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Abstract

The nature of b-quark jet hadronisation has been investigated using data taken at the
70 peak by the DELPHI detector at LEP in the year 1994. Sophisticated neural net-
works have been trained, on a sample of simulated inclusive b-decays, to reconstruct
the kinematic variables g and z that are commonly used inside fragmentation mod-
els. A regularised unfolding technique has then been used to extract from data the
underlying fragmentation functions from these reconstructed variables. Commonly
used models of fragmentation are tested by fitting to the unfolded functions and the
dependence of the results as a function of the event thrust is investigated. Working
in a conjugate moments space, and using the latest expressions for the perturbative
QCD contribution, the non-perturbative QCD component has been fitted to give a
consistency check of the unfolded f(z) result.
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1 Introduction and Overview

The development of a bb quark pair into stable particles that enter a detector, can be
loosely split into three stages: In the first (“perturbative”) stage, the b-quarks radiate
gluons which in turn may split into qq or gg pairs. For gluon energies above about
1 GeV, perturbative QCD can in principle be used to calculate the expected energy
distribution of the b-quarks. In practice either exact QCD matrix elements in second order
of perturbation theory or leading log parton shower cascades are employed. The second
stage concerns the fragmentation of the quarks into colourless hadronic states and is not
calculable within perturbation theory. This stage must therefore be phenomenologically
modeled as must the third phase, which describes the prompt decay of excited states, and
of longer lived weakly decaying states, into stable particles that enter the detector.

This paper describes the measurement from data of a fragmentation function
DE(v) that can accurately model stage two in terms of some kinematical variable v.
This function should thus be interpreted as the probability that a hadron B is produced
with a given v from an initial quark b. In the Lund fragmentation model[1], a colour flux
string links two partons. The creation of quark pairs from the vacuum is then modeled by
breaks in the string and the energy sharing at each break is parameterised by the variable
z. For the case of an initial b and b quark system in the absence of gluon radiation, z is
defined as

(E+p))s
(E+p)

where p)| represents the hadron momentum in the direction of the b-quark and (E +p), is
the sum of the energy and momentum of the b-quark just before fragmentation.

From an experimental viewpoint, z has some drawbacks: it is a quantity that is (a)
not directly accessible in a detector and (b) only defined within the context of a particular
perturbative and non-perturbative hadronisation scheme. Because of these limitations,
another popular choice of variable with which to investigate fragmentation functions is
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where Ep is the reconstructed b-hadron energy and /s is the c.m. energy which are both
quantities that can in principle be directly reconstructed by a detector. It is necessary
however when discussing x g to be clear about exactly which b-hadron is being considered.
The primary b-hadron is the state created directly after the hadronisation phase, whereas
the weak b-hadron is the state that finally decays somewhere in our detector volume in a
flavour-changing process. Primary b-hadrons are either mesons (about 90%) or baryons
(about 10%). In the case of mesons, 30% of the time the primary b-hadron is expected to
be an orbitally excited B** meson, 52.5% of the time a B* meson, and in only 17.5% of
cases, directly a weakly decaying BT, B® or BY meson. B** and B* mesons finally decay
via kaon, pion or photon emission into weakly decaying ground state mesons, which then
carry less energy than their parents. Fortunately, due to the large mass of the b-quark,
the mean energy difference between primary and weakly decaying B hadrons is small but
not insignificant.

The current analysis investigates fragmentation functions based on the reconstruction

of the primary (z%*™) and weakly decaying B-hadron energy (z%°®*) as well as, for the
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first time, reconstructing the Lund string fragmentation variable z by an inclusive tech-
nique employing the use of neural networks. The main challenge to the analysis is the
difficult problem of how to unfold from the data the underlying f(zg) and f(z) distribu-
tions. The physics motivation is clearly the insight into non-perturbative and perturbative
strong interaction effects that knowledge of fragmentation functions gives and valuable
constraints on the validity of various hadronisation models.

After a presentation of details of the DELPHI detector and event selection, Section 4
describes the reconstruction of the kinematic variables zp and z. Section 5 then goes on to
explain how a regularised unfolding technique is applied to the reconstructed quantities,
to extract from the data the underlying f(zp) and f(z) distributions.

The results of the unfolding are presented in Section 6 which includes a study of the
dependence as a function of the event thrust i.e. hard gluon radiation. Section 7 covers
the determination of systematic uncertainties and Section 8 presents fits of the unfolded
distributions to a selection of hadronisation model functions.

In section 9, recent NLL perturbative QCD computations [23| are used in conjunction
with the unfolding result for the weakly decaying b-hadron in order to extract the non-
perturbative component.

This analysis is based strongly on the DELPHI inclusive b-physics package,
BSAURUS|2|]. Aspects of BSAURUS directly related to the analysis are presented in
a summarised form but the reference should be consulted for full details of the package.

2 The DELPHI detector

A complete overview of the DELPHI detector|3| and its performance[4] have been de-
scribed in detail elsewhere. What follows is a short description of the elements most
relevant for this analysis.

Charged particle tracking was performed by the Vertex Detector (VD), the Inner De-
tector, the Time Projection Chamber (TPC) and the Outer Detector. A highly uniform
magnetic field of 1.23 T parallel to the eTe~ beam direction, was provided by the super-
conducting solenoid throughout the tracking volume. The momenta of charged particle
tracks were reconstructed with a precision of o,/p < 2.0x1072-p (p in GeV /c) in the polar
angle region 25° < # < 155°. The VD consisted of three layers of silicon micro-strip de-
vices with an intrinsic resolution of about 8 ym in the R — ¢ plane transverse to the beam
line. In addition, the inner and outer-most layers were instrumented with double-sided
devices providing coordinates of similar precision in the R — 2z plane along the direction of
the beams. For charged tracks with hits in all three R¢ VD layers the impact parameter
resolution was 0%, = ([61/(Psin®?0)]* + 20) um?* and for tracks with hits in both Rz
layers and with polar angle 6 ~ 90°, 0%, = ([67/(Psin®?0)]?> 4+ 332) um?. Calorimeters
detected photons and neutral hadrons by the total absorption of their energy. The High-
density Projection Chamber (HPC) provided electromagnetic calorimetry coverage in the
polar angle region 46° < 6 < 134° giving a relative precision on the measured energy E of
og/E = 0.32/VE ®0.043 (E in GeV). In addition, each HPC module worked essentially
as a small TPC charting the spatial development of showers and so providing an angular
resolution exceeding that of the detector granularity alone. For high energy photons the
angular precisions were £1.7 mrad in the azimuthal angle ¢ and £1.0 mrad in the polar
angle 6.



The Hadron Calorimeter was installed in the return yoke of the DELPHI solenoid and
provided a relative precision on the measured energy of op/F = 1.12/vVE @ 0.21 (E in
GeV).

