CERN Accelerating science

CERN Document Server 2,041 záznamov nájdených  1 - 10ďalšíkoniec  skoč na záznam: Hľadanie trvalo 0.03 sekúnd. 
1.
Precise Quantum Angle Generator Designed for Noisy Quantum Devices / Rehm, Florian (CERN ; DESY) ; Vallecorsa, Sofia (RWTH Aachen U.) ; Borras, Kerstin (DESY) ; Krücker, Dirk (RWTH Aachen U.) ; Grossi, Michele (RWTH Aachen U.) ; Varo, Valle (RWTH Aachen U.)
The Quantum Angle Generator (QAG) is a cutting-edge quantum machine learning model designed to generate precise images on current Noise Intermediate Scale Quantum devices. It utilizes variational quantum circuits and incorporates the MERA-upsampling architecture, achieving exceptional accuracy. [...]
2024 - 8 p. - Published in : EPJ Web Conf. 295 (2024) 12006 Fulltext: PDF;
In : 26th International Conference on Computing in High Energy & Nuclear Physics, Norfolk, Virginia, Us, 8 - 12 May 2023, pp.12006
2.
Precise Image Generation on Current Noisy Quantum Computing Devices / Rehm, Florian (CERN ; RWTH Aachen U.) ; Vallecorsa, Sofia (CERN) ; Borras, Kerstin (RWTH Aachen U. ; DESY) ; Krücker, Dirk (DESY) ; Grossi, Michele (CERN) ; Varo, Valle (DESY)
The Quantum Angle Generator (QAG) is a new full Quantum Machine Learning model designed to generate accurate images on current Noise Intermediate Scale (NISQ) Quantum devices. Variational quantum circuits form the core of the QAG model, and various circuit architectures are evaluated. [...]
arXiv:2307.05253.- 2023-10-30 - 22 p. - Published in : Quantum Sci. Technol. 9 (2024) 015009 Fulltext: document - PDF; 2307.05253 - PDF;
3.
Quantum Angle Generator for Image Generation / Florian, Rehm (CERN ; RWTH Aachen U.) ; Vallecorsa Sofia (CERN) ; Grossi Michele (CERN) ; Kerstin, Borras (DESY ; CERN ; RWTH Aachen U.) ; Krücker Dirk (DESY) ; Schnake Simon (DESY ; RWTH Aachen U.) ; Alexis-Harilaos, Verney-Provatas (DESY ; RWTH Aachen U.)
The Quantum Angle Generator (QAG) is a new generative model for quantum computers. It consists of a parameterized quantum circuit trained with an objective function. [...]
2022 - 5 p. - Published in : 10.1109/SEC54971.2022.00064
In : 2022 IEEE/ACM 7th Symposium on Edge Computing (SEC 2022), Seattle, Washington, United States, 5 - 8 Dec 2022, pp.425-429
4.
Quantum Machine Learning for HEP Detector Simulations / Rehm, Florian (CERN ; RWTH Aachen U.) ; Vallecorsa, Sofia (CERN) ; Borras, Kerstin (RWTH Aachen U. ; DESY) ; Krücker, Dirk (DESY)
Quantum Machine Learning (qML) is one of the most promising and very intuitive applications on near-term quantum devices which possess the potential to combat computing resource challenges faster than traditional computers. Classical Machine Learning (ML) is taking up a significant role in particle physics to speed up detector simulations. [...]
2021 - 6 p. - Published in : (2021) , pp. 363-368 Fulltext: PDF;
In : 9th International Conference on Distributed Computing and Grid Technologies in Science and Education (GRID 2021), Dubna, Russian Federation, 5 - 9 Jul 2021, pp.363-368
5.
Physics Validation of Novel Convolutional 2D Architectures for Speeding Up High Energy Physics Simulations / Rehm, Florian (CERN ; RWTH Aachen U.) ; Vallecorsa, Sofia (CERN) ; Borras, Kerstin (RWTH Aachen U. ; DESY) ; Krücker, Dirk (DESY)
The precise simulation of particle transport through detectors remains a key element for the successful interpretation of high energy physics results. However, Monte Carlo based simulation is extremely demanding in terms of computing resources. [...]
arXiv:2105.08960.- 2021 - 10 p. - Published in : EPJ Web Conf. 251 (2021) 03042 Fulltext: document - PDF; 2105.08960 - PDF;
In : 25th International Conference on Computing in High-Energy and Nuclear Physics (CHEP), Online, Online, 17 - 21 May 2021, pp.03042
6.
Reduced Precision Research of a GAN Image Generation Use-case / Rehm, Florian (CERN ; RWTH, Aachen) ; Saletore, Vikram (Intel, Santa Clara) ; Vallecorsa, Sofia (CERN) ; Borras, Kerstin (RWTH, Aachen ; DESY) ; Krücker, Dirk (DESY)
In this research a deep convolutional Generative Adversarial Network (GAN) model is post-training quantized to a reduced precision arithmetic for a complex High Energy Physics (HEP) use-case. This research is motivated by the aim to decrease the necessary model size and computing time for reducing the required hardware resources for future Large Hadron Collider (LHC) detector simulations at CERN. [...]
2023
In : 10th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2021), 4 - 6 Feb 2021, Vienna, Austria, pp.3–22
7.
Benchmark of Generative Adversarial Networks for Fast HEP Calorimeter Simulations / Rehm, Florian (CERN ; RWTH Aachen U.) ; Vallecorsa, Sofia (CERN) ; Borras, Kerstin (RWTH Aachen U. ; DESY) ; Krücker, Dirk (DESY)
Highly precise simulations of elementary particles interaction and processes are fundamental to accurately reproduce and interpret the experimental results in High Energy Physics (HEP) detectors and to correctly reconstruct the particle flows. Today, detector simulations typically rely on Monte Carlo-based methods which are extremely demanding in terms of computing resources. [...]
2021 - 6 p. - Published in : (2021) , pp. 310-315 Fulltext: PDF;
In : 9th International Conference on Distributed Computing and Grid Technologies in Science and Education (GRID 2021), Dubna, Russian Federation, 5 - 9 Jul 2021, pp.310-315
8.
Impact of quantum noise on the training of quantum Generative Adversarial Networks / Borras, Kerstin (DESY, Zeuthen ; RWTH Aachen U.) ; Chang, Su Yeon (CERN ; Ecole Polytechnique, Lausanne) ; Funcke, Lena (MIT, Cambridge, CTP ; IAIFI, Cambridge) ; Grossi, Michele (CERN) ; Hartung, Tobias (Cyprus Inst. ; Bath U.) ; Jansen, Karl (DESY, Zeuthen) ; Kruecker, Dirk (DESY, Zeuthen) ; Kühn, Stefan (Cyprus Inst.) ; Rehm, Florian (CERN ; RWTH Aachen U.) ; Tüysüz, Cenk (DESY, Zeuthen ; Humboldt U., Berlin) et al.
Current noisy intermediate-scale quantum devices suffer from various sources of intrinsic quantum noise. Overcoming the effects of noise is a major challenge, for which different error mitigation and error correction techniques have been proposed. [...]
arXiv:2203.01007; MIT-CTP/5400.- 2023 - 6 p.
- Published in : J. Phys.: Conf. Ser. Fulltext: 2203.01007 - PDF; document - PDF;
In : 20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2021), Daejeon, Korea, 29 Nov - 3 Dec 2021, pp.012093
9.
Deep Learning and Quantum Generative Models for High Energy Physics Calorimeter Simulations / Rehm, Florian
The aim of this thesis is to explore Deep Learning and Quantum Computing approaches to reduce the challenging computing resource requirements of future High Energy Physics detector simulations while maintaining the necessary accuracy [...]
CERN-THESIS-2023-222 10.18154/RWTH-2023-09302 ; https://publications.rwth-aachen.de/record/969743/files/969743.pdf. - 306 p.

