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Abstract

As the COVID-19 outbreak continues to pose a serious world-
wide threat, numerous governments choose to establish lock-
downs in order to reduce disease transmission. However, im-
posing the strictest possible lock-down at all times has dire
economic consequences, especially in areas with widespread
poverty. In fact, many countries and regions have started
charting paths to ease lock-down measures. Thus, planning
efficient ways to tighten and relax lock-downs is a crucial and
urgent problem. We develop a reinforcement learning based
approach that is (1) robust to a range of parameter settings,
and (2) optimizes multiple objectives related to different as-
pects of public health and economy, such as hospital capacity
and delay of the disease. The absence of a vaccine or a cure
for COVID to date implies that the infected population cannot
be reduced through pharmaceutical interventions. However,
non-pharmaceutical interventions (lock-downs) can slow dis-
ease spread and keep it manageable. This work focuses on
how to manage the disease spread without severe economic
consequences.

Introduction
While governments are responding to the spread of COVID-
19 by imposing lock-downs of varying intensity to reduce
human-human contact, the situation cannot be maintained
indefinitely. Each day of lock-down brings severe economic
loss affecting the livelihood of billions. Thus, it is imperative
to use the available resources of interventions – lock-downs,
test-kits, ventilators etc., in an efficient manner. This work
aims to find optimal lock-down policies based on epidemio-
logical models and reinforcement learning.

Reinforcement learning has shown promising results on
sequential decision making tasks like Go (Silver et al. 2016)
and autonomous driving (Pan et al. 2017). On these tasks,
training from real-world data directly is too expensive due
to costly data collection process. Learning the agent model
from simulations is thus necessary. However, simulations
don’t reflect the real world exactly due to uncertainties trans-
ferred while fitting the simulation model (Christiano et al.
2016). It can be dangerous if the policy learned is unaware
of such uncertainties, which is especially true for our task.
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In addition to insufficient data and uncertainty, for our
problem, it is hard to specify a single objective that one
wants to achieve. It is likely that many objectives need to be
met for the task to be considered successful. For example,
we may want to delay the peak of infections while making
sure that our hospitals are not overburdened or our economy
is not affected too severely. The decision maker in this case
is looking at the problem from several perspectives leading
to many possible objectives that the model will be evaluated
on. Thus, in this work, we incorporate multi-objective func-
tions.

The main contributions of this work can be summarized
as follows:

• We formulate the problem of lock-down implementation
as a Markov Decision Process (MDP). To solve this MDP,
we propose a Reinforcement Learning (RL) approach that
optimizes the trade-off between health objectives and eco-
nomic cost.

• We tackle the uncertainty in environment parameters that
might arise from the noise in the data and the process of
estimation by considering different robust approaches.

• We analyse different robust approaches including uni-
form sampling and adversarial sampling during the train-
ing phase. We find that there is a trade-off relation in the
average-case and worst-case between RL agents with dif-
ferent degrees of risk aversion.

• We design different health objectives that might be of in-
terest to decision-makers and measure our performance
along these different objectives simultaneously.

With this work, we aim to address the challenging task of
planning temporal resource allocation for lock-downs. The
models that we use for modelling the spread of COVID are
the SEIR class of epidemiological models.

Previous Work

Since as early as the 17th century, when Bernoulli pro-
posed the first mathematical epidemic model for small-
pox (Bernoulli and Blower 2004), there have been numer-
ous efforts in the modeling and control of epidemics. One
important class of these models are called compartmental
models. These models, as their name suggests, divide the
population into different health states (compartments) and



model transitions of populations between these health states.
The underlying assumption is that these compartments have
homogeneously mixed populations. Susceptible-Exposed-
Infected-Recovered (SEIR) family of models are compart-
mental models with dynamics described by ordinary differ-
ential equations. Recently, there have been advances in fit-
ting SEIR models with machine learning techniques (Bannur
et al. 2021). In this work, we use a Susceptible-Exposed-
Infected-Recovered-Deceased (SEIRD) model (detailed de-
scription in subsection Epidemic Model) to model the
COVID-19 data. However, the technique we propose is ap-
plicable to any of the SEIR family models.