Powerful particle identification was made possible by the combination of dF/dx infor-
mation from the TPC (and to a lesser extent from the VD) with information from the
Ring Imaging CHerenkov counters (RICH) in both the forward and barrel regions. The
RICH devices utilised both liquid and gas radiators in order to optimise coverage across
a wide momentum range: liquid was used for the momentum range from 0.7 GeV/c to
8 GeV/c and the gas radiator for the range 2.5 GeV/c to 25 GeV/c. To combine the
information optimally, algorithms|5] based on neural network techniques were used which
resulted in e.g. an efficiency for the correct identification of K* of 90%(70%) with a
contamination of 15%(30%) for p < 0.7 GeV/c (p > 0.7 GeV /c).

3 Event Selection

3.1 Selecting Multihadronic Events

The data consisted of events taken at centre-of-mass energies at the Z° pole in 1994.
Multihadronic Z° decays were selected by the following requirements:

e at least 5 reconstructed charged particles,

e the summed energy in charged particles with momentum greater than 0.2 GeV/c
had to be larger than 12% of the centre-of-mass energy, with at least 3% of it in
each of the forward and backward hemispheres defined with respect to the beam
axis.

These requirements resulted in the selection of about 1.36 million events in the data with
an efficiency estimated to be 92.6% and all backgrounds below the 0.1% level. The Monte
Carlo sample of Z — qq events, details of which are listed in Table 1, was approximately 3
times the statistics of the data. The generated events were passed through a full detector
simulation[4] and the same multihadronic selection criteria as the data.

Monte Carlo Generator | JETSET 7.3[6]

Perturbative ansatz Parton shower (Agep = 0.346 GeV,Qo = 2.25 GeV)
Non-perturbative ansatz | String fragmentation

Fragmentation function | Peterson et. al.[7] (¢, = 0.002326)

Table 1: Details of the Monte Carlo generator used together with some of the more
relevant parameter values that have been tuned to the DELPHI data.

3.2 Event Hemisphere Selection

Event hemispheres used for the analysis were accepted if the following criteria were ful-
filled.

o | cos Opppust| < 0.7.



e The event was tagged as a Z — bb candidate event by the standard DELPHI b-
tagging package[9].

e The secondary vertex fit converged successfully according to limits set in BSAURUS
on the fit x2 value and the number of minimisation iterations needed.

e 0O < (xhem = Eh,em/Ebeam) <11

After this selection, 227940 hemispheres remained in the data with a purity (as calculated
from the Monte Carlo), in bb events of 96%.

4 The Reconstruction of E5"™ E%c* and z

The three kinematical variables used to study fragmentation functions, the energy of the
weakly decaying B hadron, the energy of the primary B and the LUND string model
variable z, were reconstructed using separate artificial neural networks. The ansatz used
applied a Bayesian interpretation to the network output in order to return a conditional
probability density function for the variable on a hemisphere-by-hemisphere basis. The
median (and associated error) of the extracted p.d.f. was then defined to be the recon-
structed fragmentation variable and its error.

The networks were trained using a list of 22 input variables which included different
estimators of the energy available in the hemisphere together with some measures of the
expected quality of such estimators e.g. hemisphere track multiplicity and hemisphere
reconstructed energy. The inputs were the same for each of the three networks trained,
the only difference being the target value i.e. Ef™™, E%°* or z respectively. The degree
of correlation of the inputs to the network target value naturally varies from case to case.
A preprocessing stage to the network algorithm automatically suppresses the influence of
the inputs with low correlation to retain optimal performance. For completeness, the full
list of variables input to the networks is given below (note that some variables have been
summarised into a single item in this list):

e Rapidity! of the track with the highest value in the event hemisphere.

e Rapidity of the track (see Figure 1) with the second highest value in the event
hemisphere.

e The energy component of the TrackNet? weighted sum of 4-momenta for the case of
2-jet, events. For the case of > 2-jet events, the energy component of the 4-vector as
reconstructed by the rapidity algorithm is taken. The rapidity algorithm sums over
all particles in a hemisphere that pass a cut of ¥ > 1.6. This procedure defines an
estimate of the weakly decaying B-hadron 4-vector, P,,,-

e Energy of the weakly decaying B-hadron as estimated by the rapidity algorithm.

e Mass of the weakly decaying B-hadron as estimated by the rapidity algorithm.

'Defined as y = £ -log ((E + P)/(E — P)) where P is the momentum component of the track in the
direction of the b-quark. The direction is estimated as the axis of the jet associated with the b-hadron.

2The TrackNet is a neural network trained to distinguish between charged particles from the B hadron
decay chain and those originating from the event primary vertex. See Figure 1.
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Figure 1: A selection of input variables to the neural networks showing Monte Carlo
compared to data. (a) TrackNet: where ‘signal’ refers to tracks that originate from the
B-decay chain and ‘background’ are tracks in bb events not from the B-decay chain; (b)
the rapidity of charge tracks with the same definition of signal and background as for the
TrackNet; (c) charged particle multiplicity distributions where the closed points represent
the total particle (neutral and charged) multiplicity in the hemisphere and the open points
show the difference between the number of hemisphere tracks passing the selection cuts
and the number that, in addition, pass a TrackNet cut of 0.5; (d) the invariant mass of
all tracks associated with the secondary vertex fit in bb tagged events.



Energy of the jet with the highest b—tag value.
Total energy in the hemisphere scaled by the beam energy.

The total hemisphere energy normalised by an estimate of the c.m. energy E.,,.,
given by considering the Z° to decay into the two-body final state of a B-jet with
mass Mp_je Tecoiling against all other particles in the event with mass M.y i.e.
in the rest frame of the Z°,

2 2 2
_ j\IZ0 - Mrecoil + MB—

Ecm
o 2 'jkfzo

= (3)

An estimate of E, ,,. as given by Eqn. 3 where M, ...,; is based on charged tracks only.
In the hemisphere containing the B-candidate, only tracks likely to have originated
from the fragmentation process are selected (by use of the TrackNet) whereas all
tracks are used in the opposite hemisphere.

A further estimate of E.,, as given by Eqn. 3 where neutrals from the opposite
hemisphere are also included in the formulation of M,...;.

An estimate of the missing pr between the B-candidate direction and the thrust
axis calculated using only fragmentation tracks in the same hemisphere as the B-
candidate (via use of the TrackNet) and all tracks in the opposite hemisphere. The
calculation is repeated for two different definitions of the B-direction: one being
the vector pointing from reconstructed primary vertex to reconstructed secondary
vertex and the other given by the vector P, .

The mass of the reconstructed secondary vertex. See Figure 1.
The polar angle of the B-candidate momentum vector.
The thrust value of the event.

The difference between the number of tracks in the hemisphere passing the selection
cuts and the number of such tracks that, in addition, pass a TrackNet cut of 0.5.
See Figure 1.

The total number of all charged and neutral particles. See Figure 1.
The number of particles passing a TrackNet cut of 0.5.

The probability that the best electron or muon candidate in the hemisphere, with
the correct charge correlation, originates from the B-candidate.

