CERN Accelerating science

CERN Document Server 660 Datensätze gefunden  1 - 10nächsteEnde  gehen zum Datensatz: Die Suche hat 0.64 Sekunden gedauert. 
1.
Transformers for Generalized Fast Shower Simulation / Raikwar, Piyush (CERN) ; Cardoso, Renato (CERN) ; Chernyavskaya, Nadezda (CERN) ; Jaruskova, Kristina (CERN) ; Pokorski, Witold (CERN) ; Salamani, Dalila (CERN) ; Srivatsa, Mudhakar (IBM Watson Res. Ctr.) ; Tsolaki, Kalliopi (CERN) ; Vallecorsa, Sofia (CERN) ; Zaborowska, Anna (CERN)
Recently, transformer-based foundation models have proven to be a generalized architecture applicable to various data modalities, ranging from text to audio and even a combination of multiple modalities. Transformers by design should accurately model the non-trivial structure of particle showers thanks to the absence of strong inductive bias, better modeling of long-range dependencies, and interpolation and extrapolation capabilities. [...]
2024 - 8 p. - Published in : EPJ Web Conf. 295 (2024) 09039 Fulltext: PDF;
In : 26th International Conference on Computing in High Energy & Nuclear Physics, Norfolk, Virginia, Us, 8 - 12 May 2023, pp.09039
2.
Precise Quantum Angle Generator Designed for Noisy Quantum Devices / Rehm, Florian (CERN ; DESY) ; Vallecorsa, Sofia (RWTH Aachen U.) ; Borras, Kerstin (DESY) ; Krücker, Dirk (RWTH Aachen U.) ; Grossi, Michele (RWTH Aachen U.) ; Varo, Valle (RWTH Aachen U.)
The Quantum Angle Generator (QAG) is a cutting-edge quantum machine learning model designed to generate precise images on current Noise Intermediate Scale Quantum devices. It utilizes variational quantum circuits and incorporates the MERA-upsampling architecture, achieving exceptional accuracy. [...]
2024 - 8 p. - Published in : EPJ Web Conf. 295 (2024) 12006 Fulltext: PDF;
In : 26th International Conference on Computing in High Energy & Nuclear Physics, Norfolk, Virginia, Us, 8 - 12 May 2023, pp.12006
3.
Measurements With A Quantum Vision Transformer: A Naive Approach / Pasquali, Dominic (UC, Santa Cruz ; CERN) ; Grossi, Michele (CERN) ; Vallecorsa, Sofia (CERN)
In mainstream machine learning, transformers are gaining widespread usage. As Vision Transformers rise in popularity in computer vision, they now aim to tackle a wide variety of machine learning applications. [...]
2024 - 8 p. - Published in : EPJ Web Conf. 295 (2024) 12003 Fulltext: PDF;
In : 26th International Conference on Computing in High Energy & Nuclear Physics, Norfolk, Virginia, Us, 8 - 12 May 2023, pp.12003
4.
CaloChallenge 2022: A Community Challenge for Fast Calorimeter Simulation / Krause, Claudius (ed.) (Vienna, OAW ; Heidelberg U.) ; Faucci Giannelli, Michele (ed.) (INFN, Rome2 ; Chalmers U. Tech.) ; Kasieczka, Gregor (ed.) (Hamburg U.) ; Nachman, Benjamin (ed.) (LBNL, Berkeley) ; Salamani, Dalila (ed.) (CERN) ; Shih, David (ed.) (Rutgers U., Piscataway) ; Zaborowska, Anna (ed.) (CERN) ; Amram, Oz (Fermilab) ; Borras, Kerstin (DESY ; Aachen, Tech. Hochsch.) ; Buckley, Matthew R. (Rutgers U., Piscataway) et al.
We present the results of the "Fast Calorimeter Simulation Challenge 2022" - the CaloChallenge. [...]
arXiv:2410.21611 ; HEPHY-ML-24-05 ; FERMILAB-PUB-24-0728-CMS ; TTK-24-43.
- 204.
Fermilab Library Server - Fulltext - Fulltext
5.
Spooky Quantum Action: From Thought Experiments to Real World Quantum Technology Application / Grossi, Michele (CERN) ; Di Meglio, Alberto (CERN) ; Vallecorsa, Sofia (CERN)
This chapter explores quantum physics, tracing the journey from theoretical concepts to real-world applications. [...]
2024 - 16.
6.
