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Abstract

We propose a class of models with gauge mediation of supersymmetry breaking, inspired

by simple brane constructions, where R-symmetry is very weakly broken. The gauge sector

has an extended N = 2 supersymmetry and the two electroweak Higgses form an N = 2 hy-

permultiplet, while quarks and leptons remain in N = 1 chiral multiplets. Supersymmetry

is broken via the D-term expectation value of a secluded U(1) and it is transmitted to the

Standard Model via gauge interactions of messengers in N = 2 hypermultiplets: gauginos

thus receive Dirac masses. The model has several distinct experimental signatures with

respect to ordinary models of gauge or gravity mediation realizations of the Minimal Su-

persymmetric Standard Model (MSSM). First, it predicts extra states as a third chargino

that can be observed at collider experiments. Second, the absence of a D-flat direction

in the Higgs sector implies a lightest Higgs behaving exactly as the Standard Model one

and thus a reduction of the ‘little’ fine-tuning in the low tanβ region. This breaking of

supersymmetry can be easily implemented in string theory models.

1On leave of absence from CPHT, Ecole Polytechnique, UMR du CNRS 7644, F-91128 Palaiseau Cedex



1 Introduction

The supersymmetric flavor problem is one of the guidelines for constructing realistic models

at the electroweak scale with deep implications at LHC. Supersymmetry is generically

broken in a hidden sector and transmitted to the observable sector either by gravity or by

gauge interactions giving rise to the so-called gravity [1] or gauge-mediated [2] models. In

gravity-mediated scenarios the soft-breaking masses are generated at the Planck scale and

there is no symmetry reason why they should be flavor-invariant or why they should not

mediate large contributions to flavor-changing neutral current processes. In fact this idea

motivated the introduction of gauge-mediated theories where the generated soft terms are

flavor-blind and therefore they feel flavor breaking only through Yukawa interactions.

In gauge mediated (GMSB) theories supersymmetry is broken in a secluded sector such

that the Goldstino field belongs to a chiral superfield X which acquires a vacuum expecta-

tion value (VEV) along its auxiliary F -component as 〈X〉 = M + θ2F , where it is usually

assumed that F ≪ M2 so that supersymmetry breaking can be treated as a small pertur-

bation. The theory also contains a vector-like messenger sector (Φ,Φc) coupled to X by a

superpotential coupling
∫
d2θΦcXΦ and with Standard Model (SM) quantum numbers pro-

viding one-loop Majorana masses to gauginos ∼ α/4π F/M and two-loop positive squared

masses to all sfermions as ∼ (α/4π)2 F 2/M2, where α = g2/4π and g is the correspond-

ing gauge coupling. The corresponding effective operators giving rise to these masses are

(1/M)
∫
d2θXTrW αWα and (1/M2)

∫
d4θX†XQ†Q, where W α are the chiral field strengths

of the SM vector superfields and Q the SM chiral superfields. Fixing all masses in the TeV

range one obtains a relation between F and M . In particular if gravity mediated con-

tributions are required not to reintroduce the flavor problem, the flavor changing Planck

suppressed contributions should remain smaller than the flavor conserving gauge-mediated

ones, i.e. M <
∼ (α/4π)MPℓ ∼ 1016 GeV, implying

√
F <

∼ 1011 GeV. In gauge mediation

the R-symmetry is broken by the same mechanism that breaks supersymmetry which con-

strains the corresponding ultraviolet (UV) completion of the theory. The main problem of

any fundamental theory, as e. g. string theory, is then to provide the required mechanism

of supersymmetry and R-symmetry breaking.

In the simplest compactifications of a class of string theories, leading to intersecting

branes at angles, the gauge group sector is often in multiplets of extended supersymmetry

while matter states come in N = 1 multiplets [3]. A simple way of breaking supersymmetry

is by deforming the intersection angles from their special values corresponding to the su-
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persymmetric configuration. A small deformation ǫ of these angles breaks supersymmetry

via a D-term vacuum expectation value, associated in the T -dual picture to a magnetized

U(1) in the internal compactification space, ǫ = Dℓ2s with ℓs the string length. In this case,

the secluded sector is given by an (extended) vector multiplet containing an N = 1 vector

superfield V 0. The Goldstino is then identified with the gaugino of V 0 which acquires a

VEV: 〈V 0〉 = 1
2
θ2θ̄2D or 〈W 0

α〉 = θαD. Of course, this supersymmetry breaking preserves

the R-symmetry and can only give Dirac masses to the gauginos of the extended gauge

sector.

A prototype model is based on type II string compactifications on a factorizable six-

torus T 6 = ⊗3
i=1T

2
i with appropriate orbifold and orientifold planes and two sets of brane

stacks: the observable set O and the hidden set H [4, 5]. The SM gauge sector corresponds

to open strings that propagate with both ends on the same stack of branes that belong to

O: it has therefore an extended N = 2 or N = 4 supersymmetry. Similarly, the secluded

gauge sector corresponds to strings with both ends on the hidden brane H. The SM quarks

and leptons come from open strings stretched between different stacks of branes in O that

intersect at fixed points of the three torii T 2
i and have therefore N = 1 supersymmetry. The

Higgs sector however corresponds to strings stretched between different stacks of branes in

O that intersect at fixed points of two torii and that are parallel along the third one: it has

therefore N = 2 supersymmetry. Finally the messenger sector contains strings stretched

between stacks of branes in O and the hidden branes H, that intersect at fixed points of

two torii and are parallel along a third torus. It has therefore also N = 2 supersymmetry.