The gap in rapidity between the track of highest rapidity with TrackNet value less
than 0.5 and the track of lowest rapidity and TrackNet value greater than 0.5.

The (binomial) error of the vertex charge measurement, ),, defined as,

tracks

00, = > /Puli)(1 - Py(i)) (4)

where Pg(i) is the TrackNet value for track i.
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e A hemisphere ‘quality flag’ constructed by counting the number of tracks in the
hemisphere likely to be badly reconstructed i.e. the number failing the selection
cuts of Section 3.

The precision of the estimators is shown in Figure 2 after all analysis selection cuts
have been applied and based on a statistically independent Monte Carlo sample to that
used for training.

entries

o
o1

Figure 2: Plots showing the resolution ie.  (Vpee — v)/v for 2(FWHM =
7.7%), XE(FWHM = 11.2%) and v = X%k (FWHM = 14.0%).

5 The Unfolding Method

The experimental challenge of the analysis is to determine from the measured distribution
9(vyec) in data, where v = 2™ 2% or z, the underlying physics probability density

function f(v). In general g(v,e.) will differ from f(v) due to:
e finite detector resolution
e limited measurement acceptance

e variable transformation i.e. any biases or distortions that may be present in the
measured quantity.

Mathematically, the distributions are related by:
9(0ree) = [ R(vpecs 0) F(0)d0 + b(vyec), (5)

where b(v,.) is the background contribution (in our case mainly non-bb events) to the
measured distribution and is taken from Monte Carlo simulation. The response function
R(vyec; v) provides the mapping of true v to v, and thus contains all the effects of
resolution, acceptance and transformation mentioned above.

In order to unfold the physics distribution f(v) from Equation 5 we used the RUN
(Regularized UNfolding) program|[10]. The algorithm defines a function W (v) used to
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provide a weight to the Monte Carlo distribution f(v.e)nc such that it reproduces the
data distribution g(v,e.) as well as possible i.e. W (v) is determined by a fit to the data.
The result of the unfolding, up to a normalisation factor, is then given by

flo) = W(v)- fuc(v) (6)

and by integration over bins in v, unfolded binned points are determined together with a
complete covariance matrix.

The binning of the unfolded result is an important aspect of the RUN procedure, which
is determined ultimately by the experimental resolution. To see how this comes about,
we must consider the internal representation of the weight function namely,

W) =30 i) )

where the p;(v) form a normalised, orthogonal set of polynomials® where po(v) is usually
close to a constant, py(v) is linear in v , p2(v) is quadratic in v , and so on. In practice it is
usually found that only the first few of the coefficients, a;, are significantly different from
zero and so contributions from higher coefficients do not add any information to the result.
In fact these higher order contributions are damaging since they add oscillating terms to
the result and so should be removed. The order at which to terminate the expansion in
Equation 7, jeu < nj, is mainly determined by the experimental resolution. This cut-off
then also fixes the rank of the subsequent covariance matrix, and hence the number of
unfolded bins, to be j.. It is important to realise that an arbitrarily large number of
unfolded bins can always be taken but at the expense of bin-to-bin correlations becoming
very high and the covariance matrix becoming singular, since the rank will remain j.;.
The expansion cut-off inside RUN is actually implemented not as a sharp cut-off point
but as a smooth transition to zero via a regularisation procedure. Further details of the
unfolding method can be found in [11].

6 Unfolding Results

6.1 Crosschecks

As a check of the method principle, a sample of the Monte Carlo events were used as
real data with the remainder used as simulation and the unfolding procedure was run as
normal. The result for the case of unfolding %" and z%** is shown in Figure 3 and in-
dicates an excellent reproduction of the overall shape and normalisation of the underlying
true distribution (labeled as ‘MC truth’). The correlation between the reconstructed and
the true quantity for 2" (%°**) was estimated from the Monte Carlo to be 82%(82%).
Figure 3 illustrates that the procedure works equally well for the case of unfolding z where
the correlation between the measured and the true distributions is 38%. This test con-
firms that the method is rather robust in the calculation of the response function when the
measured distribution has only a rather weak correlation to the true underlying physics

distribution.

3Parameterised by B-splines.
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Figure 3: The result of the unfolding procedure run on Monte Carlo data for the case of
unfolding z, %5 "™ and z%e*.

By construction, the unfolding procedure should be largely independent of the prior
fragmentation function, f(v)asc, which was used to generate the Monte Carlo sample. To
test the validity of this claim for the case of unfolding z, the data was represented by the
default Monte Carlo sample generated with the Peterson function. The statistically inde-
pendent Monte Carlo sample used to estimate the transfer function R(y, z) was however
re-weighted such that the underlying true distribution was given by an arbitrary function
(taken to be f(z) = z(1 — 2z) exp(3z)). The result of the unfolding is shown in Figure 4
and illustrates that, even for this extreme example, the correct underlying functional form
is reproduced.

6.2 Results From Data
The results of the unfolding applied to the real data set are displayed in Figure 5 for the

case of z, 2% "™ and x%°* Tt should be noted that for the case of z it is found to be impor-
tant that the weighting function, W (v) of Equation 6, is constrained to be positive. This
ensures that the resulting unfolded function does not move into the unphysical negative
region so allowing the function to be interpreted as a probability density distribution.
The plots show the unfolded distributions and the corresponding binned data points, as
defined above, together with an overlay of the truth input distributions for comparison.
In addition, Figure 6 shows distributions of z, z% "™ and z%¢* in the data compared to
Monte Carlo appropiately weighted for the results of the unfolding.

In order to quantify the shapes of the unfolded distributions, Table 2 presents the
mean (defined as, (z) = [y z2f(2)dz) and variance (defined as, V' (2) = [, (z — (2))2f(2)dz)
for each of the three cases. The full bin-to-bin results including covariance matrices are
listed in Appendix A.
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Figure 4: The result of the unfolding where a sample of the default Monte Carlo has
been taken as ‘data’ and an independent Monte Carlo sample has been re-weighted for
an arbitrary functional form of the prior distribution. The Peterson function which was
used to generate the ‘data’ sample is accurately unfolded. This example is based on z but
the same conclusion holds for unfolding zp.

Mean Variance

F(@%™) 1 0.7346 + 0.0008(stat.) | 0.0318 + 0.0005(stat.)

f(x%e**) | 0.7153 4 0.0007(stat.) | 0.0300 £ 0.0004(stat.)
f(2) 0.8872 4 0.0012(stat.) | 0.0027 4 0.0001(stat.)

Table 2: The means and variances of the unfolded distributions in 2% "™, z%¢* and z.

Note that the mean values for f(z5 ™) and f(z%¢*) have been corrected to account
for the (small) effect of Initial State Radiation (ISR) on our definition of z. In the analysis
z is formed by scaling E%"™ and E%°* by the nominal beam energy of 45.6 GeV and is
only strictly correct in the case of no ISR. In ~ 10% of cases ISR would reduce the energy
available for the fragmenting b-quark system from the nominal 45.6 GeV. The size of this
effect on the analysis was evaluated from the Monte Carlo.