A Study on Quantum Graph Neural Networks Applied to Molecular Physics / Piperno, Simone (U. Rome La Sapienza (main)) ; Ceschini, Andrea (U. Rome La Sapienza (main)) ; Chang, Su Yeon (CERN ; LPHE, Lausanne) ; Grossi, Michele (CERN) ; Vallecorsa, Sofia (CERN) ; Panella, Massimo (U. Rome La Sapienza (main))
This paper introduces a novel architecture for Quantum Graph Neural Networks, which is significantly different from previous approaches found in the literature. [...]
arXiv:2408.03427.
- 20.
Fulltext
7.
Order Parameter Discovery for Quantum Many-Body Systems / Mariella, Nicola (Unlisted, IE) ; Murphy, Tara (Unlisted, IE ; Cambridge U.) ; Di Marcantonio, Francesco (Basque U., Bilbao) ; Najafi, Khadijeh (IBM Watson Res. Ctr.) ; Vallecorsa, Sofia (CERN) ; Zhuk, Sergiy (Unlisted, IE) ; Rico, Enrique (Basque U., Bilbao ; Donostia Intl. Phys. Ctr., San Sebastian ; IKERBASQUE, Bilbao)
Quantum phase transitions reveal deep insights into the behavior of many-body quantum systems, but identifying these transitions without well-defined order parameters remains a significant challenge. [...]
arXiv:2408.01400.
- 15.
Fulltext
8.
Guided quantum compression for high dimensional data classification / Belis, Vasilis (Zurich, ETH) ; Odagiu, Patrick (Zurich, ETH) ; Grossi, Michele (CERN) ; Reiter, Florentin (Zurich, ETH) ; Dissertori, Günther (Zurich, ETH) ; Vallecorsa, Sofia (CERN)
Quantum machine learning provides a fundamentally different approach to analyzing data. However, many interesting datasets are too complex for currently available quantum computers. [...]
arXiv:2402.09524.- 2024-07-16 - 11 p. - Published in : Mach. Learn. Sci. Tech. 5 (2024) 035010 Fulltext: document - PDF; 2402.09524 - PDF;
9.
Symmetry Breaking in Geometric Quantum Machine Learning in the Presence of Noise / Tüysüz, Cenk (DESY ; Humboldt U., Berlin) ; Chang, Su Yeon (CERN ; Ecole Polytechnique, Lausanne) ; Demidik, Maria (DESY ; Cyprus Inst.) ; Jansen, Karl (DESY ; Cyprus Inst.) ; Vallecorsa, Sofia (CERN) ; Grossi, Michele (CERN)
Geometric quantum machine learning based on equivariant quantum neural networks (EQNN) recently appeared as a promising direction in quantum machine learning. Despite the encouraging progress, the studies are still limited to theory, and the role of hardware noise in EQNN training has never been explored. [...]
arXiv:2401.10293.- 2024-07-01 - 20 p. - Published in : PRX Quantum 5 (2024) 030314 Fulltext: 2401.10293 - PDF; Publication - PDF;
10.
Not yet available
Foundation models / Vallecorsa, Sofia (speaker) (CERN) ; Luise, Ilaria (speaker) (CERN)
Description Foundation models, also known as large-scale self-supervised models, have revolutionized the field of artificial intelligence. These models, such as ChatGPT and AlphaFold, are pre-trained on massive amounts of data and can be fine-tuned for a wide range of downstream tasks [...]
2024 - 7111. CERN openlab summer student lecture programme External link: Event details In : Foundation models

CERN Document Server : 660 Datensätze gefunden   1 - 10nächsteEnde  gehen zum Datensatz:
Sehen Sie auch: ähnliche Autornamen
190 Vallecorsa, S
37 Vallecorsa, S.
6 Vallecorsa, Sofia
Sind Sie interessiert über neue Ergebnisse zu dieser Suchabfrage informiert zu werden?
Definieren Sie eine persönliche E-Mail-Benachrichtigung oder abonnieren Sie den RSS Feed.
Haben Sie nicht gefunden was Sie suchten? Versuchen Sie Ihre Suche auf anderen Servern:
Vallecorsa, Sofia in Amazon
Vallecorsa, Sofia in CERN EDMS
Vallecorsa, Sofia in CERN Intranet
Vallecorsa, Sofia in CiteSeer
Vallecorsa, Sofia in Google Books
Vallecorsa, Sofia in Google Scholar
Vallecorsa, Sofia in Google Web
Vallecorsa, Sofia in IEC
Vallecorsa, Sofia in IHS
Vallecorsa, Sofia in INSPIRE
Vallecorsa, Sofia in ISO
Vallecorsa, Sofia in KISS Books/Journals
Vallecorsa, Sofia in KISS Preprints
Vallecorsa, Sofia in NEBIS
Vallecorsa, Sofia in SLAC Library Catalog
Vallecorsa, Sofia in Scirus