Moreover, the two stacks of branes along the third torus are separated by a distance 1/M ,

which introduces a supersymmetric mass M to the hypermultiplet messengers. The latter

are also charged under the supersymmetry breaking U(1) and they are given corresponding

supersymmetry breaking squared-masses ±D.

In this paper (inspired by the previous brane constructions) we propose a new gauge

mediated theory (NGMSB), alternative to the usual GMSB, where R-symmetry remains

unbroken by the mechanism of supersymmetry breaking 2. The observable gauge sector is

a set of N = 2 gauge multiplets corresponding to the SM gauge group. In general an N = 2

gauge multiplet contains an N = 1 vector multiplet V = (Aµ, λ1, D) and a chiral multiplet

χ = (Σ, λ2, Fχ). It can be described by the N = 2 chiral vector superfield [6]

A = χ+ θ̃W + θ̃2DDχ , (1.1)

2As we will see later, gravitational interactions produce R-symmetry breaking at a subleading level.
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where θ̃ is the second N = 2 Grassmannian coordinate and D the N = 1 super-covariant

derivative. The secluded sector is identified with the N = 2 chiral vector superfield A
0

(whose N = 1 vector superfield is V 0) where supersymmetry is broken by a hidden D-term

as 3

〈A0〉 = θ̃〈W 0〉 = θ̃θD (1.2)

For the messenger sector, we choose a (set of) N = 2 hypermultiplet(s) denoted as (Φc,Φ),

with field contents Φ = (φ, ψ, FΦ) and Φc = (φc, ψc, FΦc), charged under the secluded U(1)

(with charges ±1) and with a supersymmetric mass M .

The content of the paper is as follows. In section 2, we present the structure of our

model. In particular the transmision of supersymmetry breaking from the hidden to the

observable sector is calculated by loop diagrams involving messenger fields. Its main feature

is that Dirac masses for gauginos of the N = 2 gauge sector are obtained (R-symmetry

is preserved by the D-breaking) as well as soft masses for N = 1 sfermions. In section 3,

we study the generation of the soft-breaking terms for the N = 2 Higgs sector, as well as

the electroweak symmetry breaking. The main departure of the latter from MSSM is the

absence of D-flat direction along which the potential becomes unstable. As a consequence,

after electroweak symmetry breaking, the SM-like Higgs has a tanβ-independent mass and

couplings to SM fermions while the rest of the Higgs sector has tanβ-independent masses (at

the tree-level) and tanβ-dependent couplings to ordinary matter. In section 4, we present

a few comments about the gravitino mass and the generation of a tiny F -breaking by

gravitational interactions, possible dark matter candidates in our scenario, its experimental

signatures at the next high energy colliders (LHC and ILC) and the possibility of unification

at a GUT scale. In section 5, our conclusions are drawn. Finally in appendix A we give a

description of the supersymmetry breaking potential, based on a Fayet-Iliopoulos (FI) term,

for the scalar messengers and the scalar field in the chiral multiplet in the secluded gauge

sector. We show that the supersymmetry D-breaking minimum is a local (metastable) one.

However we also show that on cosmological times it is absolutely stable.

3We are assuming here that some dynamical mechanism in the hidden sector generates the D-breaking
of supersymmetry given by the VEV in Eq. (1.2). A particular realization is given by the angle deformation
of intersecting branes described above, leading to an N = 2 Fayet-Iliopoulos term, while the corresponding
effective potential is analyzed in appendix A.
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2 The model structure

The interaction Lagrangian of the messengers with the different gauge sectors is written as

∫
d4θ

{
Φ†eV Φ + Φce−V Φc†

}
+

{∫
d2θΦc

[
M −

√
2 χ

]
Φ + h.c.

}
(2.1)

where V =
∑

A gAT
AV A contains all gauge fields (in the hidden and observable sectors)

and similarly for χ =
∑

A gAT
AχA 4.

From (2.1) and after replacing the V 0 VEV from Eq. (1.2), we find that the Dirac spinor

Ψ = (ψ, ψ̄c)T acquires a Dirac mass M while the scalar components have a squared mass

matrix given by

(φ†, φc)M2

(
φ
φc†

)
, M2 =

(
M2 +D 0

0 M2 −D

)
(2.2)

Notice that in the absence of the supersymmetric mass M , the origin in the (φ, φc) field

space is a saddle point. However since we are assuming that M2 > D the origin becomes

a minimum along the (φ, φc) directions. Assuming that supersymmetry is broken by a FI

mechanism the Σ0-scalar in the extended gauge sector is a flat direction of the potential.

However in the presence of supersymmetry breaking it will acquire soft radiative masses,

see Eq. (2.12), and the origin 〈Σ0〉 = 〈φ〉 = 〈φc〉 = 0 becomes a local minimum. Of

course there is a global minimum, provided that the SM gauge interactions are ignored,

where supersymmetry is restored and gauge symmetry is broken, at 〈Σ0〉 = M/
√

2 and

|〈φc〉|2 = D. The barrier heigh separating these minima is very small as compared to

the distance between them if M2 ≫ D. In that case the tunneling probability per unit

space-time volume from the local minimum to the global one is

P ∼ e
−κ

M4

D2 (2.3)

where κ > 1 is a dimensionless constant. For M2 ≫ D the probability (2.3) is so small

that the false vacuum is essentially stable on cosmological times. More details are given in

appendix A.