The results show that there is a disagreement in shape between the distributions
unfolded from data and the probability functions used in the DELPHI Monte Carlo gen-
erator. The discrepancy becomes most pronounced for the case of z.

Figure 7 presents a scan of the mean of the unfolded distributions in z%°* and z as
a function of the event thrust. This dependence is of interest phenomenologically, par-
ticularly for the case of z, since it charts how the underlying energy sharing between
quarks and hadrons varies as a function of the (hard) gluon content of the event. As
expected, (z) is consistent with being independent of thrust, whereas (zg) clearly shows
a dependence with hard gluon radiation.
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Figure 5: The result of unfolding z, 2% "™ and z%¢® from real data. The points represent

the unfolding results and the overlayed histograms show the input truth Monte Carlo
distributions. The errors are statistical only.

7 Systematic uncertainties

Systematic uncertainties have been evaluated from a wide variety of sources and are pre-
sented in Table 3 as errors on the mean value of the unfolded fragmentation functions.
Errors, statistical and systematic, for each unfolded bin of the distributions are given in
Appendix A together with the associated covariance matrices. Elements of the full covari-
ance matrix have been constructed assuming the systematic errors are 100% correlated
bin-to-bin in the following way:

Cov;j = Sz . Sj + Pij = 0i°0j (8)

where cov;; is the i7" element of the covariance matrix, Si(0;) are the system-
atic(statistical) errors associated with bin ¢ and p;; is the statistical correlation between
bin 7 and j as given by the unfolding procedure.

7.1 Technical Systematics

Some crosschecks of the unfolding method have been presented earlier in Section 6.1. In
addition, an investigation was made of the sensitivity to the following technical aspects
of the RUN unfolding procedure:

e The number of unfolded data points (or number of degrees of freedom) was varied
and an error assigned based on the spread in the results seen.

e The number of knots in the B-spline parameterisation of Equation 7 was varied and
an error assigned based on the spread in the results.

e The binning of the reconstructed variable from Monte Carlo should be well matched
to the resolution achieved in order to use the information optimally. A wide range of
different binnings, around the default choice, was investigated and the results were

11



0w L | L

2r 7  X._prim - X_weak

Sr - B - B ”
s [ — original MC . !
- — — unfolded MC ¢ - ; |
B -+ Data : P
- - / - A
- - A i |
2 2 I {
B B - b
B | il 7J-AJ\ | ‘ | | | | ‘ | L] L | ‘ | | ‘ | | »
07 1 05 075 1 05 075

Figure 6: Distributions of z, z%™ and 2% in the data compared to both the default

Monte Carlo and the Monte Carlo weighted for the results of the fragmentation function
unfolding.

consistent within the errors. Also, no improvement on the statistical precision was
found. No additional systematic error was assigned.

7.2 Cuts and Background Dependence

The hemisphere selection described in Section 3.2, includes cuts for bb event enhancement
and on the reconstructed hemisphere energy e, both of which could potentially have
an effect on the analysis if not accurately modeled in the Monte Carlo.

The DELPHI b-tagging is based on impact parameter measurements which degrade
at low momenta due to the increased effects of multiple scattering. This effect correlates
the b-tag information to the B energy and in Figure 8 we present the variation in the
unfolding result for (), (z;*™) and (1%¢%) scanned over a wide range of b-tagging cuts
i.e. different bb-purities. The results were found to be stable around the working point of
bb-purity ~ 96% and no explicit systematic was assigned due to this source.

The effect of scanning around the working point cut value of zp., = 0.5 was also
investigated and the results presented in Figure 9. The stability around the working
point was deemed to be good enough that no explicit systematic was assigned due to this
source.

Uncertainties in the size and composition of the background, i.e. b(v,e.) in Equation 5,
were also evaluated. Approximately 75% of the background was from non-bb events and
is considered in the next Section 7.4. The remainder was composed of cases where both b-
quarks were found in the same hemisphere (due to e.g. severe three-jet events) or where a
gluon had split into two b-quarks leaving a topology with four b-quarks in the initial state.
In these cases, which occur in about 2% of all hemispheres, the connection between the
generated b-hadron energy and the reconstructed quantity becomes confused and hence
were assigned to the background. We assume that the jet rate is well modeled in the
Monte Carlo but vary the gluon splitting rate to bb (by default, 0.5%) by +100% and
record the change seen in the unfolding result as a systematic error.

12
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Figure 7: The variation in the mean of the unfolded distributions for (z), (z"™) and

(%% in bins of the event thrust.

7.3 Reconstructed Energy

The relationship between the reconstructed variable distribution in the Monte Carlo,
9(Vrec) Mo, and the underlying physics p.d.f., f(v)uc, is

9(Vrec) e = / R(vrec; v) f(v) modv, (9)

where the response function R(vye.,v) is the same as appeared in Equation 5. As was
seen in Section 6.1, the unfolding is, by construction, insensitive to details of the prior
fragmentation function f(v)ac. This is however not necessarily so for the case of the
response function. In fact, the response function derived from the Monte Carlo is assumed
to be correct and so it is crucial that R(v,e.;v) be as close to the situation in the data as
possible. A number of corrections were therefore applied to the Monte Carlo to account for
known discrepencies with the data for quantities sensitive to the reconstructed kinematical
variables v:

e The reconstructed energy distributions per charged or neutral particle were sepa-
rately shifted and smeared 4 in the Monte Carlo to bring them into better agreement
with the data (based on a y%-histogram comparison).

e The multiplicity of:

— fragmentation charged particles (identified by a cut on the TrackNet< 0.5),
— b-hadron weak decay products (identified by a cut on the TrackNet> 0.5),

— neutral particles,

were fixed in the Monte Carlo, by a weighting function, to be that seen in the data.

4For charged particles the shift in the mean was 0.01 GeV and a Gaussian smearing of 3% (relative)
applied. For neutral clusters the corresponding numbers were 0.04 GeV and 20%.
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analysis cut for b-tagging, represented in the plot as Z° — bb purity.
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e After applying the above two corrections, any residual difference between data and
Monte Carlo in the total hemisphere energy (neutral and charged) was accounted
for by a further weigthing function.

To account for any systematic uncertainty, due to our imperfect knowledge of energy
reconstruction, an error was assigned equal to the full difference seen compared to the
default results when the hemisphere energy weight was on/off. In order to take a conser-
vative approach to the energy systematic evaluation, separate errors were also assigned
for the particle energy shifting/smearing and multiplicity corrections. The change in the
results were taken when the shifting/smearing procedure was turned off and when the
multiplicity weights were varied between 50% and 150% of their nominal values. These
error contributions can be found listed in Table 3.

