures with pointers. In effect, this

places a practical limit for a server process about 1.5GB

of memory.

The combination of limited memory/virtual address space

and a diverse set of memory consumers poses challenges

to the DBMS implementer when trying to guarantee good

system throughput
1
. A naïve approach of placing caps on

1 In DBMS where separate processes are used for each

subcomponent, memory trade-off choices between/among

components are just being performed by the operating system

instead of the DBMS implementer. While we have not

performed experiments on such a configuration, we expect

that there would be opportunities to improve performance if

hints or other techniques were used to influence the operating

system scheduling/page allocation decisions.

276

each memory subcomponent to avoid memory starvation

does not always work due to the varied nature of

workloads and the inability of the system to plan for work

in the future without additional guidance from the user.

As an example, if one limits the amount of memory any

single query can use to execute to 50% of the total

available memory, then no single query can monopolize

all system resources for a long period of time.

Unfortunately, if the workload only consists of one single,

long-running query, the system does not perform as well

as it might if that query could consume all memory during

its execution.

Even within a subcomponent, memory allocation policies

can be difficult to tune to achieve system stability. For

example, if many large queries are compiling

simultaneously, each compilation can consume a

significant fraction of system memory. Two query

compilations can deadlock each other if both are waiting

for memory consumed by another compilation. Even if

the system aborts most of these queries to allow a few to

complete, those aborted queries may be resubmitted to the

system by client code.

A central controlling mechanism is necessary to ensure

that the overall system will perform well and be stable in

all situations. Making proper decisions to receive,

evaluate, and arbitrate requests for memory amongst

multiple consumers can improve system stability and

increase throughput, even when the system is running at

or beyond the capabilities of the hardware. This approach

is described in more detail in the following section.

3. Memory Broker

SQL Server 2005 uses a “Memory Broker” to manage the

physical memory allocated to DBMS subcomponents.

The broker accounts for the memory allocated by each

subcomponent, recognizes trends in allocation patterns,

and provides the mechanisms to enforce policies for

resolving contention both within and among

subcomponents. This subcomponent enables a DBMS to

make better global decisions about how to manage

memory and ultimately achieve improved throughput.

The details of the Memory Broker are beyond the scope

of this paper, but we provide an overview of the

component to place the rest of our solution in context for

the reader.

The Memory Broker monitors the total memory usage of

each subcomponent and predicts future memory usage by

identifying trends. If the system is not using all available

physical memory, no action is taken and the system

behaves as if the Memory Broker were not there. If the

future memory total is expected to exceed the available

physical memory, the broker predicts the actual amount of

physical memory that the subcomponent should be able to

allocate (accounting for requests from other

subcomponents). The broker also sends notifications to

each subcomponent with its predicted and target memory

numbers and informs that subcomponent whether it can

continue to consume memory, whether it can safely

allocate at its current rate, or whether it needs to release

memory. The computation of target memory amounts and

the notification of each subcomponent can happen several

times a second. In our implementation, the overhead of

this mechanism is extremely small. It is still possible to

have out-of-memory errors if many subcomponents

attempt to grow simultaneously. The system relies on the

ability of various subcomponents to make intelligent

decisions about the value of optional memory allocations,

free unneeded or low-value memory, and reduce the rate

of memory allocations over time.

The Memory Broker provides an indirect communication

channel for one subcomponent to learn about the overall

memory pressure on the system. It also helps to mitigate

“wild” swings in subcomponent memory allocations and

tends to make the overall DBMS behave more reliably by

reducing probability of aborting long-running operations

such as compiling and/or executing a query.

DBMS subcomponents impose different requirements on

a memory subsystem through their usage patterns that can

impact how the Memory Broker operates. For example,

the database page buffer pool contains data pages that

have been loaded from disk. Replacement policies can be

used to remove older pages to load currently needed

pages, but they can also be used to enable the buffer pool

to identify candidates necessary to shrink its size. The

value of each page in memory is a function of the simple

replacement cost (i.e. a random I/O to re-read the page)

plus some value based on the probability that this page

will be used again in the near future. Other caches can

support shrinking using the same technique.

The memory consumed during query execution is usually

predictable since many of the largest allocations can be

made using early, high-level decisions at the start of the

execution of a query. For example, the size of a hash

table can often be predicted based on by-products of the

cardinality estimates used in a cost-based optimization

process, and this memory can be allocated once for the

whole hash table at the start of a query execution. Unlike

caches, however, the execution of queries may require

that memory be allocated for the duration of the query.