4We are normalizing the generators such that TrT AT B = 1/2 δAB in the fundamental representation.
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Ψ

φ, φc

λ1 λ2

Figure 1: Feynman diagrams contributing to the Dirac mass of the gaugino λ
a

Using now the Lagrangian (2.1), the coupling of the SM gauginos with the messenger

fields is written as

−
√

2
(
φc

λ̄1Ψ − φ†
λ̄2Ψ

)
+ h.c. (2.4)

where we have defined the four-component symplectic-Majorana spinors λi = (λi, ǫijλ̄j)
T .

Notice that if we define a Dirac spinor λ = (λ1, λ̄2)
T , it satisfies the following identity:

λ̄λ =
1

2

(
λ̄1λ1 − λ̄2λ2

)
. (2.5)

A Dirac mass mD
a for the Dirac gaugino λa is radiatively generated from the diagram

of Fig. 1 which gives a finite value

mD
a = ka

αa

4π
N D

M

[
1 + O

(
D2

M4

)]
, a = 1, 2, 3 (2.6)

with k1 = 5/3, k3 = k2 = 1, αa = g2
a/4π, and N the number of messengers. This value for

the Dirac gaugino mass can be equivalently understood from the effective operator [7, 4]

∼ 1

M

∫
d2θW 0Tr(Wχ) + h.c. (2.7)

This operator is actually consistent with N = 2 supersymmetry since it is generated by a

manifest N = 2 supersymmetric Lagrangian (2.1). The operator (2.7) can be rewritten in

an explicit N = 2 supersymmetric way:

∼ 1

M

∫
d2θd2θ̃A0Tr(A)2 + h.c. (2.8)

where A
0 is the secluded U(1) N = 2 vector superfield.

In Ref. [5] such an operator was computed in string theory for the same physical setup

of brane configurations discussed in section 1. The result was found to be topological, in the

5



φ, φc

Σ Σ

Figure 2: Feynman diagrams contributing to squared masses for the adjoint scalars Σa

sense that it is independent of the massive string oscillator modes. It receives contributions

only from the field theory Kaluza-Klein (KK) part of the torus along which the messengers

brane intersection of the observable stack O with the hidden stack H is extended. The

separation ℓ of the two stacks along a direction within this torus determines the messengers

mass M = ℓ in string units. The gaugino mass (in the limit Dℓ2s ≪ 1) can then be

written as an integral over the real modulus parameter t of the worldsheet annulus having

as boundaries the two brane stacks 5:

mD
1/2 ≃

α

2
ND

∫ ∞

0

+∞∑

n=−∞

(nR + ℓ)e−2πt(nR+ℓ)2 , (2.9)

where for simplicity we have chosen the brane separation to be along one of the two dimen-

sions of an orthogonal torus of radius R. The integration can be performed explicitly with

the result:

mD
1/2 ≃

α

4π
ND

{
1

ℓ
− 2

R2

∑

n≥1

ℓ2/R2

n2 − ℓ2/R2

}
. (2.10)

The first term in the right-hand side reproduces precisely the field theory expression (2.6),

while the second term represents the (sub-leading) contribution of the messengers KK

excitations.

The second superpotential term in Eq. (2.1) gives rise to the F -term potential

2
{
Tr

(
φ†Σ†Σφ

)
+ Tr

(
φcΣ†Σφc†

)}
. (2.11)

By using now the one-loop diagrams of Fig. 2 we obtain the mass term m2
Σa |Σa|2 as6

m2
Σa = ka

αa

4π

D2

M2

[
1 + O

(
D2

M4

)]
(2.12)

5Note a factor of t misprint in Eq. (3.22) of Ref. [5]. Here, we also restored the numerical prefactor.
6In the following, we set N = 1 for simplicity.
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This value can be understood from the effective operator

∼ 1

M2

∫
d2θ(W 0)2 PC Tr

[
χ†χ

]
+ h.c. (2.13)

where PC is the non-local operator [8, 9]

PC = 2
−1D̄D̄DD (2.14)

that, acting on a real superfield, produces a chiral one such that its lowest component

contains the lowest component of the real superfield. In our case the lowest component of

PCTrχ†χ contains TrΣ†Σ and (2.12) follows. As in the case of gaugino masses discussed

above, one can also show that the operator (2.13) is actually consistent with N = 2 super-

symmetry.

The sector of quarks and leptons is made of N = 1 chiral multiplets, that we generically

denote as Q = (Q, qL). Its interactions with the gauge sector are given by the Lagrangian

∫
d4θQ†eV Q (2.15)

In principle, since the messenger sector has SM quantum numbers, there are quartic inter-

actions (from integration of the SM D-terms) as

1

2
g2

a

(
φ†

iφj − φc
iφ

c†
j

)
Q†

kQl

∑

A

(TA
φ )ij(T

A
Q )kl (2.16)

where TA
φ are the generators of the gauge group in the representation of φ. From Eq. (2.16)

and by performing a one-loop contraction of the messenger fields φ and φc, one could

in principle provide the SM sfermions Q with a phenomenologically unacceptable large

squared mass ∼ D. For non-abelian group factors this contribution vanishes since it is

proportional to Tr(TA
φ ) = 0. However, this cancellation does not automatically take place

for the case of U(1) factors, as the hypercharge. Moreover, the sign of the different sfermion

squared masses depends on their hypercharge and tachyonic masses can thus be generated.

