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1 Introduction

The Seiberg-Witten (SW) equations are made out of sections of a Spinc structure and a connec-
tion on a line bundle [17]. The rather difficult theory of Donaldson requires a vector bundle of
rank 2. Even more complicated are the non-Abelian monopole theories of Pidstragach, (see [6])
which is believed to bridge the gap between the SW and Donaldson invariants, and of Labastida
and Marifio [14] which generalize both. A survey of the invariants can be found in [6]. The aim

of this paper is to introduce a rank 2 theory which is nevertheless Abelian.

The equations that we introduce can be considered in a slightly broader context. Let E be rank
r vector bundle on a compact closed 4-manifold X. Fix a Riemannian structure on X, (g, X)
and denote the self dual 2-forms by Q2 (X). Fix also a Sping structure on X. Let 1 be a section
of W = Sping(X) ® E. For ¢ and X in W+ let ¢ : W x Wt — Q2 (X) ® End E be the
trace free part of the endomorphism 6 —< 0,6 > A. Let ® be a section of End (End E). The

equations of interest are

Fi+®.q(¢,9) = 0,
pF-FA,(/J = Oa
da® = 0 (1.1)

where A is a connection on F, I' is the Levi-Cevita connection on Spin¢ and d 4 is the covariant

derivative on End (End E) with the connection induced from that on E.

One possible solution to these equations would have ® equal to a scalar times the identity
endomorphism. In this case the equations become (up to a perturbation) equivalent to a set of

equations discussed in [3]. Those equations are shown to be have a notion of stability.

If ® is not proportional to the identity endomorphism then, to have a solution to the last equation
in (1.1), the bundles must split. The equations that we consider in this paper correspond to

such a situation.

The equations under consideration were proposed in the context of studying the Rozansky-
Witten invariants on a 3-manifold, Y, [2]. Higher rank equations of this type should correspond
to higher rank Rozansky-Witten invariants, that is to higher order LMO or Casson invariants [7].
One would expect that considering these equations on X =Y x S! one would get something like
the Euler characteristic of a suitable Floer theory. This was part of our motivation for studying

the higher rank case on a 4-manifold.

Here is a brief summary of the contents of the text. Along the way we highlight where new
ingredients, beyond those required for the rank 1 SW, are used. In section 2 the equations are
introduced. There is also a discussion on the form of ® that we consider as well as a comment on
what happens to the equations under a conformal change of the metric. In section 3 the virtual

dimension of the moduli space is computed with the help of the index theorem and basic classes



are defined. The question of reducible points in the moduli space is addressed in section 4. All

of this is standard.

The compactness of the space of solutions is established in section 5 following the approach of
Witten [17]. However, the discussion here to obtain a priori bounds on the curvature 2-forms
and on the sections (and their derivatives) is somewhat more involved. In the following section
the perturbed equations are introduced and we mostly follow chapter 6 of [11] to establish that
the parameterized moduli space, for b;’ (X) > 1, is compact and smooth and that it is essentially

independent of the metric and of generic perturbations.

With the general picture in hand we make a small side excursion in section 7 to show, by way
of examples, why we have made such a particular choice for the form of ®. In this section we
make use of the fact that, by specializing, one can have a theory of rank s and with IV sections.
For example for s < N, take r = N in the equations and set r — s line bundles L, to be trivial

with connections A, taken to be zero and also set Dy =0 witha=s+1, ..., r.

In section 8 we specialize to Kahler manifolds. One can mimic to some extent the work done
on the rank 1 equations. There is a moment map description of the moduli space, however, we
have not been able to establish that the bundles are ‘stable’ in some appropriate sense. Instead
one uses a trick to establish that given a holomorphic section on the Kahler manifold (w, X) one
obtains a solution to the equations on (e?’w, X) for some conformal factor p see Proposition 8.8.
This is a rather weak result but it nevertheless allows us to prove that the basic classes of the
rank 2 SW equations on a minimal surface of general type are a subset of the Cartesian product
of the allowed rank 1 SW classes, i.e. subsets of the 4 classes (K x,+Kx), see Proposition 8.11.

Here is a brief summary of what is not included in the text. We do not analyze the situation
for the equations on other types of manifolds. For example neither general symplectic manifolds
nor hermitian non-Kéahler manifolds are considered. The techniques introduced by Taubes [16]
and by Biquard [1] presumably apply in the present setting as well. We do not define rank r

SW invariants, though they can be defined in the natural way, as we do not use them.

Bounds on the sections and curvatures, though not presented here, can also be obtained when

the rank is greater than 2. This can be found in the thesis [10].
A rather serious deficiency is that there are no applications to topology.

In the text we will sometimes refer to a Fierz identity. That is an identity on the tensor product

of the Clifford algebra and it reads

Waplyy = LaoLos+ D ((Vu)ao(7)op—(u¥5)a0 (7*75)08)
m

+(75)a0(75)pﬂ - Z %(Oﬁu)aa(auu)pﬂ (1.2)

1%

Note Added: After the completion of this manuscript two references were brought to our



attention. In [8] quiver theories which correspond to special cases of the rank » SW equations
with E;; = 0, £1 have been studied. The conditions for stability of vortex type equations on
a Kahler surface, including the ones studied in this paper, have been established in [4] and one
should bear this in mind when reading the paragraph after remark 8.2. With stability in hand
one could forgo the analysis of section 8 and certainly strengthen the results there. However, as

the techniques we use may be of independent interest, we have kept the original presentation.

