CERN Accelerating science

CERN Document Server 12 のレコードが見つかりました。  1 - 10次  レコードへジャンプ: 検索にかかった時間: 0.61 秒 
1.
Progress in End-to-End Optimization of Detectors for Fundamental Physics with Differentiable Programming / Aehle, Max (Unlisted ; Kaiserslautern U.) ; Arsini, Lorenzo (U. Rome La Sapienza (main) ; INFN, Rome) ; Barreiro, R. Belén (Cantabria Inst. of Phys.) ; Belias, Anastasios (Darmstadt, GSI) ; Bury, Florian (Glasgow U.) ; Cebrian, Susana (Zaragoza U.) ; Demin, Alexander (Higher Sch. of Economics, Moscow) ; Dickinson, Jennet (Fermilab) ; Donini, Julien (Unlisted ; LPC, Clermont-Ferrand ; JAEA, Ibaraki) ; Dorigo, Tommaso (Unlisted ; JAEA, Ibaraki ; INFN, Padua) et al.
In this article we examine recent developments in the research area concerning the creation of end-to-end models for the complete optimization of measuring instruments. [...]
arXiv:2310.05673 ; FERMILAB-PUB-23-608-CSAID-PPD.
- 70 p.
Fermilab Library Server - Fulltext - Fulltext
2.
Exploiting Differentiable Programming for the End-to-end Optimization of Detectors / MODE Collaboration
The coming of age of differentiable programming makes possible today to create complete computer models of experimental apparatus that include the stochastic data-generation processes, the full modeling of the reconstruction and inference procedures, and a suitably defined objective function, along with the cost of any given detector configuration, geometry and materials. [...]
2022. - 8 p.
Fulltext
3.
Second Analysis Ecosystem Workshop Report / Aly, Mohamed (Manchester U.) ; Burzynski, Jackson (Simon Fraser U.) ; Cardwell, Bryan (Virginia U.) ; Craik, Daniel C. (Zurich U.) ; van Daalen, Tal (Washington U., Seattle) ; Dado, Tomas (Dortmund U.) ; Das, Ayanabha (Prague, Tech. U.) ; Delgado Peris, Antonio (Madrid, CIEMAT) ; Doglioni, Caterina (Manchester U.) ; Elmer, Peter (Princeton U.) et al.
The second workshop on the HEP Analysis Ecosystem took place 23-25 May 2022 at IJCLab in Orsay, to look at progress and continuing challenges in scaling up HEP analysis to meet the needs of HL-LHC and DUNE, as well as the very pressing needs of LHC Run 3 analysis. [...]
arXiv:2212.04889 ; HSF-DOC-2022-02 ; FERMILAB-CONF-22-955-PPD.
- 2022. - 27 p.
Fermilab Library Server - Fulltext - Fulltext
4.
Toward the end-to-end optimization of particle physics instruments with differentiable programming / MODE Collaboration
The full optimization of the design and operation of instruments whose functioning relies on the interaction of radiation with matter is a super-human task, given the large dimensionality of the space of possible choices for geometry, detection technology, materials, data-acquisition, and information-extraction techniques, and the interdependence of the related parameters. On the other hand, massive potential gains in performance over standard, "experience-driven" layouts are in principle within our reach if an objective function fully aligned with the final goals of the instrument is maximized by means of a systematic search of the configuration space. [...]
arXiv:2203.13818.- 2023-05-25 - 56 p. - Published in : Rev. Phys. 10 (2023) 100085 Fulltext: 2203.13818 - PDF; Publication - PDF;
5.
Deep Regression of Muon Energy with a K-Nearest Neighbor Algorithm / Dorigo, Tommaso (INFN, Padua) ; Guglielmini, Sofia (Padua U.) ; Kieseler, Jan (CERN) ; Layer, Lukas (Naples U. ; INFN, Padua) ; Strong, Giles C. (Naples U. ; INFN, Padua)
Within the context of studies for novel measurement solutions for future particle physics experiments, we developed a performant kNN-based regressor to infer the energy of highly-relativistic muons from the pattern of their radiation losses in a dense and granular calorimeter. [...]
arXiv:2203.02841.
- 38 p.
Fulltext
6.
Deep Learning Methods Applied to Higgs Physics at the LHC / Strong, Giles Chatham
The impact that machine learning (ML) has had on research in high-energy physics (HEP) is undeniable; the use of ML-based classifiers in many analyses is now the norm, and they have a long history of being used within reconstruction algorithms (e.g [...]
CMS-TS-2021-024 ; CERN-THESIS-2021-211. - 2021. - 357 p.