A solution to this problem appears if φ is in a complete representation of SU(5) in which

case it is guaranteed that Tr(Yφ) = 0 7. This mechanism is similar to that proposed in

7Notice that this solution uses the fact that within the states of the representation φ the mass matrix
is proportional to the unity and hence does not involve the vector-like character of the hypermultiplet.
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Ref. [10] in conventional gauge mediation. In fact, by making a π/4 rotation on the fields

(Φ,Φc†), the mass matrix (2.2) rotates to

(
M2 D
D M2

)
(2.17)

which coincides with the supersymmetry breaking mass matrix in usual gauge mediation

via an F -term breaking when the messenger sector is invariant under a “messenger parity”

by just making the identification F = F † = D.

In view of the previous identification and given that the adjoint superfields Σ do not

have direct interactions with N = 1 matter, the two-loop diagrams that contribute to the

sfermions masses are computed in the same way as in usual gauge mediation models (see

the diagrams shown for instance in Ref. [11]) with the result:

m2
Q = 2

3∑

j=1

kjCj(Q)
( α

4π

)2 D2

M2

[
1 + O

(
D2

M4

)]
, (2.18)

where Cj(N) = (N2 − 1)/2N for the fundamental representation of SU(N). This value of

the sfermion masses can be understood from the effective operator

∼ 1

M2

∫
d2θ(W 0)2PC [Q†Q] (2.19)

where PC is the chiral projection operator defined in Eq. (2.14).

Finally associated with the superpotential term
∫
d2θht HcQU there exists the rele-

vant supersymmetry breaking parameter At that appears in the (R-symmetry breaking)

Lagrangian −AthtH
cQU . This term generates a mixing between the left and right-handed

stops and plays a crucial role in the radiative corrections contributing to the lightest Higgs

mass. In our model we have At = 0 at the scale M and furthermore, since the D su-

persymmetry breaking does not break the R-symmetry, this null value is not modified by

the renormalization group equations to any order in perturbation theory, unlike the case

of usual gauge mediation where the gaugino Majorana masses contribute to the one-loop

renormalization of At. However since, as we shall see, R-symmetry is broken by tiny effects

required for electroweak symmetry breaking (and in particular also by gravitational inter-

actions) there will be a small trilinear parameter At but irrelevant for phenomenological

purposes.
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3 Electroweak breaking

Concerning the Higgs sector, it belongs to an N = 2 hypermultiplet H = (Hc,H) and its

interactions with the gauge sector are given by the Lagrangian

∫
d4θ

{
H†eV H + Hce−V Hc†

}
−

{√
2

∫
d2θHcχH + h.c.

}
(3.1)

The Higgs scalars acquire two-loop masses from Feynman diagrams leading to doublet

slepton masses (2.18) and those of Fig. 3 that come from the N = 2 superpotential gauge

interactions in Eq. (3.1).

Σ

φ, φc

H H

Hc

φ

φc

H H

Σ

Ψ

H H

H̃c

Ψ
φ, φc

H H

Figure 3: Feynman diagrams from N = 2 superpotential contributing to the H squared mass.
The same diagrams contribute also to the Hc squared mass (make the change H ↔ Hc in
all graphs)

It turns out that the contribution from the superpotential interactions equals that from

the gauge couplings and so the result is easily written as

m2
H = 4

2∑

j=1

kjCj(H)
( α

4π

)2 D2

M2

[
1 + O

(
D2

M4

)]
(3.2)

that can be understood as coming from the effective operator

∼ 1

M2

∫
d2θW2PC [H†H + HcHc †] . (3.3)

9



Note that the Higgs potential is corrected with some additional contributions coming

from Eq. (2.7) [7]. The resulting Lagrangian for the ΣA scalars, including the radiative

mass terms in Eq. (2.12) can then be written as

−mD
2 D

a(Σa + Σa†) −mD
1 DY (ΣY + Σ†

Y ) −m2
Σa |Σa|2 −m2

ΣY
|ΣY |2 (3.4)

where Σa andDa are the adjoint scalar and auxiliary field of the SU(2) vector superfield, ΣY

and DY are the neutral scalar and auxiliary field of the U(1)-hypercharge vector superfield,

and mD
2 and mD

1 represent the corresponding gaugino Dirac masses. We can now integrate

out the adjoint fields Σa and ΣY . In the absence of the mass terms (2.12) this integration

would yield Da = DY = 0 which would be a phenomenological drawback for this kind of

models. However, in the presence of the mass terms (2.12) the integration yields:

Σa = −α2

4π

Da

mD
2

ΣY = −k1α1

4π

DY

mD
1

(3.5)

where we used the relation (mD
a )2 ≃ (αa/4π)m2

Σa, following from the expressions (2.6) and

(2.12) for k2 = 1.

Replacing now (3.5) in the Lagrangian generates an extra term (quartic in the Higgs

fields)

α2

4π
~D2 +

k1α1

4π
D2

Y (3.6)

which is a small correction to the tree-level Lagrangian 1
2
( ~D2+D2

Y ) and can thus be neglected

in the calculation of the Higgs scalar potential. On the other hand, from Eq. (3.5), the

VEV of the neutral component of the SU(2) triplet Σ3 gives rise to a small violation of the

SU(2) custodial symmetry when the neutral Higgses acquire a VEV. It would contribute

to the ρ-parameter as

ρ0 − 1 = 4
〈Σ3〉2
v2

= g2v
2M2 cos2 2β

D2
≃ 3 × 10−6

(
v

mD
2

)2

cos2 2β (3.7)

where v = 174 GeV,mD
2 = (α2/4π)D/M is the chargino mass, and as usual tanβ is the ratio

of the two Higgs VEVs, tanβ = v2/v1. Here we also used 〈D3〉 = g2v2 cos2 2β, following

10



from the usual minimization of the Higgs potential. Present experimental bounds [12],

ρ0 − 1 < 6 × 10−4 are then always satisfied. Similarly, there is an induced VEV for the

singlet ΣY that contributes to the µ parameter but without any phenomenological impact.