2 The Equations

We fix an oriented, compact, Riemannian 4-manifold X. We start with r, possibly non-existent,
line bundles L;, i = 1,...,r, on X, so that ST ® L; are Spinc structures on X for all ;. However,

the Sping structures of interest are
L;i®St=rF1g.. @ LErgs™.

The matrix E;; may well be the identity matrix, though in general we only demand that
det E # 0, that the entries be integers and they are such that the L?Q are honest line bundles.
Summing over all tuples (L1, ..., L,) for a general matrix £ means that one does not sum over
all possible tuples of Spinc structures on X. However, for E € SL(r,Z) then one does sum over

all such tuples of Sping structures.

The model we have of the map TX — Hom(S*, S™) (which is well defined even if S* are not)

is /
r3+v—-1lx4 x1—+—1xo
—
($1,$2,$3,$4) ( $1+‘/_1$2 —3:3—}—\/—1324 ’

and this fixes our conventions for the Dirac matrices.

Let 2A; be connections on the line bundles LZ®2, with an abuse of language we will say that the
A; are connections on L;. The connection forms are v/—1A4; so that the A; are real. Denote
by M; charged positive chirality spinors, that is sections of the bundles ST ® L;. The rank r

Seiberg-Witten equations are

Fi +Y DYq(Mj,M;)=0 (2.1)
P(A;) 1\]41 = 0. (2.2)

where, in local coordinates,

V=1

Quv (M, M;) = 5 (M0, M;)

and A; = Z]- E;;A;j is a connection on L;. The map ¢ is the same one as in the introduction

but written in local coordinates.

Some comments are in order.



Remark 2.1 The two matrices E¥ and D that appear in the equations are related. That relation
is dictated by wishing to emulate the use of the Weitzenbock trick to get a vanishing theorem as
in the case of the rank 1 equations. The condition on the matrices is that D~!.E be a symmetric

positive definite matrix. See section 5. Infact the matrix D need not have integer entries.

Remark 2.2 Though not strictly necessary we impose the further condition that D! have

integral entries. With this assumption in hand we can write (2.1) as
Fg = —q(M,M) (2.3)
. —1 . . ®D;" ,
with B = D7". A, and so that B; is a connectionon L; ™ ®...® Ly 7
Note that conformal classes of a metric on X yield related equations. Denote the Dirac operator

and sections on (g, X) by /0 and M; (as above) and those on (e’g, X) by P” and M!. The rank

r SW equations on (e’g, X) are
Fg = _q(MP,MP,)’ p(AZ)psz = 0.

Note that the Hodge star operator acting on 2-forms is conformal invariant and so the + super-

script is the same for (g, X) and (e?g, X).

Proposition 2.3 Let the rank r SW equations for the Riemannian manifold (g, X) be as above.

The equations for (e?’g, X) are

with M = =302 M.

Proof: The relationship between M! and M; follows from the scaling dimension of the spinors.
That the first equation holds is obvious. That the second holds follows from the fact that under

a conformal scaling the Dirac operator behaves as
PP = e—5p/2p63p/2_

O

Our aim is to study the space of solutions of (a perturbed version) the rank 2 equations. We
will sum over all L;, so that we do not need to specify which Spinc structures we are dealing
with at the outset.

3 The Moduli Space and the Basic Classes

Let (A;, M;) be a solution to the rank r equations. We want to use an index calculation to

determine the dimension, d, of the moduli space at that point. For this we need only linearize



the equations about the solution. The linearized equations, however, are simply r copies of

linearized rank 1 equations, with bundles L;.

The operator that arises on linearizing the equation for the self dual curvature is
Ty =d+d* : Q'(X,R) - Q°(X,R) & Q% (X, R). (3.1)

The linearization of the Dirac equation for a section of ST ® L, on dropping terms of order zero,

Ti(L) = P(A) :T(ST® L) » T(S™ ® L). (3.2)

The index of Ty is dy = —(x + 7)/2 and that of Ty (L) is di(L) = —7/4 + ¢;(L)%. The virtual

dimension of a given moduli space of rank r with line bundles L; and n sections M, is

d(Ly,..., L)

n
rdo+ Y di(Lg)
a=1

_ (2rx+ (ir +n)o) + 37 Clei(Li)er (Ly), (3.3)

i)j

with Cij = Za Eai-Eaja that is C = ET.E.
The usual rank 1 SW moduli space with one section of charge one has virtual dimension

_2x+37
4

d(L) = + ¢ (L)%
We have

Proposition 3.1 The virtual dimension of the rank 2 equations is

AL, Ta) = 2o + i (L) + d (L) = — 2574 (BT Byiey (L) e (1) (3.4)
[l
Definition 3.2 The basic classes are
= (z1,...,2,) = (—c1 (L¥?),..., —c; (LE?)).