Therefore, the subcomponent may be less capable to

respond to memory pressure from a Memory Broker at

any specific time. However, it can potentially respond to

memory pressure based on the shape of the query and the

relative position of the operators being executed. A

“stop-and-go” operator (where all input rows are

consumed before output rows are returned), such as a sort,

can be used to identify sections of a query plan that are

277

not needed after the sort is materialized. Often memory

allocations for a query execution are batched to avoid the

overhead of many, small allocation and deallocation calls,

so there is a trade-off that must be made to find the right

balance between returning memory to the system early or

efficiently. Optional caches and spools in a query plan is

another area where dynamic memory choices could be

made based on memory load. These operators can be

written to make them use memory dynamically based on

what is available to the system at the time that they are

run. Other techniques, such as queuing execution

requests until memory can be reserved, can also be used

to limit the rates at which memory is consumed by this

subcomponent. The introduction of memory

subcomponent prediction, memory targets, and

notifications enable subcomponents to react to memory

pressure dynamically and proactively before out-of-

memory conditions are required.

Query compilation also uses memory in ways interesting

to a Memory Broker component, and this is discussed in

detail in the next section.

4. Query Compilation Throttling

Query compilation consumes memory as a function of

both the size of the query tree structure and number of

alternatives considered. Beyond dynamic optimization,

which has traditionally been based on estimated query

runtime and not memory needs, there are no published

techniques to avoid memory use during query compilation

for standard approaches.

Our analysis of actual compile-intensive workloads

showed that high memory consumption is typically

caused by several medium/large concurrent ad hoc

compilations in a workload instead of one or few very

large queries. This makes intuitive sense, as DBMS users

probably realize when they are writing a large query and

may take steps to isolate it. Many smaller queries pose a

more significant challenge, as each query appears

reasonable to the author. While it may not be easy (or

desirable) to modify the main optimization algorithm to

account for memory pressure, it is possible to change the

rate at which concurrent optimizations proceed to respond

to memory pressure. In this section, we describe a query

compilation planning mechanism that handles multiple

classes of workload goals, dynamically adjusts to system

memory pressure, and interacts with the dynamic

programming algorithms used in many modern optimizers

to make intelligent decisions about memory use during

the compilation process. This system improves overall

system throughput and reduces resource errors returned to

clients when the system is under memory pressure.

4.1 Solution Overview

We propose a query compilation throttling solution that

responds to memory pressure by changing the rate at

which compilations proceed. If we assume that memory

use roughly grows with compilation time, throttling at

least some compilations restricts the overall memory

usage by the query optimization subcomponent and can

improve the system throughput. Blocked compilations

wait for resources to become available before continuing.

If the compilation of a query remains blocked for an

excessively long period of time, its transaction is aborted

with a “timeout” error returned to the client. Properly

tuned, this approach allows the DBMS implementer to

achieve a balance between out-of-memory errors and

throttle-induced timeouts for a variety of workloads. Our

approach gives preference to compilations that have made

the most progress and avoids many cases where a

compilation is aborted after completing most, but not all,

of the compilation process.

Figure 1 Memory Monitors

fixed

↓↑

↓↑Large

Medium monitor

Small monitor

No limit

#CPUs x 4

#CPUs

1 Size ↓ as load ↑

and vice versaMax # of queries

allowed after

given monitor

M
o

n
it
o

r
ti
m

e
o

u
t

in
c
re

a
s
e

s

Blocking is implemented through a series of monitors that

are acquired during compilation. The blocking is tied to

the amount of memory allocated by the task instead of

specific points during the query compilation process. As

different optimization alternatives and techniques may

consume different amounts of memory, this approach

handles both differing optimization techniques and

remains stable as code changes over multiple software

releases. This provides a more robust mechanism to

control the impact of compilation on overall system

memory load over a wide variety of schema designs and

workload categories. These monitors contain

progressively higher memory thresholds and

progressively lower limits on the number of allowed

concurrent compilations as illustrated in Figure 1. The

monitors are acquired sequentially by a compilation as

memory usage for that task increases and are released in

reverse order if memory use decreases during compilation

or at the end of the compilation process. If memory is not

278

available at the time of acquisition, the compilation

process is blocked until memory becomes available when

other compilations, executions, or memory requests

elsewhere in the system are completed. A timeout

mechanism is used (with increasing timeouts for later

monitors) to return an error to the user if the system is so

overloaded that a compilation does not make any progress

for a long period of time.

