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Abstract 
 

The generalized scattering amplitudes of the adiabatic distorted waves theory have been developed 
by Austern and Blair, connecting the inelastic scattering amplitudes in terms of the elastic scattering 
amplitudes. Potgieter and Frahn obtained simple, closed and explicit expressions for the inelastic scattering 
amplitudes, again in the adiabatic approximation, under strong absorption condition. These are analogous to 
the strong absorption model formulae for elastic scattering. In a previous communication, inelastic scattering 
cross section leading to the population of L = 2 and L = 3 states in nuclei are derived by us, using the general 
formulations due to Potgieter and Frahn. We derive here closed expressions for the cross sections for the 
inelastic scattering, transiting to L = 4 and L = 5 states in nuclei in the same line as before and satisfactory 
and simultaneous fits to the elastic as well as inelastic angular distributions are obtained. 
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1. Introduction 
 

The decisive advance in correlating inelastic scattering phenomena with elastic scattering phenomena 
was accomplished by Austern and Blair 1). They developed general methods in which the generalized 
inelastic scattering amplitude of the adiabatic distorted waves theory is expressed as the derivatives of the 
elastic scattering amplitudes. Potgieter and Frahn2) initiated the first step of introducing the strong absorption 
model (SAM) form of scattering function ηl in the generalized scattering amplitudes of the Austern and Blair 
theory. The resulting amplitudes could, under strong absorption condition, be recast in an explicit form 
analogous to that of SAM elastic scattering formalism, where the Coulomb phases, the spherical harmonics 
and the Clebsch-Gordon coefficients are largely approximated. The imaginary part of ηl   is also included in 
the SAM formalism. 

The final result for the inelastic scattering cross section is a simple and analytic expression that shows 
up characteristic features of the angular distributions for single excitation. The expression depends on four 
parameters. Three of them characterize the form of the scattering function ηl, obtained from an analysis of the 
elastic scattering analysis. The fourth parameter is related to reduced matrix element of the inelastic 
scattering interaction and is the only free parameter determined by normalizing the theoretical predictions to 
the experimental angular distributions. 

We, in the present communication, use the generalized inelastic scattering formulae of  Potgieter and 
Frahn to obtain the inelastic scattering cross section exciting to L =  4 and L =  5 states in nuclei, which are 
still to be made available in the SAM formalisms. To illustrate the usefulness of our derived formulae for 
application to the analysis of inelastic scattering data, we demonstrate simultaneous fits to the elastic and 
inelastic scattering angular distributions, populating to L = 4 and L = 5 states in nuclei.  
 

2. Inelastic scattering cross section for single, quadrupole and octupole excitations 
 

The formulae for inelastic scattering cross sections have been derived and made explicit by different 
authors 2, 3). We briefly sketch these formulae to present the derivation for L = 4 (hexadecouple excitation) 
and L = 5 transitions in nuclei. The differential cross section for excitation of multipole order L in the 
Austern –Blair approximation is: 
 d σ 
 ----    ( 0  → L )  =    Σ   ׀  f LM ( θ )  (1) -----------       2 ׀ 
 d Ω 

 
The summation in eqn.(1) runs from M = - L to + L. The amplitudes f LM (θ) have the explicit form as 
follows : 
 

f LM ( θ ) =  ½ il+1 ( 2l+1)1/2 CL Σ il-l′  ( 2l′ +1 )1/2  exp i ( σl +σl′ )  ∂ ηl/∂l 
 
 < l′ L 00 ׀ l 0 >  < l′ L ,  - M  M ׀ l 0 >  Yl′

-M
   ( θ, 0 ) (2) 

 
The discrete summation in eqn.(2) runs over l′ and l and the derivative of  ηl  w.r.t. l, where l is understood to 
be l-bar and the l- bar is assumed to have the values as l- bar  =  ½ ( l + l′ ). The Coulomb phases are 
approximated by: 
 σl + σl′   ≈  2σl   ≈   2σT  + ( t – T ) θC (3) 
where,  θC = 2 arctg (n / T) and n is the Coulomb parameter. 
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The above expressions for the amplitudes including the SAM conditions assume a closed and explicit form 
after performing various steps of approximations and substitutions. Finally the expression for differential 
cross section eqn.(1) assumes form: 
 
dσ 
---     ( 0  → L )  =  ׀ CL 2 ׀  ( 2l +1 ) (  T2 / 16π ) ( θ/ Sin θ ) { ( H-

2 +H2
+ ) Σ  [ α2

LM ( θ )  
 dΩ 

 +  β2
LM ( θ ) ]  [ J2

J2  + ( T θ ) ׀M׀
2H- H+  Σ  [ α2 + ( T θ  ) 1 - ׀M׀ 

LM ( θ ) –  
 
 β2

LM (θ )] ] [ J2 ׀ M׀  ( T θ ) – J2 ׀ M 1- ׀ ( T θ ) ] } (4) 
 
