1.
|
|
Terrestrial Very-Long-Baseline Atom Interferometry: Summary of the Second Workshop
/ Abdalla, Adam (Darmstadt, Tech. Hochsch.) ; Abe, Mahiro (Stanford U., Phys. Dept.) ; Abend, Sven (Leibniz U., Hannover) ; Abidi, Mouine (Leibniz U., Hannover) ; Aidelsburger, Monika (Munich, Max Planck Inst. Quantenopt. ; Munich U. ; Munich U., ASC ; MCQST, Munich) ; Alibabaei, Ashkan (Leibniz U., Hannover) ; Allard, Baptiste (LCAR, Toulouse) ; Antoniadis, John (Athens U.) ; Arduini, Gianluigi (CERN) ; Augst, Nadja (DLR, Berlin) et al.
This summary of the second Terrestrial Very-Long-Baseline Atom Interferometry (TVLBAI) Workshop provides a comprehensive overview of our meeting held in London in April 2024, building on the initial discussions during the inaugural workshop held at CERN in March 2023. [...]
arXiv:2412.14960.
-
105.
Fulltext
|
|
2.
|
Terrestrial Very-Long-Baseline Atom Interferometry: Workshop Summary
Terrestrial Very-Long-Baseline Atom Interferometry Workshop (TVLBAI 2023)
13 - 14 Mar 2023
- CERN, Geneva, Switzerland
/ Abend, Sven (Leibniz U., Hannover); Allard, Baptiste (LCAR, Toulouse); Alonso, Iván (Balearic Islands U.); Antoniadis, John (Crete U.); Araújo, Henrique (Imperial Coll., London); Arduini, Gianluigi (CERN); Arnold, Aidan S. (SUPA, UK ; Strathclyde U.); Aßmann, Tobias (Ulm U.); Augst, Nadja (DLR, Neustrelitz); Badurina, Leonardo (King's Coll. London ; Caltech) et al.
This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. [...]
2023 - 99 p.
arXiv:2310.08183
- Published in : 10.1116/5.0185291
10.1116/5.0185291
|
|
3.
|
Pulsed Production of Antihydrogen in AEgIS
/ AEgIS Collaboration
Cold antihydrogen atoms are a powerful tool to probe the validity of fundamental physics laws, and it's clear that colder atoms, generally speaking, allow an increased level of precision.
After the first production of cold antihydrogen ($\bar{H}$) in 2002, experimental efforts have progressed continuously (trapping, beam formation, spectroscopy), with competitive results already achieved by adapting to cold antiatoms techniques previously well developed for ordinary atoms. Unfortunately, the number of $\bar{H}$ atoms that can be produced in dedicated experiments is many orders of magnitude smaller than available hydrogen atoms, which are at hand in large amount, so the development of novel techniques that allow the production of $\bar{H}$ with well defined conditions (and possibly control its formation time and energy levels) is essential to improve the sensitivity of the methods applied by the different experiments.
We present here the first experimental results concerning the production of $\bar{H}$ in a pulsed mode where the time when 90\% of
the atoms are produced is known with an uncertainty of around 250~ns. [...]
2022 - 7 p.
- Published in : PoS DISCRETE2020-2021 (2022) 079
Fulltext: PDF;
In : 7th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2020-2021), Bergen, Norway, 29 Nov - 3 Dec 2021, pp.079
|
|
4.
|
Cold atoms in space: community workshop summary and proposed road-map
/ Alonso, Iván (Balearic Islands U.) ; Alpigiani, Cristiano (Washington U., Seattle) ; Altschul, Brett (South Carolina U.) ; Araújo, Henrique (Imperial Coll., London) ; Arduini, Gianluigi (CERN) ; Arlt, Jan (Aarhus U.) ; Badurina, Leonardo (King's Coll. London) ; Balaž, Antun (Belgrade, Inst. Phys.) ; Bandarupally, Satvika (Florence U. ; INFN, Florence) ; Barish, Barry C. (LIGO Lab., Caltech) et al.
We summarize the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. [...]
arXiv:2201.07789; FERMILAB-CONF-22-694-V; CERN-TH-2022-004.-
2022-11-20 - 64 p.
- Published in : EPJ Quant. Technol.: 9 (2022) , no. 1, pp. 30
Fulltext: bb4d1d31d6edd562e94939489bfc05d6 - PDF; 2201.07789 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
|
|
5.
|
AE$\overline{g}$IS latest results
/ Guatieri, F (TIFPA-INFN, Trento ; Trento U.) ; Aghion, S (Milan, Polytech. ; Bern U., LHEP) ; Amsler, C (Stefan Meyer Inst. Subatomare Phys.) ; Angela, G (Bern U., LHEP) ; Bonomi, G (Norwegian U. Sci. Tech. ; INFN, Pavia ; Pavia U.) ; Brusa, R S (TIFPA-INFN, Trento ; Trento U.) ; Caccia, M (U. Brussels (main) ; Milan U. ; INFN, Brescia) ; Caravita, R (Genoa U. ; INFN, Genoa) ; Castelli, F (U. Brussels (main) ; Milan U.) ; Cerchiari, G (Heidelberg, Max Planck Inst.) et al.
The validity of the Weak Equivalence Principle (WEP) as predicted by General Relativity has been tested up to astounding precision using ordinary matter. The lack hitherto of a stable source of a probe being at the same time electrically neutral, cold and stable enough to be measured has prevented highaccuracy testing of the WEP on anti-matter. [...]