Apart from epidemic modeling, the problem of optimiz-
ing cure and control for preventing the spread of disease is
also of interest. However, most works in the computer sci-
ence literature usually assume an idealistic model, such as
every contact being known, no uncertainty in the disease pa-
rameters or a strong cure/isolation that guarantees the re-
covery of the individuals (Ball, Knock, and O’Neill 2015;
Sun and Hsieh 2010; Wang 2005; Zhang and Prakash 2015;
Ganesh, Massoulié, and Towsley 2005). None of these are
true for most real-world diseases, such as the newly arisen
COVID-19 pandemic which has no cure as of the writing of
this paper. Even under most settings being ideal, a small un-
certainty could have serious implications on outcomes if not
handled properly. For example, the impact of curing uncer-
tainty under perfect observation is analyzed in Hoffman and
Caramanis (Hoffmann and Caramanis 2018) by providing
non-constructive, algorithm-independent bounds. We aim to
address the challenging setting in which there are uncertain-
ties in most of the parameters in the model.

Robust control is a branch of control theory that has a long
history. In particular, robustness toward parameter uncer-
tainty results in a performance drop from the model toward
its real-world application(Mannor et al. 2004). Numerous
works (Nilim and El Ghaoui 2005, 2004; White III and El-
deib 1994) have tried to tackle such uncertainty under the ro-
bust MDP framework with different assumptions. In recent
years, Reinforcement learning has demonstrated promising
results on a variety of MDP problems (Silver et al. 2016;
Pan et al. 2017). For applications with a high safety require-
ment, it is natural to combine robustness into reinforcement
learning (Mihatsch and Neuneier 2002; Carpin, Chow, and
Pavone 2016; Chow et al. 2017). Among these works, using
an adversarial agent to adjust the environment and discover
potential risk systematically has shown promising results in
many real-world tasks (Pinto, Davidson, and Gupta 2017;
Pattanaik et al. 2017). A recent algorithm using an adversar-
ial framework is robust adversarial reinforcement learning
(RARL) (Pinto et al. 2017) in which, two agents are trained,
one protagonist and other an adversary providing attacks on
input states and dynamics. In our work, similar to RARL,
we use an adversarial agent to systematically search risky
environmental parameters for the policy.

Another important consideration for lock-down policy
makers might be to include different desirable objectives
in their decision-making. Multi-objective optimization has
tremendous practical importance in many real-life applica-
tions (Deb 2014). Linear combinations of Pareto optimali-

Notations Definition

Health States

S Susceptible fraction of the population
E Exposed fraction of the population
I Infected fraction of the population
R The fraction of the population that is

either completely recovered or is un-
dergoing recovery and is no longer in-
fectious

D Deceased fraction of the population

Transmission

t Current time (day)
Ro Basic Reproductive Number
Tinc The incubation time
Tinf The duration for individuals being in-

fectious
Trecover Time for individuals to recover or

quarantine in hospital
Tfatal Time for a fatal infection individual to

die

Intervention

a Action (intervention strength)
l(a) Cost of the action per day
e Lock-down effectiveness coefficient
d Minimum duration of the intervention
Ttrans Transition delay after lock-down a is

deployed

Objectives

λ Hospital Capacity
δ Economic-Health cost weight

Table 1: The notations used across this paper.

ties are often considered and solved when the system is easy
to describe (Censor 1977). Multi-Objective Reinforcement
Learning however (Roijers et al. 2013; Van Moffaert and
Nowé 2014), is a relatively new research area that has been
actively studied only in recent years. In this work, we de-
signed a Quality Adjusted Life Year (QALY) value function
to calculate the suitable reward signal for any point of any
two objectives of the QALY variant. Such a function can
also be used to determine the difficulties of optimizing the
two objectives simultaneously.