Restraining compilations effectively avoids some cases

where many simultaneous compilations consume a

disproportionately high fraction of the available physical

memory. Since memory is a scarce resource, preserving

some fraction of it for use by the database page buffer

pool and query execution allows these components to

more efficiently perform their functions. Blocking some

queries can reduce the need for other subcomponents to

return memory from caches if many large, concurrent

compilations occur. This can spread memory use over

time instead of requiring other subcomponents to release

memory. The intended goals of this approach are to

improve maximum throughput and to enable that

throughput to work for larger client loads on the system,

as outlined in Figure 2.

Figure 2 Expected Throttling Results

T
h

ro
u

g
h

p
u

t

Load

No Throttling

Throttled

Goal 1: Higher Max

Throughput

Goal 2: Throughput

Continues for

Higher Load

Our implementation uses three monitors. Experimental

analysis showed that dividing query compilations into

four memory usage categories balanced the need to

handle different classes of workloads and limiting the

compilation time overhead of the mechanism. Query

compilations that consume less memory than the first

monitor threshold proceed unblocked. The first threshold

is configured differently for each supported platform

architecture to allow a series of small diagnostic queries

to proceed without acquisition of the first (smallest)

monitor. This enables an administrator to run diagnostic

queries even if the system is overloaded with queries

consuming every available „slot‟ in the memory monitors.

The first monitor allows four concurrent compilations per

CPU and is used to govern “small” queries. Typically,

most OLTP-class queries would fall into this category.

The second monitor is required for larger queries,

allowing one per CPU. Many TPC-H queries [6], which

require the consideration of many alternatives, would be

in this category. The final governs the largest queries and

allows only one at a time to proceed. This class of query

uses a sizable fraction of total available memory on the

system. The largest memory-consuming queries are

serialized to avoid starvation of other subcomponents and

allow the query to complete compilation. This approach

allows us to restrict compilation, in most cases, to a

reasonable faction of total memory and allow other

subcomponents to acquire memory.

Figure 3 Compilation Throttling Example

Time

M
e

m
o

ry
 U

s
e Q1

Q2

Q3

blocked

completes,

memory

released

Figure 3 contains a simplified example to describe how

query compilation throttling might work in practice. In

this example, Q1 and Q2 start compiling at approximately

the same time. However, Q1 consumes memory at a

faster rate than Q2. This could occur if the query was

larger, the tables contained more complex schemas, or

perhaps that thread of control received more time to

execute. Q1 then blocks at the first monitor, as denoted

by the first flat portion of the graph of Q1‟s memory use.

This occurred because other queries (not shown in the

example) were consuming enough resources to induce

throttling. Once enough memory is available, Q1

continues, blocks again at the next monitor, eventually is

allowed to continue, and finally finishes compilation. At

the end of compilation, memory used in the process is

freed and the query plan is ready for execution. Q2

executes in a similar manner. It waits much longer to

acquire the first monitor (meaning that the system is under

more memory pressure or that other compilations are

concurrently executing and using memory). Q2 finishes

and frees memory, but it did not require as much memory

as Q1 to compile. In this example, Q3 is actually blocked

by Q2 and only proceeds once Q2 is finished and releases

its resources. From the perspective of the subcomponent

author, the only perceptible difference in this process

from a traditional, unblocked system is that the thread

sometimes receives less time for its work. The individual

thread scheduling choices are made by the system based

on global goals that effectively prioritize earlier over later

compiles when making scheduling (and thus allocation)

decisions.

279

4.2 Extensions

We have extended this approach with two novel

extensions. First, we have made the monitor memory

thresholds for the larger gateways dynamic. In our

experiments, some customer workloads perform best with

different gateway values. In other words, the relative

balance of optimal subcomponent memory use is not

constant across all workloads. For example, one

workload may use a fixed set of queries that rarely need to

be compiled, while another workload may only use

dynamic, ad-hoc SQL statements. The impact from these

workloads on compilation memory would be very

different.