 
The explicit forms of H±,  α LM ( θ ) and β LM (θ) in the above equation are given elsewhere2,3). The coefficients 
CL represent the reduced nuclear matrix elements and are related to various deformation lengths δ L . For 
quadrupole deformation i.e. for L = 2, the functions α LM (θ) and β LM (θ) have the form: 
 
 α2,± 2 ( θ ) =  ¼ ( 3/2)1/2  ( 1 + Cosθ ) ,   β2,± 2 ( θ ) = 0 , 
 
 α2,± 1( θ )   =  0 ,             β2,± 1( θ ) =  ½  ( 3/2 )1/2 Sin θ , 
 
 α2,0 ( θ ) =  ¼ ( 3 Cosθ - 1), β2,0 ( θ ) = 0 . (5) 
 

and eqn.(4)  takes the form : 
 
dσ 
---   (   0  → 2 )  = (  δ2

2 )  ( T2 / 64 π )  ( θ /Sin θ ) [ ( H- +  H+ )2  { [  ¼ ( 3 Cosθ – 1 )2    
d Ω 
 +3 Sin2 θ ] J2

0 ( T θ ) + ¾ ( 1+ Cos θ )2 J2
2 ( T θ ) } + 4 ( H- + H+)2 

 
 

 J2 
1(T θ)] (6) 

 
The functions α3M (θ) and β3M (θ) for L = 3 have the form: 
 

α3,± 3 ( θ ) = 0.047 Cos3θ/2 +0.42 Cosθ/2,    β3,± 3 ( θ ) =  0 , 
 

α3,±2 ( θ )  = 0 ,  β3,±2 (θ ) = 0.114 Sin3/2θ + 0.3421 Sinθ/2 , (7) 
 

α3,±1 ( θ )  = 0.18 Cos3θ/2 – 0.11 Cosθ/2 ,   β3,± 1 (θ ) = 0   , 

 
α3,0  ( θ )  = 0  ,  β3,0 ( θ ) = 0.07 Sin3θ/2 – 0.375 Sinθ/2  . 

 
and the differential cross section for the inelastic scattering  events leading to octupole (L = 3) excitations in 
nuclei has the form : 
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dσ  
---   (  0 → ) =  (δ2 

3 )  ( T2 / 64 π) ( θ /Sin θ ) [( H--- H+)2 { ( J2
0 ( T θ ) (2α2

31(θ) + β2
30 (θ ) 

d Ω 

 +J2
2(T θ) (2 α2

33( θ ) + 2 β2 
32( θ ))}+ ( H- + H+ )2 { J2

1(T θ) ( 2α2
31(θ )    

 
 + 2 β2 

32(θ) + β2 30 (θ)) + J2
3 (T θ) 2 α2

33 (θ)}] (8) 
 

3. Inelastic Scattering Cross section for Hexadecapole (L =  4) Exicitation 
 

We use the general expressions for α LM (θ) and β LM (θ) to obtain the functions α4M (θ) and β4M (θ) 
corresponding to transition L = 4 as follows:  
 

α4,± 4 ( θ ) =  0.0654 Cos2θ + 0.2615 Cosθ  +0.2 ,  β4,±4 ( θ ) =  0.0 , 
 

α4.±3 ( θ )  =  0.0  ,  β4,±3 ( θ ) = 0.185 Sin2θ – 0.37 Sin θ , 
 

α4,±2 ( θ )  =  0.346 Cos2θ  +  0.2 Cos θ – 0.15 ,  β4,±2 ( θ ) = 0 , (9) 
 

α4,±1( θ )  =  0 ,         β4,±1 ( θ  )  = 0.5 Sin2θ +0.14 Sinθ ,  
 

α4, 0 ( θ ) = 0.55 Cos2θ – 0.3125 Cosθ  + 0.14 1 ,  β4, 0 ( θ ) =  0 .  
 

The differential cross section for the inelastic scattering leading to hexadecapole (L = 4) excitations in 
nuclei, using eqn.(3) assumes the form:  
 
d σ 
----   (0  →  4)  =   δ2

4 ( T2 / 64 π ) ( θ /Sin θ ) [( H-  + H+ )2 { J2
0(T θ ) (α2

40 ( θ ) 
d Ω 
                         +2 β2

41 (θ ) ) +  J2
2 (T θ ) ( 2α2

42 ( θ ) +2 β2
43 ( θ ) ) + (10) 

 
                         J2

4 ( T θ ) 2α2
44 ( θ ) } + (  H-- H+)2 { J2

1  ( T θ ) ( 2α2
40 ( θ ) + 

 
                         2α2

42 ( θ) +2 β2
41 (θ )) + J2

3 ( T θ )  ( 2α2
44 ( θ ) + 2β2

43 ( θ ))}] 
 

Table 1. Summary of SAM parameters for protons elastic and inelastic scattering analyses. 
 