A further crosscheck was made for the case of z%°* by using a different choice for
E¥ee other than the Bayesian neural network variable described in Section 4. For this
test, E%°* was reconstructed by the rapidity algorithm mentioned in Section 4 and cor-
rected for missing neutral energy by a parameterisation of e.g. the hemisphere energy
as found in the Monte Carlo. Repeating the analysis, the change seen in the result for

weak

x5 was -0.0011 and is well contained within the assigned total systematic.

7.4 Monte Carlo Weights

The remaining systematic contributions concern quantities that the simulation was
weighted for by default, in order to account for known discrepancies with the data.
Weights were constructed to change the lifetimes and production fractions of the b-hadron
species to more recent world average values:

7(B") = (1.647 £+ 0.016)ps, f(BT)=(39.9+1.1)%

7(BY) = (1.546 + 0.018)ps, f(BY) =(399+1.1)%

7(B°) = (1.464 £ 0.06)ps, F(BY) = 9.9+ 1.1)%

7(b — baryon) = (1.208 £ 0.05)ps, f(b— baryon) = (10.3 £ 1.8)%

N N’

Systematic uncertainties from these sources were based on varying them within the quoted
one standard deviation errors for the case of the lifetimes and by switching the weights
on/off for the case of the production fractions. The ‘hemisphere quality’ was a quan-
tity flagging the presence of potentially badly reconstructed tracks in the hemisphere.
Improved agreement with the data was achieved in many reconstructed quantities by
weighting the hemisphere quality distribution in Monte Carlo to agree with that seen in
data. The change induced by varying the weight between 50% and 150% of the nominal
value was assigned as a systematic error.

By default the production rate of excited B** states was adjusted in the simulation to
be 30% with respect to B meson hemispheres. This rate was then varied by 6% and half
the change seen in the results assigned as a systematic. In addition, the reconstruction of
E%eek is sensitive to the energy of the primary decay track in B** decay e.g. the energy
of the pion in B** — B*x~. This has the consequence that the higher the Q-value for
B** decay, the lower is the energy of the weakly decaying b-hadron state. Recent studies
of B** rates [12] suggests a mean @-value higher by ~ 300 MeV than the default value
assumed in the Monte Carlo which corresponds to ~ 300 MeV shift lower in F%¢*. This
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shift was applied in the Monte Carlo for cases were a B** state was present and the change
in the result for z%°* assigned as a systematic error.

Systematic errors from the B* rate, K? rate and the b-hadron semi-leptonic branching
ratio were accounted for by changing their values in the Monte Carlo by the same relative
error quoted on current world averages [13|. In addition an error was assigned due to
changing the ‘wrong-sign’ D, production rate i.e. D, production from W= decay by
100%.

Finally a weight was applied to the Monte Carlo based on the results of a double
hemisphere tagging analysis [14] to evaluate the efficiency to tag Z° — c¢ events and
Z° — bb events as a function of the standard DELPHI b-tag. At the analysis working
point of bb purity of 96%, the correction to the b efficiency was only of the order 1%
but the correction to the c efficiency was of order 20%. A systematic from this source
was conservatively applied as being the full difference in the results when this weight was
removed.

7.5 Generator Parameter Dependence

The fact that z was not directly measurable in the experiment and had to be indirectly
unfolded from other correlated quantities, meant that the unfolding of z was a more
difficult task than for xg. In the case of z, the unfolding is a two-step process where
not only must z be unfolded from the measured z,., but also the mapping of z from
the correlated quantities used to reconstruct it, has to be unravelled. The fact that z is
defined only at the start of the non-perturbative phase makes it dependent on the details
of the point at which perturbative hadronisation ends and the non perturbative phase
starts. An investigation was therefore carried out in order to evaluate the form of this
dependence.

The most relevant parameters of the JETSET 7.3 parton shower generator to consider
are Agep and @ (the energy scale beyond which non-perturbative modeling begins). At
the level of the generator, z is independent of both Agcp and @)y but this is not true of
the reconstructed quantity, z,... As described in Section 5, z,.. is unfolded via a neural
network from inputs that are essentially various estimators of x. If x is a function of either
Agcep or Qg therefore, the response function R(vye.; v) would also change, via Equation 9,
which in turn would lead to a dependence in the unfolded result (z).

The approach used was therefore to take the observed dependence of (z%°*) as a
function of Agep and Qg (Figure 10(a) and (b)) and then to translate this into the
expected variation in (z) by using the observed mapping between (z%°*) and (z) given
by the generator (Figure 10(c)). As seen in Figure 10(a) the dependence on @y was
found to be essentially flat and so was not considered further, whereas the variation
with Agep was parameterised as, (z%¢%) = —0.12(£0.02) Agep /GeV + 0.73(+0.01).
This result was then combined with a parameterisation of the mapping in Figure 10(c),
(x%e%%) = 0.63(£0.01) (2) +0.15(=£0.01), to give the required dependence of z as a function
of Agen,

(z) = 0.8872—0.19(x0.01) (Agep /GeV — 0.346)

The errors quoted are statistical originating from the parameter fits illustrated in Fig-
ure 10. Note that for a value of Agcp = 0.346 i.e. the value set in our default Monte
Carlo sample, we recover our previous result quoted in Section 6.2 as expected.
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Figure 10: The dependence of (x%°*) at the Monte Carlo generator level, as a function
of (a)Qo and (b)Agep and (c) (z).

8 Fits to Hadronisation Models

The unfolded distributions f(z%"™), f(z%*) and f(z) have been compared with func-
tional forms in common use (listed in Table 4) that are implemented inside Monte Carlo
generators as functions of z.

In the case of f(zp), the Lund, Lund-Bowler and Peterson models were compared to
the data by generating many Monte Carlo samples spanning a large range of function
parameter values, and constructing a binned y? value with the data. Details of the Monte
Carlo generator used are listed below:

Monte Carlo Generator | JETSET/PYTHIA 6.156

Perturbative ansatz Parton shower (Agep = 0.297 GeV,Qp = 1.56 GeV)
Non-perturbative ansatz | String fragmentation

Fragmentation function | according to tested model

In the case of f(z), it was possible to fit directly the models developed by Peterson et
al., Kartvelishvili et al. and Collins-Spiller to the unfolded data points. The Lund and
Lund-Bowler models were compared to the data in the same way as for f(zp).

