CERN Accelerating science

CERN Document Server 20 registres trobats  1 - 10següent  anar al registre: La cerca s'ha fet en 0.76 segons. 
1.
Accelerating Machine Learning Inference with GPUs in ProtoDUNE Data Processing / Cai, Tejin (York U., Canada) ; Herner, Kenneth (Fermilab) ; Yang, Tingjun (Fermilab) ; Wang, Michael (Fermilab) ; Flechas, Maria Acosta (Fermilab) ; Harris, Philip (MIT) ; Holzman, Burt (Fermilab) ; Pedro, Kevin (Fermilab) ; Tran, Nhan (Fermilab)
We study the performance of a cloud-based GPU-accelerated inference server to speed up event reconstruction in neutrino data batch jobs. Using detector data from the ProtoDUNE experiment and employing the standard DUNE grid job submission tools, we attempt to reprocess the data by running several thousand concurrent grid jobs, a rate we expect to be typical of current and future neutrino physics experiments. [...]
arXiv:2301.04633; FERMILAB-PUB-22-944-ND-PPD-SCD.- 2023 - 13 p. - Published in : Comput. Softw. Big Sci. 7 (2023) 11 Fulltext: 2301.04633 - PDF; Publication - PDF; FERMILAB-PUB-22-944-ND-PPD-SCD - PDF; External link: Fermilab Accepted Manuscript
2.
The U.S. CMS HL-LHC R and D Strategic Plan / CMS Collaboration
The HL-LHC run is anticipated to start at the end of this decade and will pose a significant challenge for the scale of the HEP software and computing infrastructure. The mission of the U.S. [...]
arXiv:2312.00772; FERMILAB-CONF-23-531-CSAID-PPD; CMS-CR-2023-131.- Geneva : CERN, 2024 - 8 p. - Published in : EPJ Web Conf. 295 (2024) 04050 Fulltext: 2312.00772 - PDF; document - PDF; ba611daf6b6077be106a727f4c947dce - PDF; CR2023_131 - PDF; External link: Fermilab Library Server
In : 26th International Conference on Computing in High Energy & Nuclear Physics, Norfolk, Virginia, Us, 8 - 12 May 2023
3.
Snowmass 2021 Computational Frontier CompF03 Topical Group Report: Machine Learning / Shanahan, Phiala (MIT) ; Terao, Kazuhiro (SLAC) ; Whiteson, Daniel (UC, Irvine) ; Aarts, Gert (Swansea U. ; ECT, Trento ; Fond. Bruno Kessler, Trento) ; Adelmann, Andreas (Northeastern U. ; PSI, Villigen) ; Akchurin, N. (Texas Tech.) ; Alexandru, Andrei (George Washington U. ; Maryland U.) ; Amram, Oz (Johns Hopkins U.) ; Andreassen, Anders (Google Inc.) ; Apresyan, Artur (Fermilab) et al.
The rapidly-developing intersection of machine learning (ML) with high-energy physics (HEP) presents both opportunities and challenges to our community. [...]
arXiv:2209.07559 ; FERMILAB-CONF-22-719-ND-PPD-QIS-SCD.
-
Fermilab Library Server - eConf - Fulltext - Fulltext
4.
FTS3: Data Movement Service in containers deployed in OKD / Lobato Pardavila, Lorena (Fermilab) ; Holzman, Burt (Fermilab) ; Karavakis, Edward (CERN) ; Bryant, Lincoln (Chicago U., EFI) ; Timm, Steven (Fermilab)
The File Transfer Service (FTS3) is a data movement service developed at CERN which is used to distribute the majority of the Large Hadron Collider’s data across the Worldwide LHC Computing Grid (WLCG) infrastructure. At Fermilab, we have deployed FTS3 instances for Intensity Frontier experiments (e.g. [...]
FERMILAB-CONF-21-053-SCD.- 2021 - 6 p. - Published in : EPJ Web Conf. 251 (2021) 02058 Fulltext: document - PDF; fermilab-conf-21-053-scd - PDF;
In : 25th International Conference on Computing in High-Energy and Nuclear Physics (CHEP), Online, Online, 17 - 21 May 2021, pp.02058
5.
Applications and Techniques for Fast Machine Learning in Science / Deiana, Allison McCarn (Southern Methodist U.) ; Tran, Nhan (Fermilab ; Northwestern U. (main)) ; Agar, Joshua (Lehigh U. (main)) ; Blott, Michaela (Xilinx, Dublin) ; Di Guglielmo, Giuseppe (Columbia U. (main)) ; Duarte, Javier (UC, San Diego) ; Harris, Philip (MIT) ; Hauck, Scott (George Washington U. (main)) ; Liu, Mia (Purdue U.) ; Neubauer, Mark S. (Illinois U., Urbana) et al.
In this community review report, we discuss applications and techniques for fast machine learning (ML) in science -- the concept of integrating power ML methods into the real-time experimental data processing loop to accelerate scientific discovery. The material for the report builds on two workshops held by the Fast ML for Science community and covers three main areas: applications for fast ML across a number of scientific domains; techniques for training and implementing performant and resource-efficient ML algorithms; and computing architectures, platforms, and technologies for deploying these algorithms. [...]
arXiv:2110.13041; FERMILAB-PUB-21-502-AD-E-SCD.- 2022-04-12 - 56 p. - Published in : Front. Big Data 5 (2022) 787421 Fulltext: 2110.13041 - PDF; fermilab-pub-21-502-ad-e-scd - PDF; Fulltext from Publisher: PDF; External link: Fermilab Library Server
6.
