CERN Accelerating science

CERN Document Server 33 record trovati  1 - 10successivofine  salta al record: La ricerca ha impiegato 0.73 secondi. 
1.
MoEDAL search in the CMS beam pipe for magnetic monopoles produced via the Schwinger effect / MoEDAL Collaboration
We report on a search for magnetic monopoles (MMs) produced in ultraperipheral Pb--Pb collisions during Run-1 of the LHC. The beam pipe surrounding the interaction region of the CMS experiment was exposed to 184.07 µ b$^{-1}$ of Pb--Pb collisions at 2.76 TeV center-of-mass energy per collision in December 2011, before being removed in 2013. [...]
arXiv:2402.15682.- 2024-08-15 - 7 p. - Published in : Phys. Rev. Lett. 133 (2024) 071803 Fulltext: 2402.15682 - PDF; Publication - PDF;
2.
Search for Highly-Ionizing Particles in pp Collisions During LHC Run-2 Using the Full MoEDAL DetectorSearch for Highly Ionizing Particles in <math display="inline"><mi>p</mi><mi>p</mi></math> Collisions during LHC Run 2 Using the Full MoEDAL Detector / MoEDAL Collaboration
This search for Magnetic Monopoles (MMs) and High Electric Charge Objects (HECOs) with spins 0, 1/2 and 1, uses for the first time the full MoEDAL detector, exposed to 6.6 fb^-1 proton-proton collisions at 13 TeV. The results are interpreted in terms of Drell-Yan and photon-fusion pair production. [...]
arXiv:2311.06509.- 2025-02-20 - 7 p. - Published in : Phys. Rev. Lett. 134 (2025) 7 Fulltext: PDF; Fulltext from Publisher: PDF;
3.
Strong Interaction Physics at the Luminosity Frontier with 22 GeV Electrons at Jefferson Lab / Accardi, A. (Hampton U.) ; Achenbach, P. (Jefferson Lab) ; Adhikari, D. (Virginia Tech.) ; Afanasev, A. (George Washington U.) ; Akondi, C.S. (Florida State U.) ; Akopov, N. (Yerevan Phys. Inst.) ; Albaladejo, M. (Valencia U., IFIC) ; Albataineh, H. (Texas A-M ; HARC, Woodlands) ; Albrecht, M. (Jefferson Lab) ; Almeida-Zamora, B. (Sonora U.) et al.
This document presents the initial scientific case for upgrading the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab (JLab) to 22 GeV. It is the result of a community effort, incorporating insights from a series of workshops conducted between March 2022 and April 2023. [...]
arXiv:2306.09360; JLAB-PHY-23-3840; JLAB-THY-23-3848.- 2024-09-04 - 139 p. - Published in : Eur. Phys. J. A 60 (2024) 173 Fulltext: PDF; External link: JLab Document Server
4.
MoEDAL-MAPP, an LHC Dedicated Detector Search Facility / MoEDAL-MAPP Collaboration
During LHC's Run-2 the MoEDAL experiment, the LHC's first dedicated search experiment, took over 6 fb^-1 of data at IP8, with p-p and Pb-Pb collisions, operating with 100% efficiency. [...]
arXiv:2209.03988.
- 39.
eConf - Fulltext
5.
Search for highly-ionizing particles in $pp$ collisions at the LHC’s Run-1 using the prototype MoEDAL detector / MoEDAL Collaboration
A search for highly electrically charged objects (HECOs) and magnetic monopoles is presented using 2.2 fb-1 of p - p collision data taken at a centre of mass energy (ECM) of 8 TeV by the MoEDAL detector during LHC's Run-1. The data were collected using MoEDAL's prototype Nuclear Track Detector array and the Trapping Detector array. [...]
arXiv:2112.05806.- 2022-08-10 - 16 p. - Published in : Eur. Phys. J. C 82 (2022) 694 Fulltext: 2112.05806 - PDF; document - PDF;
6.
Search for magnetic monopoles produced via the Schwinger mechanism / MoEDAL Collaboration
Schwinger showed that electrically-charged particles can be produced in a strong electric field by quantum tunnelling through the Coulomb barrier. By electromagnetic duality, if magnetic monopoles (MMs) exist, they would be produced by the same mechanism in a sufficiently strong magnetic field. [...]
arXiv:2106.11933.- 2022-02-02 - 16 p. - Published in : Nature 602 (2022) 63-67 Fulltext: PDF; External link: Physics Today article
7.