In all cases the x? was calculated using the full covariance matrix for the unfolded
points. The best fits to the data for f(z%"™), f(2%%*) and f(z) are shown in Figure 11
and the resulting parameter values are listed in Table 5. The data suggests that the Lund
and Lund-Bowler functions are better fits than those explicitly constructed to describe
the fragmentation of heavy quarks e.g. the Peterson et al. function.
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error source A{B™) | Alxseky | A(z)
number of degrees of freedom 0.0003 0.0003 | 0.0003
number of knots 0.0002 0.0003 | 0.0002
neutral energy smearing 0.0030 0.0026 | 0.0023
fragmentation track multiplicity | 0.0033 0.0031 | 0.0020
b-decay track multiplicity 0.0004 0.0004 | 0.0004
neutral multiplicity 0.0011 0.0010 | 0.0003
hemisphere energy xpem 0.0002 0.0003 | 0.0008
KO rate 0.0005 0.0005 | 0.0006
B* rate 0.0009 0.0006 | 0.0002
semileptonic decay rate 0.0001 0.0001 | 0.0002
wrong sign charm rate 0.0001 0.0001 | 0.0002
g — bb 0.0008 0.0007 | 0.0001
¢ and b-quark efficiency 0.0001 0.0001 | 0.0001
hemisphere quality 0.0020 0.0018 | 0.0017
B** rate 0.0018 0.0011 | 0.0038

B** Q-value dependence — —0.0019 —
B lifetimes 0.0004 0.0004 | 0.0003
B production fractions 0.0004 0.0002 | 0.0009
total systematic error 0.0055 | T000s | 0.0054

Table 3: Systematic uncertainties on the mean values of the unfolded distributions in

o™ 2% and z. The total is the sum in quadrature of all contributions.
Fitting to f(z% ™) Fitting to f(z%eek) Fitting to f(z)
Model Parameters x2/ndf | Parameters x2/ndf | Parameters x2/ndf
Kart. — — — — ap = 14.6 £ 0.7 36/3
CS — — — — €, = 0.001+ < 0.001 536/3
Peterson ey, = 0.00286 245/9 €p = 0.00286 287/9 e, = 0.002+ < 0.001 187/3
a=2.1 a=20.9 a=24
Lund b—09 53/8 b—05 42/8 b—07 2/2
a=14 a=1.0 a=2.04
Lund-Bowler b— o7 43/8 b—23 35/8 b— 248 1/2

Table 5: Results of the f(xp) and f(z) hadronisation model fits. The fits to f(zp) were
made in the range [0.1,1.0] and to f(z) in the range [0.71,1.0]. Note that the fits are

made to data points with statistical and systematic error assignments.
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f(z)
Kart z%(1 — 2)
e 2
CS (+ee)a+22)(1-1-2)
2
Peterson 1 (1 -1 1—6_”;)
Lund 120 (%)aﬂ exp (—@)
o (1=2)%8 bm?
Lund - Bowler 1+T;bm2Q 2° <7z) exp (— ZL)

Table 4: Various hadronisation functions tested to describe the unfolded data distribu-
tions: Kart: V.G. Kartvelishvili et al.[15], CS: P. Collins, T. Spiller[16], Peterson: C.
Peterson et al.[7], Lund: B. Andersson et al.[18]|, Lund-Bowler: M. Bowler[19]. Note
that the Lund - Bowler model is implemented in the generator in an extended version
according to [20].
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9 QCD analysis of the measured b-fragmentation dis-
tribution

In section 8, parameters for the non-perturbative b-fragmentation component which has
to be used inside the Pythia 6.156 parton Monte Carlo generator, have been determined
in such a way that the resulting £%®* distribution agrees with the measurements. These
parameters have been obtained for several models.

Another approach consists in determining the non-perturbative component which has
to be used in conjunction with a perturbative QCD evaluation of the b-fragmentation
distribution. Parameters of this non-perturbative component depend on the values of the
parameters and on the order used in the perturbative QCD computation. According to
factorization, the non-perturbative component extracted in this way is expected to be
applicable in other processes than ete™ — bb as long as the same approximations and the
same values for the perturbative QCD part have been used.

In the following we indicate the main lines of the perturbative QCD approach and
extract values for the parameters of the corresponding non-perturbative component.

9.1 The perturbative QCD component of the b-fragmentation dis-
tribution

The perturbative QCD fragmentation function is evaluated according to the approach
presented in [23]. This next to leading log. (NLL) accuracy calculation for the inclusive
b-quark production cross section in ete~ annihilation, generalizes previous calculations
by resumming the contribution from soft gluon radiation to all perturbative orders and
to NLL accuracy. These contributions play an important role at large x.

These computations are done using Mellin transformed distributions:

Fv.Qh) = [ "z 2N Pz, Q) (10)

where N is complex. When N is a positive integer, the Mellin transformation corresponds
to the distribution of algebraic moments of order N-1.

In the Mellin conjugate space, named also the moment’s space in the following, the
perturbative fragmentation function (Dpe,t_) is simply the product of two quantities:

[)PCTt- (N) = ée+e_ (N) X Dpa'rton (N) (11)

The coefficient function, Cl+ - (N), determines the physics of the hard process occur-
ing at the scale (@) which corresponds to the center of mass energy, in e*e™ collisions.
Roughly, it is the bb pair creation cross section. This quantity is process dependent. On
the other hand, the factor Dpa,ton(N ) is not process dependent. It reflects the physics
of the evolution of parton distributions from the initial to the scale of the heavy quark’s
mass (typically the gluon radiation). The factorization scheme adopted in the calculation
[23] is MS.

Soft gluons radiation contributes to the logarithm of the fragmentation function large
logarithmic terms of the type o (logN)?, with p < n + 1. These terms appear in all the
perturbative orders n in a;. In the NLL accuracy calculation [23] the two largest terms,
corresponding to p = n + 1 and n, have been resummed at all perturbative orders. The
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calculation is expected to be reliable when N is not too large (typically less than 20).
To obtain the distribution for the variable x, from the results in the moment’s space,
one should apply the inverse Mellin transformation. This can be done by integrating
over a contour in N. When x gets closer to 1, large values of N contribute and thus the
perturbative fragmentation distribution is not reliable and becomes even un-physical in
these regions. This behaviour affects also values of the distribution at lower x as moments
of this distribution are fixed.

Uncertainties on the moments of the perturbative QCD distribution have been evalu-
ated by varying, between /2 and 2@, the values of the scales p and pp introduced in the
calculation. In [23] it has been assumed that y = pp. Corresponding variations induced
on the moments of the perturbative component are displayed in Figure 12.

9.2 Measurement of the moments of the non-perturbative QCD
component of the b-fragmentation distribution

The variation of the measured b-fragmentation distribution, in the moment’s space, is
displayed in Figure 12. In Tables 6 and 7, are given respectively the values for the first
five moments and the corresponding full error matrix, taking into account the different
sources of correlations.

Figure 12: Moments of the measured (full lines) x%°** distribution, of the perturbative
QCD component (dashed lines) and of the generated distribution obtained in JETSET
before hadronization (line with circles).

On Figure 12, moments of the perturbative QCD component have been also displayed
and corresponding values are given in Table 6 for the first five moments. From these
two distributions, it is possible to extract the moments of the non-perturbative QCD
component which has to be introduced to account for the measured distribution. In
the moment’s space this distribution is obtained simply by dividing the two previous

distributions: .
~ Dipeas. (N
Dnonfpert.(N) = ~7() (12)
pert.(N)
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Component <z>|<z>|<B>|<at> | <>
Measured 0.7153 | 0.5401 | 0.4236 | 0.3406 | 0.2789
Pert. QCD 0.7666 | 0.6239 | 0.5246 | 0.4502 | 0.3917
Non Pert. QCD | 0.9331 | 0.8657 | 0.8075 | 0.7566 | 0.7120

Table 6: Values for the moments of the measured x%°%* distribution and of the pertur-
bative QCD component. Moments quoted in the last line for the non-perturbative QQCD
component correspond to the ratio between the numbers given in the two previous lines.