Modelling

Epidemic Model

For modelling COVID-19, we adopt a discrete time SEIRD
model (Weitz and Dushoff 2015). The SEIRD class of mod-
els is a part of compartmental models, as mentioned above.
An individual can be in one of the following health states:
S (a healthy individual susceptible to disease), E (the indi-
vidual has been exposed and has latent disease), or I (the
individual is infected), R (the individual is recovering and is
no longer infectious to others) and D (the individual is de-
ceased). Table 1 summarizes the symbols we use throughout
this paper.

The discrete-time dynamics equations for our epidemic



model are:

St+1 − St =
−StIt

Ttrans(a, e)
, (1)

Et+1 − Et = (
St

Ttrans(a, e)
−

Et

Tinc

), (2)

It+1 − It = (
Et

Tinc

−
It

Tinf

), (3)

Rt+1 −Rt =
It

Trecover

, (4)

Dt+1 −Dt =
Rt

Tfatal

, (5)

in which 1
Tinf

= 1
Trecover

+ 1
Tfatal

and the basic repro-

ductive number can be obtained from R0 = Tinf/Ttrans.
A typical SEIRD model described above starts from a popu-
lation being mostly susceptible and a small fraction of in-
fectious people. When R0 > 1, each infected individual
will infect more than one susceptible individual in its life-
time on average. Each susceptible individual will eventually
go through the exposed, infectious to finally recovered or
deceased states. A schematic diagram of the SEIRD model
is shown in Figure 1. Generally in compartmental models,

Figure 1: A schematic diagram of the SEIRD model.

Ttrans is a constant. However, in a real-world setting, the
transmission time can be reduced through the deployment
of non-pharmaceutical lock-down interventions. Note that
there is no direct reduction in infected population as there is
no cure or vaccination available. We only consider the lock-
down interventions that increase the transmission time of the
virus based on their strength.

Compartmental models and their variants are commonly
used in disease state forecasting and prediction. For con-
creteness, in this work, state populations and numerical val-
ues of the transmission parameters are based on the available
data for the city of Mumbai (Group 2020). However, it is
worth noting that both the intervention model and planning
algorithm we propose apply for most, if not all, of the SEIR
model variants.

Intervention Modelling

As there is no cure/vaccine available for COVID-19 till date,
models of pharmaceutical interventions are not applicable.
To manage the rapid disease spread, different lock-down
policies can be considered to limit individual contacts. For
example, (Ferguson et al. 2020) considered different lev-
els of lock-down such as Case isolated at home, Voluntary
home quarantine, Social distancing of those over 70 years

of age, Social distancing of entire population and Closure
of schools and universities for non-pharmaceutical interven-
tions in British population, which all have different cost and
effectiveness.

These lock-down policies should enjoy several desider-
ata for real-world deployment. First, each type of interven-
tion needs to last for a minimum duration d. Second, since
the lock-down has economic cost, government bodies would
expect a trade-off between the total budget B spent for plan-
ning and policy deployment and public health related gains.
To model such interventions, we considered lock-downs as a
series of action choices. The decision maker can plan differ-
ent policies in different time periods based on the limitations
mentioned above.

During the lock-down period in India, the change in es-
timated transmission time as the effect of interventions has
been observed based on (Group 2020). This corresponds to
Ttrans in the SEIRD model we proposed and the effective-
ness e varies in different regions. Thus we modeled the ac-
tion as extending the transmission time to different degrees
and different costs per day. Such a sequence of actions forms
an intervention vector a of length T as a planning schedule
with a total cost sum.

Multi-Objective Functions

In the public health domain, governments and decision mak-
ers may want to achieve different objectives when deploying
a policy. One direct objective could be eliminating the dis-
ease which can be achieved by suppressing contacts so that
patients recover at a rate greater than the spread of infection.
This is equivalent to minimizing the area under the infection
curve. However, this is not achievable in many regions, in-
cluding cities in many of the developing countries due to the
huge economic cost of such strict lock-downs. Thus, we fo-
cus on economically sustainable interventions that do not re-
duce R0 below 1. In epidemic theory, this means the disease
cannot be eliminated within reasonable time no matter how
the government plans the lock-down in these regions. Every
susceptible individual will eventually go through the recov-
ered or deceased state. In other words, although the infection
curve will change, the area under the curve will remain the
same.