Note that in the special case that F;; = §;; the equations decouple and the moduli spaces have
virtual dimensions dy + d; separately for each 4. In that case the basic invariants are essentially

r-tuples of the usual SW basic classes.

The equations have a number of symmetries. Apart from the gauge symmetry which is discussed

in the next section there is also invariance under

for all ¢ simultaneously. The transformation on the connections really corresponds to exchanging

the line bundles L; with Lz-_l. Consequently, we have



Proposition 3.3 If (z1,...,z,) is a basic class then so too is (—z1,..., —x;).

4 Gauge Transformations and Irreducibility

Let G; denote the gauge group of bundle automorphisms of L;. The space of gauge transforma-

tions, G, is the product of these spaces of bundle automorphisms,

G=0G1 X...xG,.
Each of the G; is a copy of Map(X,U(1)) and their complexifications are copies of Map(X, C*).
The space of solutions to the rank r SW equations is left invariant under G.

A solution to the rank » SW equations would be reducible, if one or more of the sections is zero.
Reducibility arises since then constant gauge transformations do not act. Suppose that one of

the sections is zero, say Mj. Then (2.3) reads
FT(B))=0

that is B; is an Abelian instanton. If b5 (X) > 1 then, generically, the intersection of H?(X,Z)
with H2 (X, R) is the zero class. This means that the connection Bj is flat. This possibility will

not arise with the introduction of a perturbation to the equations as given in section 6.
5 Weitzenbock Formulae, A Priori Bounds and Compactness

In this section we will obtain bounds on F% and on |M;| which will allow us to conclude that
the moduli space of solutions is compact. Then we give our prescription for the orientation of

the moduli space.
We begin with a squaring argument. Set
T A
Sipy = F/Z'/— + 2 ZDU (MjUNVMj) ?

j=1
ki = D(Ei;Aj) M;,

and, for a solution to the SW equations we must have

2
1 ..
/ d*z /g E (EGZ] sj.8i + |kz|2) =0, (5.1)
X i=1

with G = ET.D~! a symmetric and positive definite matrix.

Using the fact that,

1

.2
. 1 . "
PD(E;;A")? M; = D" D, M; + 5 > EijFj, o™ M; - 1

i=1

RM;, (5.2)

7



we find that (5.1) becomes
2

/ d4x\/§z (EGZ]S]'.SZ' + |kz|2)

/ d*z\/g Z

( G”FZ_'—F]_'— ZMZ'UMVMZ' BiijO'l“ij
7.7 1 l"’ v
1
+ (Szle Mi‘Q + Z R(Szlez‘Q) =0, (5.3)

with B = DT.ET = DT.G.D a positive definite symmetric matrix. At this point the choice of
the matrix G' becomes evident. It was chosen, so that the ‘mixed term’ Fy.MoM.E would drop

out of the equations.

A small calculation using a Fierz identity for the gamma matrices (1.2) allows to write

2 2
1 _ _ 1 -
-3 § : § :MjaWMj B Mot My, = 3 § : (2|M ;M |? — | M;|*| My |?) Bjy. (5.4)
j,k}:l w, v .71k:1

It is easy to check that
(231 M,|* — | My [*| My |?) Biy < |Buo| | My[?| My?,

so that

2
1 — —
—g E E MjO'lej BjkMkO'NVMk

j,k:l v
1 2
> 2 (v By | M * - \/B22|M2|2) + (\/ Bi1Bay — |Bl2|) | My || My|?

where \/B;; always represents the positive root. We can cast (5.1) in the form of an inequality,

2 & ,
4,j=1 =1

2 2
1 L 1 2
/ d'o/g (5 D GuF P+ Y DM+ (\/B11|M1|2 . \/BQQ|M2\2>
X

2
1
2 2 2
+ (\/BHBQQ |Blg|) ‘M1| |1M2‘ + 4R i:EI | Z| ) <0 (5 5)

One immediate consequence of (5.5) is that, just as for the usual SW invariants, there are no

solutions apart from the trivial ones if R is non-negative.

We use this equation to prove that the moduli space of interest is compact. In order to do so it
useful to re-write it once more. Add [ d*z,/gR%/32X to both sides of (5.5) with A a constant.

Then, we have

2
[ dsva Ly, FZ+FJ++Z|DM\2 3 (VA - /Bl
X

1,J=1

1 R
+ (\/BﬁB%g — |Bi2| — )lMll | Mo + ( (| M1+ | Ma)?) + 2)2)

<o / d*z./gR? (5.6)



where Bi); = Bj; — A (no sum). This equation can be checked easily by expanding everything

out. The advantage in expressing the inequality in this way is that if one takes

0<A< det B
~ 2|Bi2| + Bi1 + B2

then every term in the integrand is positive semi-definite. The only thing we need to check is

that
V BBy > |Bua| + X

Squaring this expression we are led to the restriction on A above.