Apart from the Higgs soft masses, there are two other key ingredients of the Higgs

sector in order to successfully break SU(2) × U(1): namely the µ and m2
3 terms. The

former represents a supersymmetric mass for Higgses and Higgsinos that can be written as

µ
∫
d2θHcH + h.c. Notice that this superpotential mass term is perfectly consistent with

the N = 2 supersymmetry of the Higgs sector. However, its origin and correct size is one

of the main problems of supersymmetric model building 8. Moreover the m2
3 term is a

soft mass for the scalar components of H and Hc, as m2
3H

cH + h.c., which is required to

explicitly break the Peccei-Quinn symmetry. The simplest possibility to generate a µ-term

would be the existence in the N = 1 observable sector of an extra singlet chiral superfield

S, coupled to the Higgs sector in the superpotential
∫
d2θSHcH and that acquires a VEV

〈S〉 ∼ TeV when supersymmetry is broken, together with an F -component VEV generated

(by some O’Rafeartaigh mechanism or even by gravitational interactions as we will see in

the next section) at the scale
√
FS ∼ TeV. This breaking would be subleading with respect

to the D-term breaking and thus will not alter any of the general conclusions previously

obtained. Finally notice that, as we will comment in the next section, D-breaking implies,

in the presence of gravitational interactions and through the cancellation of the cosmological

constant, an F -breaking that could be used to solve the µ-problem by some of the existing

solutions in the literature either using gravitational [13] or gauge [14, 15] interactions.

The soft masses in the Higgs sector of Eq. (3.2) are ‘lowest order’ masses 9, that cor-

respond to given boundary conditions at the scale M , while the renormalization group

equations (RGE) evolution should be considered from M to the weak scale mZ . In particu-

lar, the Higgs coupled to the top quark will get a large negative squared mass proportional

to the squared top-Yukawa coupling, as in the MSSM 10. We can now write the Higgs po-

tential in the usual notation where H1,2 are the lowest components of the chiral superfields

8Actually, as mentioned above, in our model such a term is generated through the N = 2 superpotential
in Eq. (3.1), upon the VEV of the scalar component ΣY of the superfield χY in Eq. (3.5). However its
magnitude is too low for phenomenological purposes and an additional source of µ is needed.

9Both masses are equal because gauge interactions respect the N = 2 structure of the Higgs hypermul-
tiplet.

10Since the Yukawa couplings only respect N = 1 supersymmetry we expect the renormalization of the
two Higgs masses to be different.
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H and Hc respectively. For the neutral components of the Higgs doublets the potential is

V = m2
1|H1|2 +m2

2|H2|2 −m2
3(H1H2 + h.c.)

+
1

8
(g2 + g′2)(|H1|2 − |H2|2)2 +

1

2
(g2 + g′2)|H1H2|2 (3.8)

where m2
i = m2

Hi
+ µ2 are the mass parameters at low energy including the soft- and the

µ-terms. In the last line, the first quartic term is the usual D-term of the MSSM, whereas

the second is a genuine N = 2 effect similar to the one in Eq. (3.1).

Having an extra quartic term on the potential has interesting consequences for its min-

imization. Indeed, the origin in the Higgs field space can either be a maximun or a saddle-

point, whereas in the MSSM it can only be a saddle-point due to the existence of a flat

direction of the D-term (|H1| = |H2|). The conditions to have a vacuum that breaks

electroweak symmetry at the correct value are:

m2
Z

2
= −µ2 +

1

tan2 β − 1

(
m2

H1
−m2

H2
tan2 β

)
(3.9)

m2
A = m2

H1
+m2

H2
+ 2µ2 +m2

Z (3.10)

wherem2
A = 2m2

3/ sin 2β is the squared mass of the pseudo-scalar. Notice the important fact

that the MSSM stability condition 2|m2
3| < m2

H1
+m2

H2
+2µ2 is not required in the case of an

N = 2 Higgs sector. Actually the MSSM minimization condition m2
A = m2

H1
+m2

H2
+2µ2 is

replaced by Eq. (3.10) so that for the same input mass parameters the value of mA is larger

than that of the MSSM. Another feature of the potential is that the “little” electroweak

fine-tuning of the MSSM is reduced for values of tan β close to one, as we will see below.