To evaluate the effectiveness of lock-down policies un-
der these circumstances, we use indirect objectives that are
vital and achievable for sustainable interventions. For exam-
ple, as there is limited hospital capacity, a patient’s qual-
ity of life will likely be better when the infected population
does not exceed that capacity and they can receive proper
treatment. Alternatively, we may want to delay the infec-
tion to the point when we have better system preparedness,
medicines, resources etc. for handling the disease. These dif-
ferent desired objectives can be described as a family of ob-
jective functions that are variants of the Quality Adjusted
Life Year (QALY) score in our model, which is elaborated
below.

QALY is a popular established metric to quantify the ef-
fectiveness of health interventions. It is often used in the
public health literature (Salomon et al. 2012). It measures
the effectiveness of a certain intervention by combining



quantity and quality of health improvement. Specifically, a
person’s life quality at any given time is mapped to [0, 1],
with quality 1 corresponding to perfect health while 0 corre-
sponding to death. QALY accumulates such measurements
over time as its final score. Naturally, different disease con-
ditions lie in the range [0, 1] depending on severity.

In this work, we change the time scale from years to days
to adapt to the dynamics of the disease we are facing. We
mainly focus mainly on two objectives, burden and delay.
We define these two objective functions as:

OBurden =
∑

t

((I(t)− λ)1I(t)>λ − δBurdenl(at)) (6)

ODelay =
∑

t

(tI(t)− δDelayl(at)). (7)

where t refers to timestep. at, I(t) and l(at) refer to ac-
tion, infected population fraction and cost of action at time
t respectively. Also δ and λ refer to economy-health weight
and hospital capacity and 1 is the indicator function. Here,
we focus on optimizing a linear combination of these two
objective functions, written as:

Omix(w) = wŌBurden + (1− w)ŌDelay, (8)

where the weight w ranges from 0 to 1 and Ō is O normal-
ized by the absolute value of no intervention, i.e., we divide
O by its absolute value in the absence of interventions.

Formulation Using MDP

Our lock-down control problem can be modeled as a Markov
Decision Process (MDP) (Yang, Sun, and Narasimhan
2019). Over the last two decades, reinforcement learn-
ing (Sutton et al. 1998) has provided an effective framework
for solving an MDP in both theory and application. This is
especially true when the system dynamics is either compli-
cated, unknown, or the state dimensionality is too high for
classical optimal control methods. In addition, the environ-
ment parameters we estimate from real-world hospital data
involve uncertainty that cannot be ignored. Thus the output
policy needs to be robust to such uncertainty.

We thus consider a parameter-wise robust reinforcement
learning model to solve the MDP framework. The MDP
framework can be written as:

〈S,A,P,R〉

with state space S , action space A, and transition distribu-
tion and vector reward

P(s′|s, a) for s, s′ ∈ S and a ∈ A

r(s) ∈ R

and the preference weight w ∈ R
n.

The states we consider are the fractions of population
present in S,E,I,R and D compartments at the given time.
Furthermore, we consider several discrete actions at each
time step corresponding to different strengths of lock-down
with different costs. It is natural to assume the strength to be
monotonically increasing with the cost as otherwise the ac-
tion choice will be dominated by actions with less cost but

more effectiveness. For simplicity, we adopt a linear map-
ping for both cost and effectiveness, as:

Ttrans(a, e) = (1 + ec(a))
Tinf

R0
(9)

and c : A → [0, 1], in which e is the lock-down effec-
tiveness coefficient and R0 the basic reproduction number
when there are no lock-down interventions. Both of these
are estimated with data from the city of Mumbai, India.
Ttrans and Tinf are the transmission and infection time pe-
riods.

For the remaining tuple, the transition distribution
P(s′|s, a) is described as the disease transmission equa-
tion 1 to 5. The total accumulated reward is exactly the ob-
jective function O in equations 6, 7. The next section de-
scribes the distribution of individual reward signals across
states.