Consequently, each term in the integrand is separately bounded by [ d4:1:\/§R2 /32X. We can

now see that the sections M; have bounded norm since
1
[ atavag (BA + B

1 2
= [ dovay (VEnE - \BRME) + [ deya/BABRIM PP

\/B)‘ B2 1
s o / d‘z\/gR?, (5.7)
\/ B1B2; — |Bia| — A

(with A less than its allowed maximal value). Hence the norms of the sections and their deriva-

< |1+

tives are bounded.

To complete the discussion we want to show that the basic classes are also bounded. We have,
for each L;, the bound
2|312| + Bll + Bgz

2
1 o
dz\/g= G FiTFIT < /d4 R?
/X Wgzg_ll i ST 32deB TVgk

while the dimension formula gives us a bound on |F?~|. To obtain this bound we first use the

Cauchy-Schwarz inequality to deduce that
¢t [ dtaygrLE® > -|CM|IF |15 ).
X

and
0 [ dayGRLFE < |0 |||
X

1/2
ol = ( / d4x|w\2) .
X

CY ¢1(Lg)er (Ly)[X] >

where for any form w its norm is

The dimension formula reads

(2x + 37),

N —



that is,
CHIFYI2 + G2 P22 — 2|02 | |[F || || F2 |

< CH|[FSIP + CZ||F2 |2 + 22| ||F | ||F*F]| - 20 (2x +37) . (5.8)

Denote the right-hand side of the inequality (5.8) by S (it is bounded by our previous results),

and note that we can express the inequality as

2
(VeullF || = VOl |l) +2 (VOula — [Coal ) IFIIIFI < S (5.9)

The left-hand side is a sum of positive terms, so in particular we have S > 0 and

2
(VOllF™ || = VCnl F*||) < S, 2(v/CuCm — |Cual ) 1P| | F2|| < S.

It is now straightforward to deduce that
|F' |2 < CRLH.S, ||F*|* < Cyy H.S, (5.10)

with
v C11C%

H=1+ :
VC11Ca — |Ch2]

We have therefore the following

Proposition 5.1 The L? norms of M;, Da,M;, Fy. and FL are bounded.

O

Since X is compact we also get pointwise norms on the sections and the curvatures. One can

now follow the discussion in Chapter 5.3 of [11] to establish that the moduli space is compact,

Proposition 5.2 The moduli space of rank 2 Seiberg-Witten equations is compact.

O

The moduli space of solutions can be oriented in the same way as for the rank 1 moduli space [17].
An orientation at a point in the solution space is the same thing as the trivialization of the
determinant of the linearization operator; direct sums of Ty and 7;(L;). We do not need to
trivialize the determinant line of T3 (L;) as each of those is naturally trivial as explained by
Witten. To trivialize the determinant of T} one fixes on an orientation of H' (X, R) @ H? (X, R).

Having picked such an orientation we have then trivialized (det Tp)®".

Proposition 5.3 The moduli space of rank 2 Seiberg-Witten equations is orientable.

10



6 Perturbed Equations

The moduli space of solutions to the rank 2 SW equations may not be smooth. Furthermore,
the expected dimension of the moduli space may not be the actual dimension. To get around
these problems one perturbes the equations. We perturb as for the rank 1 equations, namely
the first SW equation, (2.3) becomes

FfB) = —¢(M,M)+h (6.1)

with h = (h!, h?)T two generic real C® self-dual 2-forms on X.

We denote the moduli space of perturbed solutions, modulo the action of the gauge group G, by

M(L, h).

Proposition 6.1 For a fixed metric and a generic perturbation the perturbed equations do not

allow for reducible solutions if b} (X) > 0.

Proof: A reducible solution requires one of the sections to be zero. Without loss of generality
let My = 0. We have that F*(B;) = h;. However, the harmonic part of F'(B;)/27 is an integral
class so if the harmonic part of h; does not lie on the integral lattice then there are no solutions.

O

One can now mimic the discussion on the parametrized moduli space of Chapter 6 in [11]. We
summarize that discussion (references in this paragraph are to [11]). Fix a Spinc structure.
For the rank 1 SW equations (with E = D = 1) one introduces a map F : A x Q2 (X) —
Q% (X)® S ® L given by

F(A,M,h) = (Ff +q(M,M) — h, P ,M)

where A is the space of connections on L Cartesian product with the space of sections of ST ® L.
Suitable Sobolev norms being given on A x Q2 (X). For the section M # 0 one shows that the
differential of the map DF is onto, Lemma 6.2.1. Proposition 6.2.2 then establishes that the
parameterized (by h) moduli space consisting of all irreducible pairs of ([A, M], h) for which the
perturbed SW equations are satisfied is a smooth manifold. This manifold is a fibre bundle over
the parameter space Qg_ (X,R) with fibre M*(L, h) the moduli space of irreducible solutions to
the rank 1 SW equations modulo gauge equivalence for fixed perturbation. The differential of

the projection mapping is Fredholm and its index is
4d(L) = ¢ (L®?*)? — 2x(X) — 37(X).

These results follow immediately from Lemma 6.2.1. The role of Corollary 6.2.3 is to establish
that the fibre for a generic perturbation is smooth. This too is straightforward to establish, with

the main ingredient being an application of the Sard-Smale theorem.