We can now calculate the spectrum of the Higgs sector. As in the MSSM, it is controlled

by mA. However it has no dependence on tan β:

mh = mZ

mH = mA

m2
H± = m2

A + 2m2
W (3.11)

Moreover, the rotation matrix Rα from H1, H2 to h, H is trivial leading to α = β − π/2

which means that the coupling gZhh is the SM one, while gZHH = 0; therefore h behaves

always like a SM Higgs and H plays no role in electroweak symmetry breaking. This leads

to a different phenomenology from that of the MSSM as we will describe in the next section.
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The spectrum from Eq. (3.11) is modified by radiative corrections. At leading order,

the mass matrix for the neutral states can be written as:

M =

(
m2

Z cos2 β +m2
A sin2 β (m2

A −m2
Z) cosβ sin β

(m2
A −m2

Z) cosβ sin β m2
Z sin2 β +m2

A cos2 β + ǫ

)
(3.12)

where ǫ is the leading one loop correction which can be written as:

ǫ =
3m4

t

4π2v2

(
log

m2
t̃1

+m2
t̃2

m2
t

+
X2

t

2M2
S

(
1 − X2

t

6M2
S

))
(3.13)

where m2
t̃1,2

are the two stop masses, Xt = At − µ/ tanβ ≃ −µ/ tan β is the stop mixing

mass parameter, and MS ≃
√

(m2
t̃1

+m2
t̃2

)/2 represents the common soft supersymmetry

breaking scale. It should be noted that for large mA and any value of tanβ this corresponds

to the limit of the MSSM at large tan β so the Higgs mass in this model is always maximal

in the decoupling limit for the given value of Xt. In particular for values of tanβ ∼ O(1)

we get a mixing X2
t ∼ µ2. On the other hand, for values of mA close to mZ the value for mh

should be below the present bound on the Higgs mass although such small values should

be normally excluded by the electroweak symmetry breaking condition (3.10).

Finally it is easy to see that the “little” fine-tuning in this model is greatly reduced with

respect to that of the MSSM in the low tan β region. The origin of the “little” fine-tuning

in the MSSM is that the Higgs mass only increases logarithmically with the stop mass mQ

while it appears quadratically in the determination of m2
Z . In fact since the tree-level mass

of the Higgs in the MSSM (in the large mA limit) goes to zero in the limit tanβ → 1, in

order to cope with the LEP limit on the Higgs mass, one should go to the region of very

large values of mQ and thus to a very severe “little” fine-tuning. This fine-tuning is softened

in the region of large tanβ. Since in our model the tree-level Higgs mass does not depend

on tanβ (it coincides with the MSSM one in the tan β → ∞ limit) the “little” fine-tuning

for any value of tanβ coincides with that of the MSSM in the large tanβ limit.
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4 Some phenomenological aspects

In this section we discuss different phenomenological aspects of the model presented above.

The gravitino mass and gravitational effects

At the supergravity level, enforcing the cancellation of the cosmological constant leads to

the presence of an extra source of supersymmetry breaking through an F -term for some

chiral field. The goldstino is then a combination of the fermionic partners of this field and

the U(1) gauge boson with non-vanishing D-term. Through the super-Higgs mechanism it

is absorbed by the gravitino which gets a mass of order [16]

m3/2 ≃
D

MPℓ
(4.1)

where MPℓ = 2.4× 1018 GeV is the reduced Planck mass. We will assume here that F is of

the same order as D:

F ≃ m3/2MPℓ ≃ D (4.2)

In fact, the relative sizes of D and F are very model dependent. While normally F >
∼ D,

models with F ≪ D can also be engineered [17].

The additional F -breaking source can be arranged to reside in the hidden sector. It

will be communicated only through gravitational interactions to the observable sector.

The associated effects qualitatively differ from those from D-terms by the fact that they

could break R-symmetry, generate Majorana masses and are not compelled to be flavor

independent. This implies in particular that they must be subleading with respect to

the gauge mediated mechanism presented in this paper in order to not re-introduce a

flavor problem. As the typical size of soft-mass terms induced by gravitational interactions

is ∼ F/MPℓ, if Eq. (4.2) holds the condition for gravity mediated contributions to be

subleading is that M <
∼ (α/4π)MPℓ ∼ 1016 GeV which in turn implies the bound m3/2

<
∼ 1

TeV. However if F ≪ D then it may be possible to suppress gravitational interactions even

with m3/2
>
∼ 1 TeV.

Note also that anomaly-mediated supersymmetry breaking (AMSB) [18] is subleading

with respect to the soft-breaking induced by the gauge mediation mechanism, provided that

M ≪MPℓ. For instance, the gaugino Majorana masses Ma induced by anomaly mediation

are

Ma ∼ αa

4π
m3/2 ∼

[
M

MPℓ

]
mD

a (4.3)
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and similarly for the squark and Higgs masses.

Fixing mD
a ∼ 1 TeV in Eq. (2.6) one can write D as a function of M as

D ∼M × 105 GeV (4.4)

and plugging it into (4.1) one obtains

m3/2 ∼
[

M

109GeV

]
keV (4.5)

Preferred ranges for values of the scales M and
√
D can then be obtained if one imposes

certain cosmological constraints on the gravitino mass [19]. For instance as a warm dark

matter component a light gravitino mass should lie below ∼ 16 eV [20] in order not to have

unwanted cosmological consequences, which translates into M <
∼ 107 GeV. Furthermore as

a cold dark matter component the mass of the gravitino should be above few keV, which

translates into M >
∼ 109 GeV and the reheating temperature has to be such that the density

of gravitinos does not overclose the universe [20].

Collider phenomenology

There are three different signatures of these models. The first one, and common to the usual

gauge mediation scenarios, arises when the gravitino is very light (the LSP) and therefore

the NLSP could have a decay suppressed by the SUSY breaking scale. In this situation and

if the NLSP is charged (a very common case) it could yield a track in the detector before

decaying.

