1.
|
The impact of ammonia on particle formation in the Asian Tropopause Aerosol Layer
/ Xenofontos, Christos (Cyprus Inst.) ; Kohl, Matthias (Mainz, Max Planck Inst.) ; Ruhl, Samuel (Mainz, Max Planck Inst.) ; Almeida, João (CERN ; Lisbon U.) ; Beckmann, Hannah M (Tartu U.) ; Caudillo-Plath, Lucía (Goethe U., Frankfurt (main)) ; Ehrhart, Sebastian (Mainz, Max Planck Inst.) ; Höhler, Kristina (KIT, Karlsruhe) ; Kaniyodical Sebastian, Milin (KIT, Karlsruhe) ; Kong, Weimeng (CIT-USC) et al.
AbstractDuring summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. [...]
2024 - 12 p.
- Published in : Climate. Atmos. Sci. 7 (2024) 215
Fulltext: PDF;
|
|
2.
|
Interactions of peroxy radicals from monoterpene and isoprene oxidation simulated in the radical volatility basis set
/ Schervish, Meredith (Carnegie Mellon U. ; UC, Irvine (main)) ; Heinritzi, Martin (Frankfurt U.) ; Stolzenburg, Dominik (Vienna U. ; Vienna U., Dept. Math.) ; Dada, Lubna (PSI, Villigen) ; Wang, Mingyi (Carnegie Mellon U. ; Chicago U.) ; Ye, Qing (Carnegie Mellon U. ; NCAR, Boulder) ; Hofbauer, Victoria (Carnegie Mellon U.) ; DeVivo, Jenna (Carnegie Mellon U.) ; Bianchi, Federico (Helsinki U. ; Helsinki Inst. of Phys.) ; Brilke, Sophia (Vienna U.) et al.
Isoprene affects new particle formation rates in environments and experiments also containing monoterpenes. For the most part, isoprene reduces particle formation rates, but the reason is debated. [...]
2024 - 14 p.
- Published in : Environ. Sci. Atmos 4 (2024) 740-753
Fulltext: PDF;
|
|
3.
|
Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation
/ Li, Dandan (IRC, Villeurbanne) ; Huang, Wei (U. Helsinki (main)) ; Wang, Dongyu (PSI, Villigen) ; Wang, Mingyi (Carnegie Mellon U. ; Caltech, Pasadena (main)) ; Thornton, Joel A (U. Washington, Seattle (main)) ; Caudillo, Lucía (Goethe U., Frankfurt (main)) ; Rörup, Birte (U. Helsinki (main)) ; Marten, Ruby (PSI, Villigen) ; Scholz, Wiebke (Innsbruck U.) ; Finkenzeller, Henning (U. Colorado, Boulder) et al.
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth’s climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). [...]
2024 - 14 p.
- Published in : Environ. Sci. Technol. 58 (2024) 1601-1614
|
|
4.
|
Temperature, humidity, and ionisation effect of iodine oxoacid nucleation
/ Rörup, Birte (Helsinki U.) ; He, Xu-Cheng (Helsinki U. ; Cambridge U. (main)) ; Shen, Jiali (Helsinki U.) ; Baalbaki, Rima (Helsinki U.) ; Dada, Lubna (Helsinki U. ; PSI, Villigen) ; Sipilä, Mikko (Helsinki U.) ; Kirkby, Jasper (CERN ; Frankfurt U., FIAS) ; Kulmala, Markku (Helsinki U. ; Nanjing U. (main)) ; Amorim, Antonio (Lisbon, CENTRA) ; Baccarini, Andrea (Ecole Polytechnique, Lausanne) et al.
Iodine oxoacids are recognised for their significant contribution to the formation of new particles in marine and polar atmospheres. Nevertheless, to incorporate the iodine oxoacid nucleation mechanism into global simulations, it is essential to comprehend how this mechanism varies under various atmospheric conditions. [...]
2024 - 16 p.
- Published in : Environ. Sci. Atmos. 4 (2024) 531-546
Fulltext: PDF;
|
|
5.
|
Assessing the importance of nitric acid and ammonia for particle growth in the polluted boundary layer
/ Marten, Ruby (PSI, Villigen) ; Xiao, Mao (Caltech) ; Wang, Mingyi (Caltech) ; Kong, Weimeng (Caltech) ; He, Xu-Cheng (Helsinki U. ; Finnish Meteorological Inst.) ; Stolzenburg, Dominik (Vienna U. ; Helsinki U.) ; Pfeifer, Joschka (Frankfurt U. ; CERN) ; Marie, Guillaume (Frankfurt U.) ; Wang, Dongyu S (Caltech) ; Elser, Miriam (PSI, Villigen) et al.
Aerosols formed and grown by gas-to-particle processes are a major contributor to smog and haze in megacities, despite the competition between growth and loss rates. Rapid growth rates from ammonium nitrate formation have the potential to sustain particle number in typical urban polluted conditions [...]
2024 - 10 p.