Timepix3 as solid-state time-projection chamber in particle and nuclear physics / MOEDAL Collaboration
Timepix3 devices are hybrid pixel detectors developed within the Medipix3 collaboration at CERN providing a simultaneous measurement of energy (ToT) and time of arrival (ToA) in each of its 256$\times$256 pixels (pixel pitch: 55 µm). The timestamp resolution below 2 ns allows a measurement of charge carrier drift times, so that particle trajectories can be reconstructed in 3D on a microscopic level ($z$-resolution: 30-60 µm). [...]
SISSA, 2021 - 8 p. - Published in : PoS ICHEP2020 (2021) 720 Fulltext: PDF;
In : 40th International Conference on High Energy Physics (ICHEP), Prague, Czech Republic, 28 Jul - 6 Aug 2020, pp.720
8.
First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions / MoEDAL Collaboration
The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. [...]
arXiv:2002.00861.- 2021-02-20 - 7 p. - Published in : Phys. Rev. Lett. Article from SCOAP3: PDF; Fulltext: PDF;
9.
Pion and Kaon Structure at the Electron-Ion Collider / Aguilar, Arlene C. (Campinas State U.) ; Ahmed, Zafir (Regina U.) ; Aidala, Christine (Michigan U.) ; Ali, Salina (Catholic U.) ; Andrieux, Vincent (Illinois U., Urbana (main) ; CERN) ; Arrington, John (Argonne (main)) ; Bashir, Adnan (IFM-UMSNH, Michoacan) ; Berdnikov, Vladimir (Catholic U.) ; Binosi, Daniele (ECT, Trento ; Fond. Bruno Kessler, Trento) ; Chang, Lei (Nankai U.) et al.
Understanding the origin and dynamics of hadron structure and in turn that of atomic nuclei is a central goal of nuclear physics. This challenge entails the questions of how does the roughly 1 GeV mass-scale that characterizes atomic nuclei appear; why does it have the observed value; and, enigmatically, why are the composite Nambu-Goldstone (NG) bosons in quantum chromodynamics (QCD) abnormally light in comparison? In this perspective, we provide an analysis of the mass budget of the pion and proton in QCD; discuss the special role of the kaon, which lies near the boundary between dominance of strong and Higgs mass-generation mechanisms; and explain the need for a coherent effort in QCD phenomenology and continuum calculations, in exa-scale computing as provided by lattice QCD, and in experiments to make progress in understanding the origins of hadron masses and the distribution of that mass within them. [...]
arXiv:1907.08218; NJU-INP 001/19.- 2019-10-31 - 16 p. - Published in : Eur. Phys. J. A 55 (2019) 190 Fulltext: PDF;
10.
Magnetic monopole search with the full MoEDAL trapping detector in 13 TeV $pp$ collisions interpreted in photon-fusion and Drell-Yan production / MoEDAL Collaboration
MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. [...]
arXiv:1903.08491; CERN-EP-2019-039; IFIC/19-09; KCL-PH-TH/2019-17.- 2019-07-10 - 7 p. - Published in : Phys. Rev. Lett. 123 (2019) 021802 Article from SCOAP3: PDF; Fulltext: PDF; Fulltext from Publisher: PDF;

CERN Document Server : 33 record trovati   1 - 10successivofine  salta al record:
Vedi anche: autori con nomi simili
108 Papavassiliou, J
32 Papavassiliou, Joannis
Sei interessato ad essere notificato su nuovi risultati di questa ricerca?
Imposta un avviso via mail personale o iscriviti al feed RSS.
Non hai trovato quello che cercavi? Prova la ricerca su altri server:
Papavassiliou, J. in Amazon
Papavassiliou, J. in CERN EDMS
Papavassiliou, J. in CERN Intranet
Papavassiliou, J. in CiteSeer
Papavassiliou, J. in Google Books
Papavassiliou, J. in Google Scholar
Papavassiliou, J. in Google Web
Papavassiliou, J. in IEC
Papavassiliou, J. in IHS
Papavassiliou, J. in INSPIRE
Papavassiliou, J. in ISO
Papavassiliou, J. in KISS Books/Journals
Papavassiliou, J. in KISS Preprints
Papavassiliou, J. in NEBIS
Papavassiliou, J. in SLAC Library Catalog
Papavassiliou, J. in Scirus