11



We only need, therefore, to generalize Lemma 6.2.1 of [11] to the rank 2 case. The proof of the
following proposition follows closely that given for the rank 1 equations in [11] and so is not
given in detail. Let A denote the space of connections on L; ® Ly Cartesian product with the

space of sections of ST ® (L; & Ly).
Proposition 6.2 Let F : Ax Q2 (X) x Q2 (X) — Q2 (X) ® Q% (X) & S~ (L1 & L) be given by
F(A,M,h) = (Fg + (M, M) — h, P, M). (6:2)

At any point (A, M, h) for which F(A,M,h) =0 and M = (M; # 0, M5 # 0) the differential
of the map DF is onto.

Proof: Let (a,m,k) be tangent vectors, then
DF(a,m,k) = (d*b +¢(m,M) + ¢(M,m) + k, P ,m + gM),

with b = D~'.E~'a. This is onto on the first factor, as can be seen by varying k. So our
task is to keep the first factor fixed and to show that then DF' is onto on the second factor.
Since the Dirac operator is invertible outside the zero mode set we have that DF is onto in the
second factor except possibly for modes that satisfy the Dirac equation, that is, those in kernel
of the Dirac operator ), on S~ ® L. Let N; € S~ ® L; be in the kernel of the Dirac operator.
Suppose, furthermore, that the N; are L? orthogonal to the image of the map

G:(am)— Pym+4gM.

We take the N; to be non-zero (if N;, for some 14, is zero then it is in the image of G). Since the
Dirac operator is elliptic this means that the N; do not vanish on any open subset. Pick a small
enough open ball U so that the N and M are non-zero there. We have a map (STQ®L)® (S~ ®
L) — QY(X,C) given by Clifford multiplication,

(M,N) — N.y,.M dz".
Consider the vectors v given by
IUZ = i’Y/LMia

and set a = Rev. Note that both Imv and Rev are non-zero on U. Consequently
Re < Nz,,dzMz >= Re/ Nz,dzMz = / |a,~\2 > 0.
X X

But this means that the N; are not L? orthogonal to G(a;,0). This is a contradiction and so
the orthogonal compliment to the image of DF is trivial and hence the N; are in the image of

DF and the map is onto. g

It remains to establish that the moduli space M(L,h) for any h is compact. A small variation

on the arguments used in section 5 give us the required

12



Proposition 6.3 For solutions to the perturbed rank 2 SW equations the L? norms of M;,
Da;M;, Fy, and FL are bounded.

Proof: For the perturbed equations (5.1) becomes

2 2
1 .. 1 ..
/X d4x\/§§ :(Eazﬂgj.siﬂw) :/X d4w\/§§ :§G” hj.hi.
=1 i=1

Consequently, following the steps after (5.1), we are led to the same equations as before except

that one should make the replacement

2
1 1 1 ..
T R? —» — R? / d* ~GY hj.hi,
and the bounds obtained are those of section 5 with this substitution understood. O

Putting all the pieces together we have

Proposition 6.4 The moduli space M(L, h) of solutions to the rank 2 SW equations on X with
by (X) > 0 for a generic value of h (avoiding the reducible connections) is a smooth compact
manifold. H

One can also show along the lines of the proof of Theorem 6.5.1 of [11]

Proposition 6.5 Let X be a closed compact smooth 4-manifold with b3 (X) > 1. Let g; be a
smooth path of metrics connecting gg and g; and let h; be a smooth and generic path of self-dual
2-forms connecting hy and h;. Suppose that for (go,hg) and for (g1,h;) Proposition 6.2 holds.

The parametrized moduli space M(L1, Lo, h;) of solutions to the parameterized equations
Fgt =q(M,M) +h;, P' M =0,

where +; means the Hodge star operator for the metric g; and p; means the Levi-Cevita part
of the connection is also that associated to g;. Then M(Ly, Lo, h;) consists only of irreducible
points and is a smooth compact manifold whose boundary is the disjoint union of the moduli

spaces associated to (go,hg) and (g1, h;). O
7 Some Examples

In order to see the need for some of the conditions imposed in the rank 2 theory we discuss

various possibilities in rank 1.

(1) r=1 and 2 sections

Lets start with the situation of two sections M; € I'(ST ® L®%) and My € [' (ST ® L®%),
with the ¢; odd. We take the equations to be given by (2.1, 2.2) with Ey; = q1, Fo1 = ¢ and

13



Ei9 = F99 = 0. We set D = ET| so that By, = q%, Bis = q192 and By = q% and det B = 0.