Our solution acts upon this realization by leveraging the

reported “target” memory consumption level for the query

subcomponent. This target is the desired allocation level

reported by the broker to each subcomponent, and it is a

reflection of the memory usage activity of each

subcomponent over time. This allows the query sub-

system to throttle compilation memory more aggressively

when other subcomponents are heavily using memory,

making the system even more responsive to memory

pressure. The thresholds are computed attempting to

divide the overall query compilation target memory across

the categories identified by the monitors. For example, the

second monitor threshold is computed as [target] * F / S,

where F and S are respectively the fraction of the target

allotted to and the current number of small query

compilations. In other words, small queries together can

consume up the F fraction of the target, after which the

top memory consumers are forced to upgrade to the

medium category. The values of the F fractions were

identified with a long process of tuning and

experimentation against several actual workloads.

Dynamic adjustment of the monitor thresholds gives

additional ability to control memory during query

compilation.

Another extension to our solution leverages the

notification mechanisms to determine that the system will

likely run out of memory before an individual compilation

completes. When this happens, we can return the best

plan from the set of already explored plans instead of

simply returning out-of-memory errors. As not all query

plans are efficient, we reserve this approach to very

expensive queries that consume a relatively large fraction

of total available memory during compilation. While

there is no strict guarantee that picking a sub-optimal plan

will be better than an out-of-memory error for a large

query, in practice we found that this often would improve

overall throughput. By restricting this to late in the

optimization process, it is more likely that at least one

reasonable plan has been found already because most of

the search space has been explored. Additionally, modern

dynamic optimizers may place more speculative

optimization alternatives late in the process, so skipping

these may not hurt average query plan quality.

Both techniques allow the system to better handle low-

memory conditions.

5. Experimental Results

Standard database benchmarks (TPC-H, TPC-C [6])

contain queries with moderate or small memory

requirements to compile. Large decision support systems

run queries with much higher complexity and resource

requirements. To evaluate our solution, we developed a

performance benchmark based on a product sales analysis

application created by a SQL Server 2005 customer. For

the purposes of this paper, we will refer to that benchmark

as the SALES benchmark.

5.1 SALES Benchmark

The SALES application is a Decision Support System

(DSS) which uses a large data warehouse to store data

from product sales across the world. This application

submits almost exclusively ad-hoc queries over

significant fractions of the data. Many users can submit

queries simultaneously. The customer runs a number of

large-CPU systems over read-only copies of their

database at or near capacity to handle their user query

load due to their unpredictable, ad-hoc workload.

The SALES benchmark uses a somewhat typical data

warehouse schema, meaning that it has a large fact table

and a number of smaller dimension tables. The largest

fact table from the database contains over 400 million

rows. An “average” query in this benchmark contains

between 15 and 20 joins and computes aggregate(s) on the

join results. As a comparison, TPC-H queries contain

between 0 and 8 joins with similar numbers of indexes per

table. The data mart in our experiments contains a

snapshot of the data from the customer‟s application and

is 524 GB in size.

We executed this benchmark against SQL Server 2005. It

features dynamic optimization, meaning that the time

spent optimizing a query is a function of the estimated

cost of the query. Therefore, more expensive queries

receive more optimization time. In our experiments, the

queries in the SALES benchmark use one to two orders of

magnitude more memory than TPC-H queries of similar

scale.

Our benchmark models the basic functionality of the

application and contains 10 complex queries that are

representative of the workload. To simulate the large

number of unique query compilations, our load generator

modifies each base query before it is submitted to the

database server to make it appear unique [7] and to defeat

plan-caching features in the DBMS.

280

This is an example of a typical query tree in the SALES

Benchmark:

Figure 4 Typical SALES Query Tree

Inner Join

Project Inner Join

Dimension2

Inner Join

Project

Inner Join Dimension4

Inner Join

Dimension1 Fact

Inner Join

Aggregate

Project

Top

Dimension3

Project

Dimension5 Left Join

Dimension6 Dimension7

In the benchmark, we define a limit for the response time

of each query based on the original customer

requirements. Benchmark runs which violate these

response time limits are considered invalid.

5.2 Execution Environment/Results

We execute the SALES benchmark using a custom load

generator which simulates a number of concurrent

database users who submit queries to the database server.

For these experiments, we use a server with 8 Intel Xeon

(32-bit) 700 MHz x86-based processors and 4GB of main

memory. The server is using 8 SCSI-II 72GB disks

configured in as a single RAID-0 drive array on a 2-

channel, 160 MB/channel Ultra3/Ultra2 SCSI controller.

