CERN Accelerating science

CERN Document Server 2 records found  Search took 0.87 seconds. 
1.
End-to-End Jet Classification of Boosted Top Quarks with CMS Open Data / Andrews, Michael (Carnegie Mellon U.) ; Burkle, Bjorn (Brown U.) ; Chen, Yi-fan (Digital Pathways, Mtn. View) ; DiCroce, Davide (Alabama U.) ; Gleyzer, Sergei (Alabama U.) ; Heintz, Ulrich (Brown U.) ; Narain, Meenakshi (Brown U.) ; Paulini, Manfred (Carnegie Mellon U.) ; Pervan, Nikolas (Brown U.) ; Shafi, Yusef (Google Inc. ; Digital Pathways, Mtn. View) et al.
We describe a novel application of the end-to-end deep learning technique to the task of discriminating top quark-initiated jets from those originating from the hadronization of a light quark or a gluon. The end-to-end deep learning technique combines deep learning algorithms and low-level detector representation of the high-energy collision event. [...]
arXiv:2104.14659.- 2021 - 9 p. - Published in : EPJ Web Conf.: 251 (2021) , pp. 04030
- Published in : Phys. Rev. D Fulltext: 2104.14659 - PDF; document - PDF;
In : 25th International Conference on Computing in High-Energy and Nuclear Physics (CHEP), Online, Online, 17 - 21 May 2021, pp.04030
2.
Machine Learning in High Energy Physics Community White Paper / Albertsson, Kim (Lulea U.) ; Altoe, Piero (NVIDIA, Santa Clara) ; Anderson, Dustin (Caltech) ; Anderson, John ; Andrews, Michael (Carnegie Mellon U.) ; Araque Espinosa, Juan Pedro (LIP, Lisbon) ; Aurisano, Adam (Cincinnati U.) ; Basara, Laurent (INFN, Padua ; Padua U.) ; Bevan, Adrian (University Coll. London) ; Bhimji, Wahid (LBL, Berkeley) et al.
Machine learning has been applied to several problems in particle physics research, beginning with applications to high-level physics analysis in the 1990s and 2000s, followed by an explosion of applications in particle and event identification and reconstruction in the 2010s. In this document we discuss promising future research and development areas for machine learning in particle physics. [...]
arXiv:1807.02876; FERMILAB-PUB-18-318-CD-DI-PPD.- 2018-10-18 - 27 p. - Published in : J. Phys.: Conf. Ser. 1085 (2018) 022008 Fulltext: Albertsson_2018_J._Phys.__Conf._Ser._1085_022008 - PDF; 1807.02876 - PDF; fermilab-pub-18-318-cd-di-ppd - PDF; fulltext1681439 - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server (fulltext available)
In : 18th International Workshop on Advanced Computing and Analysis Techniques in Physics Research, Seattle, WA, USA, 21 - 25 Aug 2017, pp.022008

See also: similar author names
93 Yang, K
1 Yang, K ;
37 Yang, K C
5 Yang, K H
1 Yang, K M
4 Yang, K Q
52 Yang, K S
1 Yang, K W
2 Yang, K Y
15 Yang, K.
5 Yang, K.Z.
6 Yang, Kai
2 Yang, Kaike
1 Yang, Kan
106 Yang, Kang
2 Yang, Karan
21 Yang, Ke
1 Yang, Kesheng
4 Yang, Kevin
8 Yang, Ki Youl
3 Yang, Kia-Jung
4 Yang, Kichoon
1 Yang, Kun-Lin
1 Yang, Kung-Wei
2 Yang, KwangSoo
24 Yang, Kwei-Chou
2 Yang, Kyeongcheol
Interested in being notified about new results for this query?
Set up a personal email alert or subscribe to the RSS feed.
Haven't found what you were looking for? Try your search on other servers:
Yang, Kun in Amazon
Yang, Kun in CERN EDMS
Yang, Kun in CERN Intranet
Yang, Kun in CiteSeer
Yang, Kun in Google Books
Yang, Kun in Google Scholar
Yang, Kun in Google Web
Yang, Kun in IEC
Yang, Kun in IHS
Yang, Kun in INSPIRE
Yang, Kun in ISO
Yang, Kun in KISS Books/Journals
Yang, Kun in KISS Preprints
Yang, Kun in NEBIS
Yang, Kun in SLAC Library Catalog
Yang, Kun in Scirus