2.7297 x 10°° 3.3019 x 10°° 3.3395x 10°® 3.2125 x 10°° 3.0275 x 10°°
3.3019 x 107° 4.0560 x 10°° 4.1427 x 1075 4.0107 x 10°® 3.7963 x 10°°
3.3395 x 1075 4.1427 x 1075 4.2589 x 10™° 4.1412 x 1075 3.9320 x 107°
3.2125 x 1075  4.0107 x 10™° 4.1412 x 107° 4.0389 x 10~® 3.8437 x 107>
3.0275 x 1075 3.7963 x 107° 3.9320 x 10°° 3.8437 x 10°® 3.6642 x 10°°

Table 7: Values of the errors on measured moments of the x%¢* distribution.

In Figure 12 have been also reported the moments of the distribution obtained at the
level of the JETSET parton-shower simulation, just before the hadronization step. It
can be seen that the analytic computation accounts for much softer gluon radiation than
given by the present simulation.

In Table 8, the fitted values of the parameters corresponding to a few models, and
using the first five moments in the fit, have been given.

Model Fitted parameters | x*/NDF
Kartvelishvili et al. 17.07 £ 0.57 115/4
Peterson (1.554+0.13)107% | 189/4
Collins Spiller (4.6 £1.2)1075 845/4

Table 8: Values for the fitted parameters of the non-perturbative QCD component.

None of the models, considered in Table 8, provides a good description of the data.
This is due to the accuracy of present measurements. Values of fitted parameters, given
in table 8, differ from those obtained in table 5 as the perturbative QCD components
used in the two cases are different.

9.3 Measurement of the z-dependence of the non-perturbative
QCD component of the b-fragmentation distribution

Present measurements can be used to extract also the z-dependence of the non-
perturbative component without the need to use any specific model. It is necessary
to apply an inverse Mellin transformation to the distribution of the moments of the
non-perturbative component which was given by Equation 12. This can be done if the
measured and the perturbative component are determined for all values of N (N being a
complex variable). The N-dependence of the perturbative component can be found in [23].
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To determine the N-dependence of the measured fragmentation distribution, this distri-
bution was firstly fitted as a function of = using the following expression which depends
on five parameters and gives a good description of the measurements.

D(z) =po x (p1a® (1 = 2 + (1 — p1)a™ (1 — z)™) (13)

where p is a normalisation coefficient. The Mellin transformation of D(z) gives the value
of the measured fragmentation distribution for all specified value of N. Applying an inverse
Mellin transformation to Dnon,pert_(N ) deduced from Equation 12, the z-dependence of
the non-perturbative component is obtained. It has been displayed in Figure 13. It
shows an unphysical behaviour in some z-intervals which compensate the corresponding
unphysical properties of the perturbative component.

6 1
‘]
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O:f\\'——-\r_-_x:‘-_.r_-;;:v:-\--\-\\\\ww\\\\\:
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Figure 13: z-dependence of the perturbative (dotted line) and non-perturbative (full line)
QCD components of the measured b-fragmentation distribution.

The high-z (z > 0.96) behaviour of this distribution has been studied. This region
corresponds to high-N values where the perturbative approach fails. As a result, the high-
x behaviour of the perturbative and non-perturbative QCD components is non-physical;
the distributions oscillate. To have a numerical control of these distributions, in these
regions, we have chosen to do the evaluation up to a given maximum value, Z,q,, above
which the distributions are assumed to be equal to zero. Moments of these truncated
distributions show a small discrepancy when compared with the moments of the full
distributions. To correct for this effect, x,,,, is chosen such that the difference between
moments is a constant value and a Dirac distribution, corresponding to this difference, is
added at z = 1. A typical value for z,,,; is 0.997 and the Dirac component corresponds
to 5% of the distribution.

It has been verified that the convolution of the perturbative and non-perturbative
components reproduce the measured b-fragmentation distribution.
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10 Conclusion

Using the DELPHI 1994 Z° statistics the b-quark fragmentation functions
F(@B™), f(x%e**) and, for the first time, f(z) have been extracted from the data.

An unfolding method based on regularisation techniques was shown to be robust
against details of the prior fragmentation function used to generate the Monte Carlo
sample and functioned correctly even when the measured distribution was only weakly
correlated to the truth. The results and covariance matrices are detailed in Appendix A.
In terms of the first two central moments of the unfolded functions, the results obtained
were:

Mean Variance

F@B'™) 1 0.7346 & 0.0008(stat.) + 0.0055(syst.) | 0.0318 + 0.0005(stat.)

f(z%ek) | 0.7153 & 0.0007(stat.) )05 (syst.) | 0.0300 £ 0.0004(stat.)
f(z) | 0.8872 4 0.0012(stat.) £ 0.0054(syst.) | 0.0027 £ 0.0001(stat.)

Figure 14 presents a comparison of the results from this analysis for %°* compared

to two other recent analyses employing an unfolding technique, from ALEPH|21| and
SLD|22]. The unfolded fragmentation functions are seen to be quite consistent in shape
within the quoted errors. It should be noted that the ALEPH and SLD unfolded points,
in contrast to the present analysis, are almost fully correlated bin-to-bin.
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Figure 14: Unfolded f(z%®) distributions from ALEPH, OPAL [24], SLD and the current
analysis.

The dependence of the result for z as a function of the Monte Carlo generator param-
eters Qo and Agep was also studied. The variation with )y was found to be negligible
and as a function of Agcp the following relationship was measured,

(z) = 0.8872 — 0.19(0.01) (Agep /GeV — 0.346).
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It should be emphasized that the results for the case of f(z) are model dependent and
should be evaluated always within the framework of the Monte Carlo generator used, in
this case JETSET 7.3 parton shower.

The variation in the results as a function of the event thrust gives an important insight
into the effect of perturbative QCD effects on the hadronisation process. As expected,
(xp) is seen to rise with increasing thrust, whereas (z) is approximately constant. Fits to
hadronisation model functions show, particularly for the case of z unfolding, that many
of the most commonly used parameterisations are poor representations of the data.