The virtual dimension of the moduli space is

X+ 21
2

d=do+ di (L®") + dy (L®?) = — + (¢ + ¢3)er (D)2

(5.5), with A = 0, is the appropriate inequality in the present situation,

2 2
1 1 2 1
4 =+ 12 2 2 2 2
—|F + D M;|* + = M| — M. + -R M; <0.
/ d*z.\/g (2\ | ;:1' il 5 (Jqul| M1 |? — |g2|| Ma?) 1 E | M;| > <0

=1

?=

Unfortunately, one sees directly that along the line |g||M; lg2|| M2|? we cannot deduce any

bounds. We, can do a little better and work with the equality,

2

2
1 . 1 2
/X d'z./g (5 SIFFP Y ID M + 3 (lqulIM1|? — |gol| Ma|?)

i=1 i=1

+2|q1go|[ M1 My |? Lp 2 M;> | =0
012|[ M1 Ma[" + 7 §| il ) =
and now it becomes transparent that problems of non-compactness come from the region where
lq1|| M1 |? = |ga||M2|? and |[M.Ms| = 0 as the norms of both sections become large. Of course one
needs a more explicit understanding of a given set of solutions to know if such situations arise,
which in turn means that we do not have a general compactness theorem available. However, one
thing that we do learn from this example is that the success in establishing compactness of the
moduli space in the rank 2 case is rather non-trivial!. Equations of this type arise in the context
of the twisted version N = 2 supersymmetric SU(2) gauge theory with Ny = 2, 3 massless
fundamental hyper-multiplets [12] (though we disagree with the vanishing theorem presented
there).

These equations have been studied in the mathematics literature [5], with ¢ = ¢go = 1. More
generally the authors consider a rank 1 theory with N sections and all charges unity. Even
though the moduli space is non-compact they show that there is a natural compactification.
Unfortunately, the dimension of this moduli space can never be zero. Notice that, in the current
setting, the SW equations are invariant under M; — U;; M; with U € SU(N). This SU(N)
symmetry is a global ‘flavour’ symmetry and has nothing to do with the group of gauge transfor-
mations. This means that there is a non-trivial action of SU(N) on the moduli space. However,
by allowing for charges ¢; such that ¢; # q; when 7 # j, there is no such symmetry, and it
appears that the arguments presented in [5] still go through.

!The lack of compactness persists if one has equations with more sections than connections regardless of the
rank.
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(2) r=1 and one section

Another possible set of equations is to consider one section M € I' (ST ® L®Y) with ¢ odd. The
dimension in this case is

2+
4

We may define basic classes to be y = —c;(L?) which satisfy ¢?y? = 2x + 37. Denote the

d=dy+di(L®) = +¢%ci (L)%

corresponding invariant by ny. In the usual SW equations one considers a line bundle L' and
for each = —2¢;(L') which obeys 2 = 2x + 37 one associates an integer n, which, under
certain conditions, is a topological invariant. The total of the available topological invariants is
obtained on running over all possible line bundles. When L' = L®? the moduli spaces and the

invariants agree, n; = ny.

What we have learnt is that the invariants that are available for a monopole with a higher charge
are a subset of those of charge one. There are two cases. For manifolds with 2x+37 # 0 one may
chose ¢ large enough so that there are no basic classes at all. This means that in this situation
one may be able to ‘fine tune’ so that, by an appropriate choice of ¢, only a small subset of basic
classes will arise. For manifolds with 2y + 37 = 0, ¢ plays no role in the dimension formula. It
would be nice to find a way to use this mismatch in the dependence on ¢ to learn something

about topology.

(3) r=2 and one section

For our last example we will consider in this section is that of rank 2 but with just one section
MerT (S+ ® L% @ L?‘”). We have E1; = g1, E1a = g and By = B9y = 0, and again we take
D = ET then the only non-zero component of B is Bi1 = g7 +¢3. Note that o F'* — g1 F?* =0
or, put another way, goA1 — q1As is a self dual Abelian instanton. However, as discussed
previously, by the perturbation of the equations there are no solutions to the equations at all

for b (X) > 0. So we learn that we should have n > r.

Putting together the various pieces from these examples we see that in fact the interesting case

comes precisely when the rank r is equal to the number of sections 7.
8 Kihler Manifolds

If X is Kahler one has decompositions ST ® L; = (K)l(/2 QL;) ® (K)_(l/2 ® L;) where, as before,

neither K;l/ % nor L; necessarily exist. Denote the components of M; in K)l(/2 ® L; by o; and

those in K;1/2 ® L; by v/—14;. The equations become

F](32i’0) = o; 3
1
WA Fa, = Lol - )
Oa i = —i0a,B; (8.1)



The holomorphic description of this setting is as follows. First recall that the B; are connections

-1 -1
on the bundles £; = Lf)“ ® L? 2 The degree of a line bundle L is taken to be
deg (L) = / (L) Aw. (8.2)
X

Proposition 8.1 Let (4;, M;) be a solution to the rank 2 SW equations with M; = (a;,v/—1 5;)-
For some 1 if the degree of L;, is < 0 then §; = 0 and if the degree of £; is > 0 then a; = 0.
Furthermore the B; induce a holomorphic structure on L; and with respect to the induced
holomorphic structures the sections «; and 3; are holomorphic sections of K)l(/2 ®L; and K;(/Z ®

-1 .
L, ~ respectively.