7.
Advances in Multi-Variate Analysis Methods for New Physics Searches at the Large Hadron Collider / Stakia, Anna (Democritos Nucl. Res. Ctr. ; CERN) ; Dorigo, Tommaso (INFN, Padua) ; Banelli, Giovanni (Munich, Tech. U.) ; Bortoletto, Daniela (Oxford U.) ; Casa, Alessandro (University Coll., Dublin ; U. Padua (main)) ; de Castro, Pablo (INFN, Padua ; Padua U.) ; Delaere, Christophe (Louvain U., CP3) ; Donini, Julien (Clermont-Ferrand U.) ; Finos, Livio (U. Padua (main)) ; Gallinaro, Michele (LIP, Lisbon) et al.
Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named "AMVA4NewPhysics" studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy physics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. [...]
arXiv:2105.07530.- 2021-12 - 36 p. - Published in : Rev. Phys. 7 (2021) 100063 Fulltext: 2105.07530 - PDF; 1-s2.0-S2405428321000095-main - PDF;
8.
Calorimetric Measurement of Multi-TeV Muons via Deep Regression / Kieseler, Jan (CERN) ; Strong, Giles C. (Padua U. ; INFN, Padua) ; Chiandotto, Filippo (Padua U. ; INFN, Padua) ; Dorigo, Tommaso (INFN, Padua) ; Layer, Lukas (INFN, Padua ; Naples U. ; INFN, Naples)
The performance demands of future particle-physics experiments investigating the high-energy frontier pose a number of new challenges, forcing us to find improved solutions for the detection, identification, and measurement of final-state particles in subnuclear collisions. One such challenge is the precise measurement of muon momentum at very high energy, where an estimate of the curvature provided by conceivable magnetic fields in realistic detectors proves insufficient for achieving good momentum resolution when detecting, e.g., a narrow, high mass resonance decaying to a muon pair. [...]
arXiv:2107.02119.- 2022-01-27 - Published in : Eur. Phys. J. C 82 (2022) 79 Fulltext: 2107.02119 - PDF; document - PDF;
9.
Beyond the Standard Model in Vector Boson Scattering Signatures / Gallinaro, Michele (LIP, Lisbon) ; Long, Kenneth (CERN) ; Reuter, Jurgen (DESY) ; Ruiz, Richard (Louvain U., CP3) ; Bachas, Dinos (Aristotle U., Thessaloniki) ; Barak, Liron (Tel Aviv U.) ; Bishara, Fady (DESY) ; Brivio, Ilaria (U. Heidelberg, ITP) ; Buarque Franzosi, Diogo (Chalmers U. Tech.) ; Cacciapaglia, Giacomo (IP2I, Lyon ; Lyon U.) et al.
The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. [...]
arXiv:2005.09889 ; DESY-PROC-2020-002 ; ISBN 978-3-945931-33-2 ; ISSN 1435-8077, CP3-20-17 ; VBSCAN-PUB-04-20.
- 16 p.
Fulltext
10.
Beyond the Standard Model in Vector Boson Scattering Signatures / Long, Kenneth David (CERN) ; Gallinaro, Michele (LIP Laboratorio de Instrumentacao e Fisica Experimental de Particulas (PT)) ; Reuter, Jürgen (DESY) ; Ruiz, Richard (Université Catholique de Louvain) ; Salvioni, Ennio (CERN) ; Bachas, Dinos (Aristotle University of Thessaloniki (GR)) ; Barak, Liron (Tel Aviv University (IL)) ; Brivio, Ilaria (Universität Heidelberg) ; Bishara, Fady (DESY) ; Franzosi, Diogo (Chalmers University of Technology) et al.
The high-energy scattering of massive electroweak bosons, known as vector boson scattering (VBS), is a sensitive probe of new physics. [...]
CERN-OPEN-2020-008 ; DESY-PROC-2020-002 ; ISBN-978-3-945931-33-2 ; ISSN-1435-8077 ; CP3-20-17 ; VBSCAN-PUB-04-20.
- 2020. - 16 p.
Preprint

CERN Document Server : 12 のレコードが見つかりました。   1 - 10次  レコードへジャンプ:
似た著者名:
1 Strong, G
8 Strong, G.
656 Strong, Giles
1 Strong, Giles C
5 Strong, Giles Chatham
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
捜していたものを見つけなかったならば、他のサーバーもお試しください:
Strong, Giles C. 中の Amazon
Strong, Giles C. 中の CERN EDMS
Strong, Giles C. 中の CERN Intranet
Strong, Giles C. 中の CiteSeer
Strong, Giles C. 中の Google Books
Strong, Giles C. 中の Google Scholar
Strong, Giles C. 中の Google Web
Strong, Giles C. 中の IEC
Strong, Giles C. 中の IHS
Strong, Giles C. 中の INSPIRE
Strong, Giles C. 中の ISO
Strong, Giles C. 中の KISS Books/Journals
Strong, Giles C. 中の KISS Preprints
Strong, Giles C. 中の NEBIS
Strong, Giles C. 中の SLAC Library Catalog
Strong, Giles C. 中の Scirus