In addition, the measured b-quark fragmentation distribution has been analysed us-
ing recent perturbative QCD computations. It was found that the models developed by
Peterson et al., Kartvelishvili et al. and Collins/Spiller for the non-perturbative compo-
nent are unable to reproduce the measurements when used in conjunction with a NLL
perturbative calculation. Using present measurements the non-perturbative component
has been extracted in the space of moments, independently of any model assumption, and
its xz-dependence has been obtained. This extracted non-perturbative QCD distribution
is also expected to be process independent and could be used in another environment as
long as the same NLL perturbative QCD approach is followed in that new context.
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Appendix A: Unfolded Points and Covariance Matrices

bin borders | value | stat. error | syst. error \/ O%tat + Oayst
0.100 — 0.287 | 0.051 0.025 0.018 0.031
0.287 - 0.395 | 0.481 0.032 0.022 0.039
0.395 — 0.503 | 0.536 0.038 0.024 0.045
0.503 — 0.606 | 0.887 0.049 0.033 0.059
0.606 — 0.699 | 1.294 0.059 0.029 0.066
0.699 — 0.777 | 1.849 0.069 0.022 0.072
0.777 - 0.851 | 2.728 0.067 0.036 0.076
0.851 — 0.907 | 3.478 0.066 0.049 0.082
0.907 - 0.951 | 2.324 0.051 0.122 0.133
0.951 — 1.000 | 0.442 0.045 0.061 0.076

Table 9: The unfolding result, per bin, for f(z%™™).

bin 1 2 3 4 5 6 7 8 9 10
1 0.628

2 | -0.560 1.032

3 0.111  -0.709 1.454

4 |-0.055 0.351 -1.389 2.412

5 | -0.035 -0.009 0.754 -2.209 3.455

6 0.063 -0.152 -0.195 1.233 -3.072 4.717

7 |-0.066 0.165 -0.068 -0.363 1.479 -3.538 4.489

8 0.039 -0.105 0.101 0.038 -0.544 1.843 -3.318 4.310

9 |-0.015 0.052 -0.102 0.145 -0.081 -0.321 1.025 -2.260 2.612

10 | 0.004 -0.013 0.008 0.029 -0.139 0411 -0.753 1.329 -1.654 2.062

Table 10: The statistical covariance matrix, in units of 1072, for the unfolded bins in

FB™).

bin 1 2 3 4 ) 6 7 8 9 10
1 0.959

2 |-0.729 1.502

3 0.303 -0.519 2.022

4 | 0.180 0.565 -1.094 3.488

5 0.175 0.219 1.226 -1.948 4.310

6 0.206 -0.310 -0.358 1.329 -3.0564 5.202

7 | 0.134 0.060 0.027 -0.267 1.904 -3.111 5.798

8 |-0395 -0.498 -0.611 -1.075 -1.443 1.753 -4.184 6.711

9 | -1.289 -0.593 -1.919 -2439 -2.824 -1.359 -1.406 1973 17.578

10 | -0.831 -0.179 -1.000 -1.037 -1.484 -0.030 -1.876 3.667 4.575 5.800

Table 11: The total (i.e. including statistical and systematic errors) covariance matrix,
in units of 1073, for the unfolded bins in f(z%"™).
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bin borders | value | stat. error | syst. error \/ O2tat + O2yst
0.100 - 0.281 | 0.029 0.022 0.029 0.036
0.281 - 0.389 | 0.516 0.030 0.032 0.044
0.389 — 0.491 | 0.552 0.037 0.028 0.046
0.491 — 0.589 | 0.940 0.046 0.031 0.056
0.589 — 0.681 | 1.282 0.054 0.033 0.064
0.681 — 0.764 | 2.060 0.063 0.040 0.075
0.764 — 0.828 | 2.904 0.077 0.043 0.088
0.828 - 0.896 | 3.139 0.059 0.084 0.103
0.896 — 0.946 | 1.549 0.044 0.083 0.094
0.946 — 1.000 | 0.358 0.038 0.030 0.048

Table 12: The unfolding result, per bin, for f(z%*).

bin 1 2 3 4 ) 6 7 8 9 10
1 0.482

2 | -0.463 0.924

3 0.139 -0.664 1.373

4 |-0.029 0.205 -1.201 2.159

5 | -0.048 0.116 0.526 -1.883 2.950

6 0.040 -0.188 -0.092 1.090 -2.658 3.985

7 |-0.046 0.212 -0.146 -0.434 1.691 -3.664 5.886

8 0.025 -0.117 0.180 -0.081 -0.322 1.189 -3.325 3.483

9 |-0.008 0.043 -0.088 0.099 -0.017 -0.220 1.205 -1.921 1.966

10 | 0.001 -0.008 0.004 0.028 -0.104 0.262 -0.714 0.940 -1.141 1.453

Table 13: The statistical covariance matrix, in units of 1072, for the unfolded bins in

fageer).

bin 1 2 3 4 5 6 7 8 9 10
1 1.301

2 | -1.173 1943

3 0.586 -0.884 2.133

4 | 0387 0.221 -0.835 3.105

5 0.160 -0.034 0.991 -1.861 4.040

6 0.511 -0.435 0.021 1.953 -2.922 5.619

7 | 0241 -0.198 0.045 -0.592 2.844 -3.837 7.754

8 |-1489 0.530 -1.286 -1.848 -1.974 -0.441 -5.329 10.509

9 | -1.602 0.830 -1.730 -1.667 -1.559 -2.162 -0.126 3.931 8.910

10 | -0.460 0.036 -0.570 -0.695 -0.530 -0.262 -0.947 2.792 1.011 2.343

Table 14: The total (i.e. including statistical and systematic errors) covariance matrix,
in units of 1073, for the unfolded bins in f(x%°*).
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bin borders | value | stat. error | syst. error \/ O2tat + O2yst
0.000 — 0.440 | 0.000 0.000 0.006 0.006
0.440 — 0.590 | 0.000 0.000 0.000 0.000
0.590 — 0.710 | 0.005 0.001 0.021 0.021
0.710 — 0.790 | 0.408 0.050 0.305 0.309
0.790 — 0.870 | 3.720 0.059 0.281 0.287
0.870 — 0.950 | 6.875 0.078 0.353 0.362
0.950 — 1.000 | 2.312 0.154 0.431 0.459

Table 15: The unfolding result, per bin, for f(z).

bin 1 2 3 4 ) 6 7
1 | 0.000

2 | 0.000 0.000

3 | 0.000 0.000 0.001

4 | 0.000 0.000 0.054 2.528

5 | 0.000 0.000 -0.038 -1.670 3.474

6 | 0.001 0.000 -0.036 -1.824 -1.403 6.120

7 |0.002 0.000 -0.092 -4.100 7.088 -4.543 24.328

Table 16: The statistical covariance matrix, in units of 1072, for the unfolded bins in f(z).

bin 1 2 3 4 5 6 7
1 0.042

2 0.000  0.000

3 0.041 0.002 0.441

4 0.233 0.032 5.844 95.249

5 0.198 0.077 -0.026 0.519  82.500

6 |-0491 -0.118 -4.802 -81.340 -38.097 130.805

7 |-0328 0.004 -3.159 -45.065 -65.676 -1.493  210.273

Table 17: The total (i.e. including statistical and systematic errors) covariance matrix,
in units of 1073, for the unfolded bins in f(z).
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