Elab 
(MeV) 

Target Ex (MeV) T ∆ µ/4∆ β4 β5 

66.5 154Sm 0.266 12.75 0.75 0.017 0.07 a)  
      0.061-0.66 b)  
      0.054-0.069 c)  

1044 40Ca 4.49 33 5.25 0.097  0.005 a) 
 

The parameter T stands for the cut-off or critical angular momentum. 
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The parameter ∆ stands for the diffuseness of the nuclear surface i.e. it refers to the uncertainties in the 
localization of the cut-off angular momentum T and the parameter µ takes care of the real nuclear phase 
shift. 
 
a)  Present  work . 
 
b)  From coupled-channel code ECIS calculations, Ref.4). 
 
c)  The adopted value from the compilation of Raman et al.8) 
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Fig.1. Inelastic scattering of protons leading to L = 4 state in 154Sm (266 KeV (4+) collective state). 
 

4. Inelastic Scattering Cross section for transition to  L = 5 State  
 

Once again the general expression for α LM (θ) and β LM (θ) are used to determine the functions α5M (θ) 
and β5M (θ) corresponding to transitions L = 5 states in nuclei as follows: 
 

α5,± 5 ( θ ) = 0.031 Cos5/2 θ + 0.155 Cos3/2 θ ,      β5,± 5 (θ) = 0 , 
 

α 5,±4 ( θ ) = 0  ,      β5,±4 ( θ ) = 0.109 sin5/2 θ  - 0.294 Sin 3/2 θ , 
 

α5,±3 ( θ )  = 0.208 Cos5/2 θ  +  0.30 Cos3/2 θ ,  β5,±3 ( θ )  =  0 , 
 

α5,±2 ( θ )  = 0  ,      β5,±2 ( θ )  =0.34Sin5/2 θ - 0.1132 Sin3/2 θ , (11) 

α5,±1 ( θ  ) =  0.45 Cos5/2 θ – 0.335Sin 3/2 θ .    β5,±1 ( θ ) = 0 , 
 

α5,0  (  θ  )  =  0  ,   β5, 0 ( θ  ) = 0.5 Sin 5/2 θ – 0.2734Sin3/2 θ . 
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The differential cross section for the inelastic scattering events leading to L = 5 states in nuclei is again, 
using eqn.(3) has the form: 
 
 d  σ 
-------   (  0 → 5)  =  (  δ2

5 ) ( T2 /64 π)  ( θ / Sin θ ) [ (  H- - H+)2 { J2
0 (T θ) ( 2α2

51( θ ) + 
 d  Ω 

 β2
50 ( θ ) ) +  J2

2 ( T θ ) ( 2α2
53  ( θ ) + 2 β2

52 ( θ ) ) +  J2
4 ( T θ )   

 
 (2 α2

53 (θ) + 2 β2
52 (θ)) + J2

4 (T θ) (2 α 2
55 (θ) + 2 β2

54 (θ))}  
 
 +  ( H- - H+ )2{ J2

3 ( T θ ) ( 2 α2
55 ( θ ) + 2 β2

54 ( θ ) ) + J2
5 (T θ ) 

 
 (2α2

55 (θ))}] (12) 
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Fig.2 Inelastic scattering leading to L = 5  state in 40Ca  (4.49 MeV  ( 5- ) collective state). 
 

5. Comparison  with Experiment   
 

We apply eqns. (10) and (12) to calculate the theoretical differential cross section for the inelastic 
scattering of 66.5 MeV protons from 154Sm 4) populating 4+  collective state of 266 KeV excitation energy in 
154Sm and for the inelastic scattering of 1044 MeV protons from 40Ca 5) leading to 5- collective state of 
excitation energy 4.49 MeV in 40Ca. The elastic scattering cross sections of 66.5 MeV protons from 154Sm 
and 1044 MeV protons from 40Ca are computed using the formulations due to Frahn and Venter 6). The 
detailed elastic scattering parameters and the theoretical predictions to the experiments are given in Ref.7). 
Table 1. contains the SAM parameters for the elastic and inelastic scattering. The comparison between 
theory and experiment are shown in Figs.1 and 2. Normalization of theory to experiment is carried out in 
such a manner that the first peak in the forward angles is reproduced by the theory. The hexadecapole 
deformation parameter β4 and β5 extracted in the present work along with the available literature values are 
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presented in Table 1. The quality of description to the experimental inelastic scattering data is reasonable 
and moderate in the angular distributions of 4+ and 5- collective states. The hexadecapole deformation 
parameter β4 determined in the present work by employing the model SAM9) model is in excellent agreement 
with the literature quoted values 4,8). The deformation parameter β5 for the collective state labeled by L = 5 in 
40Ca is found to be 0.005; which could not be compared with any other values because of the non availability 
of any other value in the literature. The theoretical prediction to the angular distribution of 5- collective state 
is significantly good enough and the value of β4 deformation parameter in the present analysis by the model 
SAM is in excellent agreement with the available literature values. It is to further note that the theoretical 
prediction to the inelastic scattering data has been performed without bringing any change in the elastic 
scattering parameters. All these speak about the justification of the β5 – value obtained from the derivation of 
inelastic formulae in the present work. We are of the confirmed opinion that the inelastic scattering formulae 
derived here can be applied in suitable cases reliably. Further works on these lines are in progress. 
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