The software on the machine is Microsoft Windows 2003

Enterprise Edition SP 1 and Microsoft SQL Server 2005.

This system is a typical medium server installation and

should reasonably reflect the hardware on which scaling

problems are currently being seen in DBMS installations

today.

Queries in this benchmark generally compile for 10-90

seconds and execute for 30 seconds to 10 minutes. In

each subcomponent, these queries consume nontrivial

amounts of memory to compile and execute. They also

access large fractions of the database and thus put

pressure on the database page buffer pool. Therefore,

these subcomponents are actively competing for memory

during the execution of this benchmark. Failed queries are

retried up to 15 times by the client application to mimic

the customer behavior. The probability that a query will

be aborted due to memory shortages is high, and the cost

of each failure is also high (as the work will be retried).

This places a high value on biasing resource use towards

those operations likely to succeed on the first attempt.

Our experiments measure the throughput and reliability of

the DBMS while running both at and beyond the

capabilities of the hardware. “Throughput” in this context

means the number of queries successfully completed per

unit of time. Through experimentation, we determined

that this benchmark produces maximum throughput with

30 clients on this hardware configuration. Throughput is

reduced with fewer users. Increasing the number of users

beyond 30 saturates the server and causes some

operations to fail due to resource limitations. To measure

the effect of running the system under memory pressure,

we performed experiments using 30, 35, and 40 clients.

The benchmark imposes extreme loads on the server, and

it takes some time for the various structures in each

subcomponent to warm up and become stable enough to

measure results. The results presented in this section do

not include this warm-up period and the data starts at an

intermediate time index. There is some fluctuation in the

numbers reported because of the different sizes of the

queries being executed and the non-deterministic

interplay of a number of different clients attempting to

proceed at once in a complex system. Experiments were

run multiple times, and the results were repeatable for all

types of runs presented.

5.2.1 Throughput Results

Figure 5 presents throughput results for the query

workload for 30 clients. For each graph, the darker line

with diamond points represents the results when throttling

was enabled. The lighter line with square points

represents the non-throttled data. The points represent the

number of successful query completions since the last

point in time.

Throttling improves overall throughput by approximately

35% for the 30 client case, allowing a sustained

completion of 30-40 queries per time slice in the

benchmark. Un-throttled compilations in this benchmark

will consume most available memory on the machine and

starve query execution memory and the buffer pool.

Throttling also helps the 35 and 40 client cases. As

visible in Figure 6 and Figure 7, the throughput is lower

in each of these cases when compared to the 30 client

case. However, throttling still improves throughput for a

given number of clients for each of these client loads.

281

Figure 5 Throughput - 30 clients

Successful Queries/Time (30 Clients)

0

5

10

15

20

25

30

35

40

10800 14400 18000 21600 25200 28800

Time (Seconds)

C
o

m
p

le
te

d
 Q

u
e
ri

e
s

Figure 6 Throughput - 35 clients

Successful Queries/Time (35 clients)

0

5

10

15

20

25

30

35

40

10800 14400 18000 21600 25200 28800

Time (Seconds)

C
o

m
p

le
te

d
 Q

u
e
ri

e
s

Figure 7 Throughput - 40 clients

Successful Queries/Time (40 clients)

0

5

10

15

20

25

30

35

10800 14400 18000 21600 25200 28800

Time (Seconds)

C
o

m
p

le
te

d
 Q

u
e
ri

e
s

Since the data volumes are very large in this benchmark,

almost every complex execution operation is performed

via hashing. Therefore, each query execution is bound by

the maximum size of these hash tables and the CPU work

required to build and probe these structures.

5.2.2 Reliability Results

We also measured the percentage of successful query

attempts in the system. This is a metric of the probability

of any given query compilation/execution attempt will

succeed. Retries are counted as separate submissions in

this approach. As was the case in the previous section, the

darker diamond line represents the results when throttling

is enabled, while the lighter line with square points

represents the results when throttling is not enabled. The

graphs shown in Figures 8-10 represent the 30, 35, and 40

client runs seen in the previous section.