Proof: The proof is analogous to the argument given by Witten for the rank 1 equations. The
formula (5.3) with present notation and conditions is invariant under 4; — A;, @; — —«; and
B; — B; performed for 4 = 1 and i = 2 simultaneously (this becomes rather more transparent
on taking (5.4) into account). But this means that both F](32i’0) = ; B; and F](32i’0) = —q; f3; are
simultaneously zeros of (5.3) that is, if (B;, a;, ;) is a solution of the rank 2 equations then so

too is (B, —a;, ;). Consequently the first equation in (8.1) becomes,

0=F3" =i, (8.3)
which means that the line bundles £; are holomorphic and that at least one of o; and ; is zero
for each i. Notice that by linearity the line bundles L; and L; are also holomorphic. By the
second equation in (8.1) we see that the degree of £; and the vanishing of either «; or f; is as
stated in the proposition. Lastly we see that by the last equation in (8.1) that the sections are
indeed holomorphic. O

To complete the holomorphic description of the moduli space of solutions we interpret the second
equation of (8.1) as a moment map for the group of gauge transformations. On the space of

connections A; introduce the symplectic form

Q(614,0,4) =) / G w A 81 A; N2 A (8.4)
- JX
%]

Suppose that we are in the situation where both of the 8; = 0. On the space of sections (aq, as)

of K)l(/2 ® (L @ Ly) there is a symplectic structure
2
w
Q(b1a, doa) = —v/—1 Z/ — (61@; docv; — bo¥; 01 0v;) (8.5)
T x 2

The space of connections and sections (4;, ;) can be interpreted as a symplectic manifold with

symplectic form given by (8.4, 8.5). Set,
piw? = Eg;-w (FBJ. + wajozj)

= w (GijFAj + E?; jajw) (8.6)
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which is the moment map for the U(1) x U(1) gauge transformations. Morally, therefore, the
space of solutions is the space of holomorphic sections modulo the induced action of the group
of complex gauge transformations gic X G(QC. Hence, in the case that deg(L£;) < 0 for : = 1 and
i = 2 one expects that the moduli space of solutions is made up of two pairs, (L;, ;), of a line
bundle with a given hermitian structure and a non-zero holomorphic section of K/2QL; defined

up to constant scaling.

Remark 8.2 When the degree of any of the bundles £; is positive it is the associated section
B; which is non-zero. In this case there is also a symplectic form analogous to that for the «;

available and the expectations are the same with K'/2 @ L; replaced by K/2 ® Li_l.

While it is quite encouraging that one of the rank 2 equations is indeed a moment map for the
gauge symmetry the question of what the right notion of stability is, in this context, is still
open. In the rank 1 case one can prove that indeed dividing through by the complexified gauge
group is equivalent to setting the moment map to zero and dividing out by the usual gauge
transformations. This is the content of Lemma 7.2.4 of [11]. So, in the case of the rank 1 SW
equations, it is enough to have a holomorphic section of a holomorphic line bundle to solve
both of the remaining SW equations. The proof of this statement, given in [11], uses a highly
non-trivial result in analysis due to Kazdan and Warner [9]. To give an analogous proof for
the rank 2 equations would require a solution to a system of Kazdan-Warner type equations.

Unfortunately, we do not know of a solution to such a system.

Since that result does not easily generalize we provide a weaker form of the statement available
for the rank 1 equations which does generalize to the rank 2 setting. The alternative does
not rely on the work of Kazdan-Warner for rank 1 which means that we are free to use the

Kazdan-Warner theorem in rank 2.

The idea is to show that there are solutions to the SW equations for a metric in the conformal

class of the Kahler metric. This only requires usual Hodge theory.

Proposition 8.3 Let (w, X) be a Kihler manifold and (e?’w, X) be X equipped with a metric
conformal to the Kahler metric, with p : X — R. Suppose that the degree of a holomorphic line
bundle L®? is negative and that By is a hermitian holomorphic connection on L®2. Suppose also
that « is a non-zero holomorphic section of K/2® L. Then, for a particular conformal factor p
(up to scalars) there exists another hermitian structure 2 on L®?2 such that for the connection
B, which is hermitian with respect to h = (exp p).ho and which defines the same holomorphic

structure on L®? as By, that
wAFp=e"|azw? = |a]?w?

Proof: The change in hermitian structure relates the curvatures by

Fp = Fg, —i00p
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so the equation that needs to be solved is
wA Fg, —iwA80p = |a*w A w.

However,

iwA00p =ApwAw

so that we want a solution to
Ap+ e +C =0,

where C A w? = —w A Fp,. This last equation has a unique solution up to the addition of a

constant. O

Remark 8.4 Since we only make use of Hodge theory the proposition could equally well have
been stated with f any positive semi definite function replacing the square of the norm of the

holomorphic section |a|?.

Proposition 8.5 Suppose that the moduli space of SW equations on (w, X) is zero dimensional.

Then given a holomorphic section one obtains a solution to the rank 1 SW equations on (w, X).

