1.
|
|
2.
|
A Combined Testing and Modelling Methodology for the Mechanics of High-Field Superconducting Magnets
/ Bertarelli, Alessandro (CERN) ; Guinchard, Michael (CERN) ; Holko, Michal (CERN) ; Lackner, Friedrich (CERN) ; Masci, Marco (CERN) ; de Frutos, Oscar Sacristan (CERN) ; Savary, Frédéric (CERN) ; Wolf, Felix (CERN)
The use of superconducting composite cables based
on Nb3Sn, an intermetallic compound of Niobium and Tin, is one
of the favorite routes to reach magnetic fields higher than 10 T
in state-of-the-art accelerator magnets. The brittle and nonlinear
nature of the epoxy-impregnated Nb3Sn Rutherford cable makes
challenging to predict its mechanical limits and, consequently, the
overall performance of the magnet. [...]
2024 - 11 p.
- Published in : IEEE Trans. Appl. Supercond. 34 (2024) 1-11
Fulltext: PDF;
|
|
3.
|
The Development of MBRD Magnets, the Separation/Recombination Dipoles for the LHC High Luminosity Upgrade
/ Farinon, Stefania (INFN, Genoa) ; Angius, Silvano (ASG Supercond., Genova) ; Barutti, Alberto (ASG Supercond., Genova) ; Bersani, Andrea (INFN, Genoa) ; Bracco, Michela (Genoa U. ; INFN, Genoa) ; Caiffi, Barbara (INFN, Genoa) ; Fabbricatore, Pasquale (INFN, Genoa) ; Fiscarelli, Lucio (CERN) ; Foussat, Arnaud (CERN) ; Gagno, Andrea (Genoa U. ; INFN, Genoa) et al.
As part of the high-luminosity upgrade of CERN LHC accelerator project, the National Institute of Nuclear Physics (INFN) in Genoa, Italy, has developed the MBRD separation-recombination dipole, also known as D2, whose function is to bring beams into collision before and after the interaction regions of the CMS and ATLAS experiments. It is a NbTi cos-theta double aperture dipole that generates a 4.5 T field in a 105 mm aperture, with a magnetic length of 7.78 m, and has the specific feature that the magnetic field in the two apertures is oriented in the same direction. [...]
2024 - 5 p.
- Published in : IEEE Trans. Appl. Supercond. 34 (2024) 4003205
|
|
4.
|
|
5.
|
Assembly and Test Results of the RMM1a,b Magnet, a CERN Technology Demonstrator Towards Nb3Sn Ultimate Performance
/ Gautheron, Emma (CERN) ; Bordini, Bernardo (CERN) ; Campagna, Guillaume (CERN) ; Felice, Hélène (CERN) ; Fleiter, Jerome (CERN) ; Guinchard, Michael (CERN) ; Izquierdo Bermudez, Susana (CERN) ; Mugnier, Sylvain (CERN) ; Perez, Juan Carlos (CERN) ; Petrone, Carlo (CERN) et al.
As part of the High Field Magnet technology development carried out at CERN, demonstrators are under construction to explore the full potential of Nb 3 Sn. The Racetrack Model Magnet (RMM) is one of them, building upon the successful Enhanced Racetrack Model Coil (eRMC) eRMC1a magnet which reached 16.5 T peak field or 16.3 T bore field at 1.9 K. [...]
2023 - 8 p.
- Published in : IEEE Trans. Appl. Supercond. 33 (2023) 1-8
|
|
6.
|
Beam-beam long range compensator mechanical demonstrator
/ Sito, Leonardo (CERN ; Naples U.) ; Rossi, Adriana (CERN) ; Bertarelli, Alessandro (CERN) ; Accettura, Carlotta (CERN) ; Carra, Federico (CERN) ; Motschmann, Fritz (CERN) ; Sterbini, Guido (CERN) ; Guardia Valenzuela, J (CERN) ; Gentini, Luca (CERN) ; Garlaschè, Marco (CERN) et al.
Beam-Beam Long-Range Compensators employing current-carrying wires are considered as valuable options in hadron colliders to increase dynamic aperture at small crossing angles. This paper presents a simple design proposal for application at CERN LHC. [...]
2023 - 3 p.
- Published in : JACoW IPAC 2023 (2023) THPM015
Fulltext: PDF;
In : 14th International Particle Accelerator Conference (IPAC 2023), Venice, Italy, 7 - 12 May 2023, pp.THPM015
|
|
7.
|
|
8.
|
The MBRD Dipoles for the Luminosity Upgrade at the LHC: From Prototype Tests to the Series Production
/ Farinon, Stefania (INFN, Genoa ; Genoa U.) ; Angius, Silvano (ASG Supercond., Genova) ; Barutti, Alberto (ASG Supercond., Genova) ; Bersani, Andrea (INFN, Genoa ; Genoa U.) ; Caiffi, Barbara (INFN, Genoa ; Genoa U.) ; Fabbricatore, Pasquale (INFN, Genoa ; Genoa U.) ; Fiscarelli, Lucio (CERN) ; Foussat, Arnaud (CERN) ; Guinchard, Michael (CERN) ; Levi, Filippo (INFN, Genoa ; Genoa U.) et al.
The recombination dipoles MBRD for the High Luminosity upgrade of the Large Hadron Collider (HL-LHC) at CERN are double-aperture superconducting magnets generating a central magnetic field of 4.5 T in a 105 mm diameter bore, directed in the same direction in both apertures. The integrated magnetic field is 35 T-m in a magnetic length of 7.78 m: with respect to the corresponding magnet presently installed in LHC, the aperture is larger, the length is smaller and the central field is higher. [...]
2023 - 6 p.
- Published in : IEEE Trans. Appl. Supercond. 33 (2023) 4000306
In : Applied Superconductivity Conference, Honolulu, Hawaii, United States, 23 - 28 Oct 2022
|
|
9.
|
Status of the MQXFB Nb$_3$Sn quadrupoles for the HL-LHC
/ Izquierdo Bermudez, Susana (CERN) ; Ambrosio, Giorgio (Fermilab) ; Apollinari, Giorgio (Fermilab) ; Ballarino, Amalia (CERN) ; Barth, Christian (CERN) ; Crouvizier, Mickael Denis (CERN) ; Duarte Ramos, Delio (CERN) ; Devred, Arnaud (CERN) ; Feher, Sandor (Fermilab) ; Felice, Helene (CERN) et al.
The cold powering test of the first two prototypes of the MQXFB quadrupoles (MQXFBP1, now disassembled, and MQXFBP2), the Nb3Sn inner triplet magnets to be installed in the HL-LHC, has validated many features of the design, such as field quality and quench protection, but has found performance limitations. In fact, both magnets showed a similar phenomenology, characterized by reproducible quenches in the straight part inner layer pole turn, with absence of training and limiting the performance at 93% (MQXFBP1) and 98% (MQXFBP2) of the nominal current at 1.9 K, required for HL-LHC operation at 7 TeV. [...]
FERMILAB-PUB-22-860-TD.-
2023 - 9 p.
- Published in : IEEE Trans. Appl. Supercond. 33 (2023) 4001209
Fulltext: PDF; External link: Fermilab Library Server
|
|
10.
|
|