- Published in : Environ. Sci. Atmos. 4 (2024) 265-274
Fulltext: PDF;
|
|
6.
|
New particle formation from isoprene under upper-tropospheric conditions
/ Shen, Jiali (Helsinki U.) ; Russell, Douglas M (Frankfurt U., FIAS) ; DeVivo, Jenna (Carnegie Mellon U.) ; Kunkler, Felix (Mainz, Max Planck Inst.) ; Baalbaki, Rima (Helsinki U.) ; Mentler, Bernhard (Innsbruck U.) ; Scholz, Wiebke (Innsbruck U.) ; Yu, Wenjuan (Helsinki U.) ; Caudillo-Plath, Lucía (Frankfurt U., FIAS) ; Sommer, Eva (CERN ; Vienna U.) et al.
Abstract
Aircraft observations have revealed ubiquitous new particle formation in the tropical upper troposphere over the Amazon1,2 and the Atlantic and Pacific oceans3,4. Although the vapours involved remain unknown, recent satellite observations have revealed surprisingly high night-time isoprene mixing ratios of up to 1 part per billion by volume (ppbv) in the tropical upper troposphere5. [...]
2024 - 9 p.
- Published in : Nature 636 (2024) 115-123
Fulltext: PDF; External link: Interactions.org
|
|
7.
|
Gaia Data Release 3 - Stellar multiplicity, a teaser for the hidden treasure
/ Gaia Collaboration
Context.TheGaiaDR3 catalogue contains, for the first time, about 800 000 solutions with either orbital elements or trend parameters for astrometric, spectroscopic, and eclipsing binaries, and combinations of these three.Aims.With this paper, we aim to illustrate the huge potential of this large non-single-star catalogue.Methods.Using the orbital solutions and models of the binaries, we have built a catalogue of tens of thousands of stellar masses or lower limits thereof, some with consistent flux ratios. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained, and a comparison with other catalogues is performed.Results.Illustrative applications are proposed for binaries across the Hertzsprung-Russell Diagram (HRD). [...]
arXiv:2206.05595.-
2023-06 - 57 p.
- Published in : Astron. Astrophys. 674 (2023) A34
Fulltext: PDF;
|
|
8.
|
|
Fuzzy Sphere regularization of 3D CFTs
/ He, Yin-Chen (speaker)
Conformal Field Theory (CFT) represents a class of quantum field theories that have profound applications across various physics domains, from critical phenomena in statistical mechanics to quantum matter, quantum gravity, and string theory. In this talk, I will introduce our recently proposed 'fuzzy (non-commutative) sphere regularization' scheme, a method that addresses and offers a solution to the longstanding need for a non-perturbative approach to 3D CFTs. [...]
2024 - 4458.
TH String Theory Seminar
External link: Event details
In : Fuzzy Sphere regularization of 3D CFTs
|
|
9.
|
Molecular Understanding of the Enhancement in Organic Aerosol Mass at High Relative Humidity
/ Surdu, Mihnea ; Lamkaddam, Houssni ; Wang, Dongyu S ; Bell, David M ; Xiao, Mao ; Lee, Chuan Ping ; Li, Dandan ; Caudillo, Lucía ; Marie, Guillaume ; Scholz, Wiebke et al.
The mechanistic pathway by which high relative humidity (RH) affects gas–particle partitioning remains poorly understood, although many studies report increased secondary organic aerosol (SOA) yields at high RH. Here, we use real-time, molecular measurements of both the gas and particle phase to provide a mechanistic understanding of the effect of RH on the partitioning of biogenic oxidized organic molecules (from α-pinene and isoprene) at low temperatures (243 and 263 K) at the CLOUD chamber at CERN. [...]
2023 - 13 p.
- Published in : Environ. Sci. Technol. 57 (2023) 2297-2309
Fulltext: PDF;
|
|
10.
|
An intercomparison study of four different techniques for measuring the chemical composition of nanoparticles
/ Caudillo, Lucía (Frankfurt U., FIAS ; Frankfurt U.) ; Surdu, Mihnea (PSI, Villigen) ; Lopez, Brandon (Carnegie Mellon U.) ; Wang, Mingyi (Carnegie Mellon U. ; Caltech) ; Thoma, Markus (Frankfurt U., FIAS ; Frankfurt U.) ; Bräkling, Steffen (LLNL, Livermore) ; Buchholz, Angela (Aalto U.) ; Simon, Mario (Frankfurt U., FIAS ; Frankfurt U.) ; Wagner, Andrea C (Frankfurt U., FIAS ; Frankfurt U.) ; Müller, Tatjana (Frankfurt U., FIAS ; Frankfurt U. ; Mainz, Max Planck Inst.) et al.
Currently, the complete chemical characterization of nanoparticles
(< 100 nm) represents an analytical challenge, since these particles
are abundant in number but have negligible mass. Several methods for
particle-phase characterization have been recently developed to better
detect and infer more accurately the sources and fates of sub-100 nm
particles, but a detailed comparison of different approaches is missing.
Here we report on the chemical composition of secondary organic aerosol
(SOA) nanoparticles from experimental studies of α-pinene ozonolysis
at −50, −30, and −10 ∘C and intercompare the results measured by different
techniques. [...]
2023 - 19 p.
- Published in : Atmos. Chem. Phys. 23 (2023) 6613-6631
Fulltext: PDF;
|
|