Reinforcement Learning Approach

Multiple Objectives: We have defined the state, action,
transition probabilities and total reward in the MDP sec-
tion. The only missing piece for a complete reinforcement
learning framework is to design the reward signal at every
timestep. We have designed a framework that works not only
for the two example objectives we focus in this work, but on
most variants of QALY.

Most variants of QALY, including our examples, are re-
lated to time and population of certain health states. We pro-
pose a function we call the QALY value V (x, t) which is a
function of the population x in a certain health state and time
t. We focus only on I or the Infectious state in these exper-
iments. However, the QALY value function can be gener-
alized to a vector form to include multiple states. For con-
trolling the hospital capacity, the function can be formulated
either as a constant penalty for x exceeding the capacity or
simply as a reward for x below the threshold, since the area
under the infection curve is a constant, as we elaborate in
section Multi-Objective Functions. We formalize this as:

VBurden(x, t) = 1 for x < λ (10)

As for delay, we formalize this function as

VDelay(x, t) =
t

T
(11)

Given that the QALY value V (x, t) of the objective func-
tion is defined, the reward signal at any given time t can be

calculated by r(t) =
∫ I(t)

0
V (x, t)dt. We can thus apply the

reinforcement learning approach.
One benefit of such a proposed approach is that the QALY

value function of the mixed objective can be easily calcu-
lated as:

Vmix(w) =
wVBurden

OBurden(no action)
+

(1− w)VDelay

ODelay(no action)
(12)

Uncertainty: Another important aspect other than having a
multi-objective function in the lock-down application is the



uncertainty of the parameters (e, Tinf , Tinc), which are re-
lated to the infection curve directly or indirectly. We exper-
iment with three approaches to analyze the effect of uncer-
tainty in a reinforcement learning setup:
(1)Fixed RL(FRL): Train the RL agent using only the mean
of the uncertain parameters.
(2)Distributed RL(DRL): Train the RL agent using sam-
ples of uncertain parameters from the estimated range.
(3)Adversarial RL(ARL): Inspired by (Pinto et al. 2017),
train the RL agent with another adversarial RL agent that
will maliciously pick the worst possible parameter set for the
RL agent during training. Note that the worst case parame-
ter is not trivial to find as the policy changes. The action of
the adversarial RL agent is set to be the discrete uncertain
parameters in the disease model.

Experiments
In this section, we describe the application of our method
to a specific location – the city of Mumbai, India. In subse-
quent subsections, we describe how we estimate the model
parameters as well as the uncertainty in these parameters.
We also report the results of our method when used on the
estimated parameter ranges.

Parameter and Uncertainty Estimation

We fit our SEIRD model to the time-series data from the
COVID19-India API (Group 2020) for the city of Mumbai.
The data is aggregated in fields called Recovered, Deceased,
Hospitalized and Total Infected, where Total Infected = Re-
covered + Hospitalized + Deceased. In our SEIRD model,
we fit the I compartment to Total Infected, D compartment
to Deceased and R compartment to Hospitalized + Recov-
ered. In this sense, the R compartment in our model esti-
mates people who are either under recovery or have recov-
ered, and thus are no longer infectious.

We decided the initial search space for the model pa-
rameters based on the estimates given by public health ex-
perts and those cited in literature. We process the data with
smoothing techniques to reduce the effect of bulk data en-
try. Then, we search over the parameter space for parameter
sets that have a small aggregated RMSE loss between pre-
dicted numbers and actual numbers using the Hyperopt li-
brary (Bergstra, Yamins, and Cox 2013). The parameter set
giving the least loss value is taken to be the best-fit parame-
ter set for the purposes of this experiment.

We found that there are diverse parameter sets that have
loss close to the best-fit parameter set. Thus, we picked all
parameter sets that have a loss within a certain range of the
best loss (within 10%). Among all picked parameter sets,
we find the range of values taken by individual parameters.
These ranges for individual parameters give us a measure
of uncertainty for these parameters. We assume a uniform
distribution over these ranges as our parameter distribution.