The second feature in our models is the N = 2 structure of the Higgs sector. As we

noticed in section 3, the lightest Higgs h behaves as a SM Higgs with no tanβ dependence

on its couplings to fermions; therefore its production and decay rates are those typical of the

SM rather than the MSSM. On the other hand, the couplings to matter of the heaviest Higgs

H , the pseudo-scalar A and the charged Higgses H±, as well as all self-couplings within

the Higgs sector do depend on tan β: in principle one could then distinguish these models

from others (such as the MSSM or the non-supersymmetric two-Higgs doublet models) by

measuring these couplings, although this may be the realm for ILC rather than LHC.

Finally the last signature comes from the N = 2 structure of the gauge sector and

consequently from the fact that gauginos have their main mass contribution forming a

Dirac particle. This translates into having different decay channels of gluinos, which are

15



difficult to measure but, more importantly, into the existence of three charginos and six

neutralinos, the latter being paired into three pseudo-Dirac neutral fermions. Discovery of

three charginos should constitute the smoking gun of this scenario.

Unification

Let us finish this phenomenological section with some comments on gauge coupling unifi-

cation. The model as it is, with N = 2 gauge sector and a single Higgs hypermultiplet,

together with the usual N = 1 chiral matter, has the following beta-function coefficients:

β1 = 33
5
, β2 = 3, β3 = 0. Evolution of the three gauge couplings with the previous beta-

functions does not lead to unification. However, this can be achieved by adding appropriate

extra states [21, 7]. For instance, if one adds to the above spectrum one hypermultiplet with

the quantum numbers of the Higgs plus two hypermultiplets with the quantum numbers of

a right-handed lepton (unifons) the new beta-function coefficients read:

β1 =
48

5
, β2 = 4, β3 = 0 (4.6)

and one recovers the one-loop unification at the MSSM GUT scale MGUT ∼ 2×1016 GeV. It

should be noted that the unification scale is not affected by the messengers since they form

complete SU(5) representations. Moreover, the unifons come in vector-like representations

and can be given the desired (supersymmetric) mass.

5 Conclusions

In this paper we have proposed a new model of gauge mediation where supersymmetry

is broken by a D-term expectation value in a secluded local U(1) sector, thus conserving

R-symmetry in the global limit. The NGMSB model, an alternative to the usual GMSB

where supersymmetry is broken by the F -term of a secluded chiral sector, is easily realized

in intersecting brane models of type I string theory [5]. Its main feature is the presence of an

extended N = 2 supersymmetry in the gauge, as well as in the Higgs and messengers sectors.

As a result, the transmission of supersymmetry breaking by the hypermultiplet messengers

generates Dirac masses for gauginos at the one-loop level. The observable matter sector is

contained in chiral N = 1 multiplets (localized in brane intersections) that get radiative

masses at the two-loop order. The NGMSB model shares some features with the usual

GMSB models:
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• It solves the supersymmetric flavor problem.

• It provides a common supersymmetry breaking scale, the masses of all supersymmetric

particles being proportional to gauge couplings.

• In sensible models, the gravitino is very light and thus a candidate to describe the

Dark Matter of the Universe.

However, NGMSB departures from usual GMSB in a number of features:

• The gaugino sector contains twice as many degrees of freedom as that of the MSSM

assembled into (quasi)-Dirac fermions with Dirac masses. Finding three (instead of

two) charginos, and six (instead of four) neutralinos should then be the smoking gun

of this class of models at LHC.

• The two Higgs superfields of the MSSM are contained in one hypermultiplet. Thus,

the Higgs phenomenology for low tanβ at LHC is completely different from that of

the MSSM. This alleviates the fine-tuning problem of low tanβ and opens up the

corresponding window in the supersymmetric parameter space.

There is a number of issues whose detailed analysis was outside the scope of the present

paper but that should be worth of further study. On the phenomenological side, one should

translate LEP data into bounds on the Higgs masses 11 and work out more in detail the

LHC phenomenology of both the scalar Higgs and the chargino and neutralino sectors.

Finally at the string theory level, the construction of realistic intersecting brane models

realizing the ideas contained in this paper.
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A Tunneling probability density

In this appendix we will first analyze the potential structure of the N = 2 supersymmetric

U(1) secluded sector A
0 with gauge coupling g0 in the presence of the messenger hypermul-

tiplet (Φ,Φc) with charges normalized to ±1. We will assume that N = 2 supersymmetry

is broken by the FI parameter ξ. The interaction of the messenger hypermultiplet (Φ,Φc)

with the secluded U(1) is described by the Lagrangian

∫
d4θ

{
Φ†eg0V 0

Φ + Φce−g0V 0

Φc† + ξ V 0
}

+

{∫
d2θΦc

[
M −

√
2 g0χ

0
]
Φ + h.c.

}
(A.1)

that gives rise to the scalar potential

V =
D2

2g2
+

{
|M −

√
2 Σ|2 +D

}
|φ2|+

{
|M −

√
2 Σ|2 −D

}
|φc|2 +

g2

2

(
|φ|2 + |φc|2

)2
(A.2)

where we have used in (A.2), to simplify the notation, D = g2
0ξ, Σ = g0Σ

0 and g = g0.