HL-LHC Computing Review: Common Tools and Community Software / HEP Software Foundation Collaboration
Common and community software packages, such as ROOT, Geant4 and event generators have been a key part of the LHC's success so far and continued development and optimisation will be critical in the future. [...]
arXiv:2008.13636 ; HSF-DOC-2020-01.
- 40.
Fermilab Library Server - eConf - Fulltext - Fulltext
7.
FPGA-accelerated machine learning inference as a service for particle physics computing / Duarte, Javier (Fermilab) ; Harris, Philip (MIT) ; Hauck, Scott (Washington U., Seattle) ; Holzman, Burt (Fermilab) ; Hsu, Shih-Chieh (Washington U., Seattle) ; Jindariani, Sergo (Fermilab) ; Khan, Suffian (Microsoft, Redmond) ; Kreis, Benjamin (Fermilab) ; Lee, Brian (Microsoft, Redmond) ; Liu, Mia (Fermilab) et al.
New heterogeneous computing paradigms on dedicated hardware with increased parallelization, such as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large potential gains. The growing applications of machine learning algorithms in particle physics for simulation, reconstruction, and analysis are naturally deployed on such platforms. [...]
arXiv:1904.08986; FERMILAB-PUB-19-170-CD-CMS-E-ND.- 2019-10-14 - 16 p. - Published in : Comput. Softw. Big Sci. 3 (2019) 13 Fulltext: 1904.08986 - PDF; fermilab-pub-19-170-cd-cms-e-nd - PDF; Fulltext from Publisher: PDF; External link: Fermilab Accepted Manuscript
8.
HEP Software Foundation Community White Paper Working Group -- Data Organization, Management and Access (DOMA) / Berzano, Dario (CERN) ; Bianchi, Riccardo Maria (Pittsburgh U.) ; Bird, Ian (CERN) ; Bockelman, Brian (Nebraska U.) ; Campana, Simone (CERN) ; De, Kaushik (Texas U., Arlington) ; Duellmann, Dirk (CERN) ; Elmer, Peter (Princeton U.) ; Gardner, Robert (Chicago U., EFI) ; Garonne, Vincent (Oslo U.) et al.
Without significant changes to data organization, management, and access (DOMA), HEP experiments will find scientific output limited by how fast data can be accessed and digested by computational resources. [...]
arXiv:1812.00761 ; HSF-CWP-2017-04 ; FERMILAB-PUB-18-671-CD.
- 2018. - 18 p.
Fermilab Library Server (fulltext available) - Fulltext - Fulltext
9.
HPC resource integration into CMS Computing via HEPCloud / Hufnagel, Dirk (Fermilab) ; Holzman, Burt (Fermilab) ; Mason, David (Fermilab) ; Mhashilkar, Parag (Fermilab) ; Timm, Steven (Fermilab) ; Tiradani, Anthony (Fermilab) ; Khan, Farrukh Aftab (Fermilab) ; Gutsche, Oliver (Fermilab) ; Bloom, Kenneth (U. Nebraska, Lincoln)
The higher energy and luminosity from the LHC in Run 2 have put increased pressure on CMS computing resources. Extrapolating to even higher luminosities (and thus higher event complexities and trigger rates) beyond Run3, it becomes clear that simply scaling up the the current model of CMS computing alone will become economically unfeasible. [...]
CMS-CR-2018-283; FERMILAB-CONF-18-630-CD.- Geneva : CERN, 2019 - 8 p. - Published in : EPJ Web Conf. 214 (2019) 03031 CMS Note: PDF; Fulltext from publisher: PDF;
In : 23rd International Conference on Computing in High Energy and Nuclear Physics, CHEP 2018, Sofia, Bulgaria, 9 - 13 Jul 2018, pp.03031
10.
A Roadmap for HEP Software and Computing R&D for the 2020s / HEP Software Foundation Collaboration
Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. [...]
arXiv:1712.06982; HSF-CWP-2017-01; HSF-CWP-2017-001; FERMILAB-PUB-17-607-CD.- 2019-03-20 - 49 p. - Published in : Comput. Softw. Big Sci. 3 (2019) 7 Fulltext: 1712.06982 - PDF; fermilab-pub-17-607-cd - PDF; Fulltext from Publisher: PDF; Preprint: PDF; External link: Fermilab Library Server (fulltext available)

CERN Document Server : 20 registres trobats   1 - 10següent  anar al registre:
Vegeu també: autors amb noms similars
112 Holzman, B
2 Holzman, B.
Us interessa rebre alertes sobre nous resultats d'aquesta cerca?
Definiu una alerta personal via correu electrònic o subscribiu-vos al canal RSS.
No heu trobat el que estaveu cercant? Proveu la vostra cerca a:
Holzman, Burt dins Amazon
Holzman, Burt dins CERN EDMS
Holzman, Burt dins CERN Intranet
Holzman, Burt dins CiteSeer
Holzman, Burt dins Google Books
Holzman, Burt dins Google Scholar
Holzman, Burt dins Google Web
Holzman, Burt dins IEC
Holzman, Burt dins IHS
Holzman, Burt dins INSPIRE
Holzman, Burt dins ISO
Holzman, Burt dins KISS Books/Journals
Holzman, Burt dins KISS Preprints
Holzman, Burt dins NEBIS
Holzman, Burt dins SLAC Library Catalog
Holzman, Burt dins Scirus