2018 - 7 p.
- Published in : EPJ Web Conf. 181 (2018) 01037
Fulltext: PDF;
In : International Conference on Exotic Atoms and Related Topics (EXA 2017), Vienna, Austria, 11 - 15 Sep 2017, pp.01037
|
|
6.
|
Positronium Rydberg excitation diagnostic in a 1T cryogenic environment
/ Caravita, R (CERN) ; Mariazzi, S (Trento U. ; INFN, Trento) ; Aghion, S (Milan Polytechnic ; INFN, Milan) ; Amsler, C (Stefan Meyer Inst. Subatomare Phys.) ; Antonello, M (INFN, Milan ; Insubria U., Como) ; Belov, A (Mainz U., Inst. Phys. ; Moscow, INR) ; Bonomi, G (Brescia U. ; INFN, Brescia ; INFN, Pavia) ; Brusa, R S (Trento U. ; INFN, Trento) ; Caccia, M (INFN, Milan ; Insubria U., Como) ; Camper, A (CERN) et al.
Forming a pulsed beam of cold antihydrogen using charge-exchange with Rydberg positronium (Ps) is the goal of the AEḡIS collaboration, which aims to a first gravity measurement on neutral antimatter. Recently achieved results in Ps formation and laser spectroscopy in the main AEḡIS apparatus are summarized. [...]
2019 - 6 p.
- Published in : AIP Conf. Proc. 2182 (2019) 030002
In : 18th International Conference on Positron Annihilation (ICPA-18): Positron Annihilation Spectroscopy-Fundamentals, Techniques ad Applications, Orlando, United States, 19 - 24 Feb 2018, pp.030002
|
|
7.
|
|
8.
|
Imaging a positronium cloud in a 1 Tesla
/ Camper, Antoine (CERN) ; Aghion, Stefano (Milan Polytechnic ; INFN, Milan) ; Amsler, Claude (Stefan Meyer Inst. Subatomare Phys.) ; Antonello, Massimiliano (INFN, Milan ; Insubria U., Como) ; Belov, Alexander (Moscow, INR) ; Bonomi, Germano (INFM, Brescia ; INFN, Pavia) ; Brusa, Roberto (Trento U. ; TIFPA-INFN, Trento) ; Caccia, Massimo (INFN, Milan ; Insubria U., Como) ; Caravita, Ruggero (CERN) ; Castelli, Fabrizio (INFN, Milan ; Milan U.) et al.
We report on recent developments in positronium work in the frame of antihydrogen production through charge exchange in the AEgIS collaboration [1]. In particular, we present a new technique based on spatially imaging a cloud of positronium by collecting the positrons emitted by photoionization. [...]
2019 - 7 p.
- Published in : EPJ Web Conf. 198 (2019) 00004
Fulltext: PDF;
In : Quantum Technology International Conference 2018, Paris, France, 5 - 7 Sep 2018, pp.00004
|
|
9.
|
Pulsed production of antihydrogen
/ Amsler, Claude (Stefan Meyer Inst. Subatomare Phys.) ; Antonello, Massimiliano (Insubria U., Como ; INFN, Milan) ; Belov, Alexander (Moscow, INR) ; Bonomi, Germano (U. Brescia ; INFN, Pavia) ; Brusa, Roberto Sennen (Trento U. ; TIFPA-INFN, Trento) ; Caccia, Massimo (Insubria U., Como ; INFN, Milan) ; Camper, Antoine (CERN) ; Caravita, Ruggero (TIFPA-INFN, Trento ; CERN) ; Castelli, Fabrizio (INFN, Milan ; Milan U.) ; Cheinet, Patrick (LAC, Orsay) et al.
Antihydrogen atoms with K or sub-K temperature are a powerful tool to precisely probe the validity of fundamental physics laws and the design of highly sensitive experiments needs antihydrogen with controllable and well defined conditions. We present here experimental results on the production of antihydrogen in a pulsed mode in which the time when 90% of the atoms are produced is known with an uncertainty of ~250 ns. [...]
2021 - 11 p.
- Published in : Commun. Phys. 4 (2021) 19
Fulltext: PDF;
|
|
10.
|
Developments for pulsed antihydrogen production towards direct gravitational measurement on antimatter
/ Fanì, M (CERN ; INFN, Genoa ; Genoa U.) ; Antonello, M (INFN, Milan ; Insubria U., Como) ; Belov, A (Moscow, INR) ; Bonomi, G (INFM, Brescia ; INFN, Pavia) ; Brusa, R S (Trento U. ; TIFPA-INFN, Trento) ; Caccia, M (INFN, Milan ; Insubria U., Como) ; Camper, A (CERN) ; Caravita, R (TIFPA-INFN, Trento) ; Castelli, F (INFN, Milan ; Milan U.) ; Comparat, D (LAC, Orsay) et al.
A main scientific goal of the experiment is the direct measurement of the Earth’s local gravitational acceleration g on antihydrogen. The Weak Equivalence Principle is a foundation of General Relativity. [...]
2020 - 9 p.
- Published in : Phys. Scr. 95 (2020) 114001
In : 8th International Conference on New Frontiers in Physics (ICNFP 2019), Kolymbari, Crete, Greece, 21 - 29 Aug 2019, pp.114001
|
|