The potential (A.2) has two minima:

• A local non-supersymmetric minimum at the origin, φ = φc = 0, which is a flat

direction along the Σ-field. This minimum has a vacuum energy 〈V 〉 = D2/2g2. The flat

direction is lifted by quantum corrections that provide a radiative mass to Σ as in Eq. (2.12)

Vrad(φ, φ
c,Σ)|φ=φc=0 = m2 |Σ|2, m2 ≃ 1

16π2

D2

M2
(A.3)

Using Eq. (A.3) the local supersymmetry breaking minimum is then at the origin

〈φ〉 = 〈φc〉 = 〈Σ〉 = 0 (A.4)

• A global supersymmetric minimum at

〈φ〉 = 0, |〈φc〉|2 = D/g2, 〈Re(Σ)〉 = M/
√

2, 〈Im(Σ)〉 = 0 (A.5)

with zero vacuum energy 12.
12The general features of our analysis should remain true after introducing the interaction of the messen-

gers with the observable gauge sector. In particular, when the gauge sector A
A is introduced, this minimum

is uplifted and the 〈|φc|2〉 VEV is shifted by the observable D-term g2
A/2

(
φcT Aφc †

)2
, while the Σ direction

should have components along the ΣA-fields of the observable sector. However radiative corrections (2.12)

provide masses proportional to trT A
φ T B

φ + trT A
φcT B

φc . Given that T
U(1)
φ,φc ∝ 1 and trT Y

φ,φc = 0 there is no

mixing between the secluded U(1) and U(1)Y and all flat directions are lifted. Since we intend to do only
a semi-quantitative analysis of the tunneling probability from the local (A.4) to the global (A.5) minimum
we do not include in this appendix gauge interactions from the observable sector.
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For any value of Σ at zero mass, the potential has a minimum at the origin along the

φ-direction and for values of Σ such that |M −
√

2Σ|2 > D the potential also has the

minimum (A.5) along the φc direction. However when |M −
√

2Σ|2 = D there is an almost

flat direction along φc at the minimum that becomes a maximum for |M −
√

2Σ|2 < D.

Since the flat direction Σ is lifted only by radiative corrections [see Eq.(A.3)] the path

followed by the instanton which controls the tunneling from the local (A.4) to the global

(A.5) minimum goes along the Re(Σ)-direction, from the origin up to values of Re(Σ),

Re(Σ) = M/
√

2 + O(D1/2) where the potential becomes unstable along the φc direction.

Since the instanton has to jump over the path of least slope along Re(Σ), up to values

of Re(Σ) where the potential becomes unstable, the tunneling problem can be very well

approximated by a one-dimensional problem where the instanton field that satisfies the

euclidean equation of motion [22]

d2ϕ

dr2
+

3

r

dϕ

dr
= V ′(ϕ) (A.6)

is ϕ ≡ Re(Σ)/
√

2. The variable r =
√
t2 + ~x2 in (A.6) makes the O(4) symmetry of the

solution manifest with the boundary conditions ϕ→ 0 at r → ∞ and dϕ/dr = 0 at r = 0.

In order to make an estimate of the probability of bubble formation by tunneling from

the local (A.4) to the global (A.5) we will follow Ref. [23]. First of all notice that the depth

of the global minimum ∼ D2/2g2 is much larger than the heigh of the barrier ∼ D2/32π2

so that the bubble solution is outside the domain of validity of the thin wall approximation.

Second, to compute the tunneling probability one can disregard the details of the behaviour

of the potential V (ϕ) at ϕ≫ ϕ1 where V (ϕ1) ≃ V (0). In particular considering a potential

Vapp(ϕ) that approximates V (ϕ) for ϕ <
∼ ϕ1 is usually a sufficiently good approximation [23].

In our case ϕ1 ≃ M/2 and the simplest such potential is

Vapp(ϕ) =
1

2
m2 ϕ2 − δ

3
ϕ3 (A.7)

where the mass term is given by Eq. (A.3) and δ is chosen such that V (ϕ1) ≃ 0, i. e.

δ ≃ 3m2

2ϕ1

∼ 3

16π2

D2

M3
(A.8)
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The euclidean action S4 corresponding to the solution ϕ of Eq. (A.6) is given by

S4 ∼ 2

(
10M

3m

)2

∼
(
κ4
M2

D

)2

(A.9)

where κ4 ≃ 59.

At finite temperature one should replace V (ϕ) by V (ϕ, T ) where finite temperature

effects have been considered. In our case the dominant thermal effects in Eq. (A.7) can be

encoded in the thermal mass

m2(T ) ≃ 1

16π2

(
D2

M2
+ aT 2

)
(A.10)

where a is some order one coefficient. At finite temperature the O(4) symmetric solution

of (A.6) should be replaced by the O(3) symmetric one that satisfies the equation [23]

d2ϕ

dr2
+

2

r

dϕ

dr
= V ′(ϕ, T ) (A.11)

where now r2 = ~x2. For the potential (A.7) it is found [23]

S3

T
∼ 5

M3m3(T )

m4 T
>
∼

(
κ3
M2

D

)2

(A.12)

where κ3 ≃ 45 and the last inequality holds for any temperature. The tunneling probability

per unit time per unit volume is then

P ∼ e−B (A.13)

where B = min [S4, S3(T )/T ] at any temperature. This justifies our Eq. (2.3).

Of course we do expect expressions (A.9) and (A.12), based on the approximated po-

tential (A.7) to be accurate only within factors of order a few. In fact if we approximate

the potential by a different one with a negative quartic term, Vapp = 1/2m2ϕ2 − 1/4 λϕ4

as in Ref. [23], and fix λ such that Vapp(ϕ1) ≃ 0 the corresponding expressions (A.9) and

(A.12) have coefficients κ4 ≃ 23 and κ3 ≃ 19 respectively, thus related to those in (A.9) and

(A.12) by order two factors. Given that in all cases the euclidean actions are dominated by

the large M4/D2-factors, these results are very consistent to each other.
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