Analysis and Results

Robustness: Robustness of policy to uncertainty in parame-
ters is an important aspect. Over the estimated uniform dis-
tribution range, we find the worst-case parameters for dif-
ferent methods using a fine grid-search. Then, we measure

Model Performance on Burden

Model Worst Mean Std

Random -3.625 -2.030 0.500
FRL -2.385 -1.234 0.372
DRL -2.445 -1.313 0.467
ARL -2.226 -1.279 0.385

Table 2: Burden objective in equation 6.

Model Performance on Delay

Model Worst Mean Std

Random -759.522 2.110 186.413
FRL -29.486 163.403 39.201
DRL -100.538 235.391 110.176
ARL 9.933 189.307 50.813

Table 3: Delay objective in equation 7.

the performance of different methods on their corresponding
worst-case parameters. We also find the corresponding aver-
age performance over the parameter distribution. The results
are tabulated in Tables 2 and 3. As shown in these tables, the
ARL helps the reinforcement learning discover risky param-
eters and thus performs best in its worst case scenario. For
average case, however, ARL performs worse than the best
method (FRL and DRL respectively). This has shown the
trade-off between performance and robustness in our lock-
down problem - at the cost of average performance, we can
obtain better worst-case performance.

Different objectives: We use different weights between
Burden and Delay objectives and compare the results to the
case when we individually focus on Delay and Burden in
Table 4. The objective function we use is (1−w) ∗Delay+
w∗Burden for different values of w. The aim is to maximize
normalized objective for both Burden and Delay.

From Table 4, we observe that, as expected, as the weight
on Burden increases, the Burden objective becomes larger
for all methods in general. Similar behaviour is observed for
Delay as well. When applying this method for policy guid-
ance, we can tune w to achieve the required objectives for
both Burden and Delay.

Conclusions and Future Work

We implemented reinforcement learning on the lock-down
policy optimization problem for COVID-19 while consider-
ing important real-world aspects like robustness and multi-
objective optimization. Robustness can be achieved by intro-
ducing an adversarial agent for parameter discovery, but at
the cost of sacrificing some performance on average. For the
multi-objective mixture, we study the trade-off between con-
trolling hospital capacity and delaying the infection spread.
We proposed a reward distribution framework for the rein-
forcement learning agent to shift from one objective to an-
other in the lock-down problem. One point to note is that our
epidemiological model (SEIRD) is a homogeneous model
and is being used to optimize the policy keeping the trade-off
between economy and health for the community as a whole.



Model w Burden Delay Mixed

Random

0.0

-1.074 0.675 0.675
FRL -1.372 1.478 1.478
DRL -1.155 1.711 1.711
ARL -1.442 1.727 1.727

Random

0.25

-1.230 0.843 0.318
FRL -1.017 1.154 0.611
DRL -1.086 1.673 0.983
ARL -0.993 1.103 0.579

Random

0.5

-1.073 0.641 -0.216
FRL -0.622 1.207 0.293
DRL -0.738 1.196 0.229
ARL -0.912 1.208 0.148

Random

0.75

-1.019 0.670 -0.597
FRL -0.550 1.090 -0.140
DRL -0.818 1.159 -0.324
ARL -0.703 0.932 -0.294

Random

1.0

-1.193 0.587 -1.193
FRL -0.734 1.400 -0.734
DRL -0.620 1.014 -0.620
ARL -0.671 1.001 -0.671

Table 4: Model Performance for Mixed Objectives. The
scores are calculated based on equation 12

The model does not discriminate between two infected in-
dividuals based on their economic contribution and neither
is it capable for the same. This makes sure that we generate
lockdown policy as fairly as possible.

The future direction of this work is to gather more data
on both cost and effectiveness of the real-world lock-down
policies on community scale so that a more complex model
can be used to better estimate the real-world scenarios. For
example, transmission times are known to not be homoge-
neous and several super-spreader events have been identified
in many different spreading routes. Collecting data on such
cases and modifying the model to have different transmis-
sion times for different cases of spread would give us a more
holistic view of the entire scenario. Another important direc-
tion of extension would be estimating the reporting rate from
other sources of data and normalizing the reported numbers
to estimate parameters that are closer to the real-world.
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