Figure 8 Reliability - 30 clients

Success Percentage/Time

0

20

40

60

80

100

120

10800 14400 18000 21600 25200 28800

Time (Seconds)

P
e
rc

e
n

t
S

u
c
c
e
s
s
fu

l

Figure 9 Reliability - 35 clients

Success Percentage/Time

0

20

40

60

80

100

120

10800 14400 18000 21600 25200 28800

Time (Seconds)

P
e
rc

e
n

t
S

u
c
c
e
s
s
fu

l

Figure 10 Reliability - 40 clients

Success Percentage/Time

0

20

40

60

80

100

120

10800 14400 18000 21600 25200 28800

Time (Seconds)

P
e
rc

e
n

t
S

u
c
c
e
s
s
fu

l

The 30 client run demonstrates that both versions

complete almost all operations without error once the

system has reached a steady state. The non-throttled

version has an occasional but infrequent error, and this

shows that 30 clients represents the limit for the non-

throttled approach on this hardware configuration.

Interestingly, the throughput numbers are still higher in

the throttled code. This leads us to believe that the errors

282

are not the significant reason for the difference in

performance, at least in the 30 client case. We conclude

that this is likely related to resource allocations such as

memory.

As additional clients are added to the system, the stress on

the system is increased and the probability of any

individual query failing also increases (either in

compilation or execution). We can see this in the results

shown in Figure 9 and Figure 10. The percentage of

failures starts to increase as the system aborts operations

to free memory. The system also starts to behave less

reliably once we increase the load substantially. Figure

10 is representative of the issue – over time, the system

may abort no queries or most queries as it tries to service

the requests. However, throttling does improve the odds

that a query is completed successfully, even under more

extreme memory loads. We conclude that this approach

helps in achieving the goals outlined in Figure 2 by

improving throughput for regular operations and allowing

the system to maintain some of these gains over more

extreme loads for this class of application.

6. Related Work

Much work has been done on database page buffer pool

allocation/replacement strategies and execution/buffer

pool trade-offs, however neither of these works

specifically address compilation memory or memory from

other DBMS caches. [2] and [5] are representative of the

field. [5] discusses the trade-offs associated with query

execution memory and buffer pool memory. [2] covers

different execution classes for different kinds of queries

and fairness across queries. [3] discusses the integration

of cache state into query optimization. [1] covers the

concept of cross-query plan fragment sharing.

7. Conclusions

We introduce a new form of memory/performance trade-

off related to many concurrent query compilations and

determine that using excessive amounts of memory in a

DBMS subcomponent can impact overall system

performance. By making incremental memory allocations

more “expensive”, we can introduce a notion of cost for

each DBMS subcomponent that enables more intelligent

heuristics and trade-offs to improve overall system

performance. Our approach utilizes a series of monitors

that restrict the future memory allocations of query

compilations, effectively slowing their progress.

In our experiments, we demonstrate that throttling query

compilations can improve overall system throughput by

restricting compilation memory use to a smaller fraction

of overall memory, even in ad-hoc workloads. This

improves overall throughput and increases service

reliability, even under loads beyond the capability of the

hardware. In our experiments, we were able to improve

system throughput by 35%.

8. References

[1] Mehta, M., Soloviev, V., and DeWitt, D. Batch Scheduling

in Parallel Database Systems. Proceedings of the Ninth

International Conference on Data Engineering (ICDE)

1993. 400-410.

[2] Mehta, M. and DeWitt, D. Dynamic Memory Allocation

for Multiple Query Workloads. Proceedings of the

Nineteenth International Conference on Very Large Data

Bases (VLDB) 1993.

[3] Cornell, D. and Yu, P. Integration of Buffer Management

and Query Optimization In Relational Database

Environment. Proceedings of the Fifteenth International

on Very Large Data Bases (VLDB) 1989 . 247-256.

[4] Graefe, G. The Cascades Framework for Query

Optimization. Data Engineering Bulletin 18 (3) 1995. 19-

29.

[5] Brown, K., Carey, M., and Livney, M. Managing Memory

to Meet Multiclass Workload Response Time Goals.

Proceedings of the 19th Conference on Very Large Data

Bases (VLDB) 1993.

[6] Transaction Processing Performance Council.

http://www.tpc.org

[7] Gray, J. (Ed.). The Benchmark Handbook for Database and

Transaction Processing Systems, 1991. Morgan Kaufmann

Publishers San Mateo, CA, USA. Chapter 11, p12-15

[8] Address Windowing Extensions and Microsoft Windows

2000 Datacenter Server. March 30, 1999.

http://msdn.microsoft.com/library/default.asp?url=/library/e

n-us/dngenlib/html/awewindata.asp

283

http://www.tpc.org/