10.
Higgs analysis with quantum classifiers / Belis, Vasileios (ETH, Zurich (main)) ; González-Castillo, Samuel (Oviedo U.) ; Reissel, Christina (ETH, Zurich (main)) ; Vallecorsa, Sofia (CERN) ; Combarro, Elías F. (Oviedo U.) ; Dissertori, Günther (ETH, Zurich (main)) ; Reiter, Florentin (Zurich, ETH-CSCS/SCSC)
We have developed two quantum classifier models for the $t\bar{t}H(b\bar{b})$ classification problem, both of which fall into the category of hybrid quantum-classical algorithms for Noisy Intermediate Scale Quantum devices (NISQ). Our results, along with other studies, serve as a proof of concept that Quantum Machine Learning (QML) methods can have similar or better performance, in specific cases of low number of training samples, with respect to conventional ML methods even with a limited number of qubits available in current hardware. [...]
arXiv:2104.07692.- 2021 - 12 p. - Published in : EPJ Web Conf. 251 (2021) 03070 Fulltext: 2104.07692 - PDF; document - PDF;
In : 25th International Conference on Computing in High-Energy and Nuclear Physics (CHEP), Online, Online, 17 - 21 May 2021, pp.03070

Nenašli ste čo ste hľadali? Skúste Vašu otázku na iných serveroch:
recid:2919410 v Amazon
recid:2919410 v CERN EDMS
recid:2919410 v CERN Intranet
recid:2919410 v CiteSeer
recid:2919410 v Google Books
recid:2919410 v Google Scholar
recid:2919410 v Google Web
recid:2919410 v IEC
recid:2919410 v IHS
recid:2919410 v INSPIRE
recid:2919410 v ISO
recid:2919410 v KISS Books/Journals
recid:2919410 v KISS Preprints
recid:2919410 v NEBIS
recid:2919410 v SLAC Library Catalog