Proof: In the present setting the moduli space is a set of points and by the compactness of
the space it must be a finite set, let them be denoted by p,. The idea of the proof is that we
can obtain each of these points as solutions to the SW equations on (e??w, X) respectively. By
Proposition 2.3 the section that solves the SW equations on (e?’w, X) can as well be taken to be
the holomorphic section on (w, X). By Proposition 8.3 given a holomorphic section of K 29 L
we obtain a connection B on the holomorphic bundle L®? such that w A Fg = e ” |2 with p
determined by the section. By Proposition 2.3, we have thus a solution to the SW equations on
(ePw, X). By Proposition 6.5 the solution space (of the perturbed equations) is independent of
the metric and so since we have a solution to the equations on (e’w, X) this must be continuously

connected to a solution on (w, X) in the space of connections and sections. g

Remark 8.6 This result is much weaker than Lemma 7.2.4 in [11]. Running through all pos-
sible holomorphic sections on (w, X) we get a list of solutions on various Riemannian manifolds
all conformally equivalent to the Kahler manifold (w, X). All of these points must be points in
the moduli space, since they solve the SW equations on the appropriate Riemannian manifold.
However, we have no way of knowing if they are distinct. It could happen that one holomor-
phic section «; gives us a solution on (e”'w, X) and another holomorphic section ay yields a
solution on (e”2w, X') and these points are continuously connected in the parametrized space of
connections and sections. Of course the lemma just cited tells us that this does not happen in

the rankl case.

We need a version of Lemma 7.2.4 of [11].
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Proposition 8.7 Suppose that the degree of a line bundle L is negative and that B is a her-
mitian holomorphic connection on L. Let f be any positive semi definite function. Then there
exists another hermitian structure A’ on £ such that for the connection B’ which is hermitian
with respect to b’ = (exp A\).h and which defines the same holomorphic structure on £ as B and,
furthermore,

F](Bl,’l) = (expA).f.w
Proof: The curvatures are related by
Fp = Fp — 100\
so the equation that needs to be solved is
WAFp —iwANOON =exp . f.wAw.

However,

iwAOON=AdwAw

and the equation that needs to be solved is

AlX+expA.f +C =0, (8.7)
where CwAw = —Fp Aw and C is negative since the degree of £ is. This equation is shown to
have a unique solution for A : X — R in [9] as quoted in [11]. O

We can now show that there are solutions to the rank 2 equations.

Proposition 8.8 Let (w, X) be a Kihler manifold and (e?’w, X) be X equipped with a metric
conformal to the Kahler metric, with p: X — R. Let £; be two holomorphic line bundles on X
and suppose that deg (£;) < 0 for i = 1, 2. Let BY be Hermitian holomorphic connections on
the £; and that o; are non-zero holomorphic sections of K)l(/2 ® L;. For a particular conformal
factor p and particular hermitian structures h; on the same holomorphic bundles £; there are

hermitian connections B; for which
- 2 2
wAFg;, =e ?|aylp, w

Proof: The equations, generalizing those in Proposition 8.3, that have to be solved are

> Dt (FA? — AN w) ANw=exp [ —p+ Y Eyhj | |oif* ?
j J

or

> Hij Apj+exp (—p+ i) - |ul” + Ci = 0, (8.8)
j
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with G = ET.H.E, u; = Zj E;;\j and Cihw? = — Zj DZ-;IFA?/\w. Since H is a positive definite
matrix not both of Hy; and Hyy can be zero. Suppose it is Hy; that is not zero (otherwise repeat
the following with the obvious exchanges). Set p = p; then

1 1
——— (m = (Jar]?
3 H11( 12#2+A(\a1| +C1)>

solves the ¢ = 1 part of (8.8). Suppose that Hio # —H;;, then the ¢ = 2 part of (8.8) agrees
with (8.7) with the following identifications,

H12)
A = 1 4 Hae |
( Hyy H2
Hyi + Hio Hay, 2
C Hy+Hy ( Hy )
dettl > Hy (laa[* +C1) ),
H H o 2
f = %|a2|2 €H11 A(\al\ +cl)

If, on the other hand, Hio = —Hj1 then the equation to solve is simply

det H
A =0
where g is independent of us, and, by Hodge theory, this has a solution. O

Remark 8.9 It is not clear why the choices Hio = —H7; or Hi9 = —Hyo have such a privileged
position. On the other hand if H is diagonal then one is dealing with two copies of the rank 1

SW equations.

When one bundle, say £;, is holomorphic and the other, £y, is anti-holomorphic the same

arguments go through,

Proposition 8.10 Let (w, X) be a Kéhler manifold and (e?’w, X) be X equipped with a metric
conformal to the Kéahler metric, with p : X — R. Let £; be a holomorphic line bundle and L,
be an anti- holomorphic line bundle on X and suppose that deg (£;) < 0, and deg(£;) > 0.
Let B? and —B? be Hermitian holomorphic connections on the lines £; and ﬁ;l respectively.
«; 18 a non-zero holomorphic section of K;(/Q ® L; and §; is a non-zero holomorphic section of
K)l(/2 ® Lj_l. For a particular conformal factor p and particular hermitian structures h; and h;
on the same holomorphic bundles £; and L; there are hermitian connections B; and —B; for
which

wAFg, =e” |ozi|,2” Wl wA F g, =e?* |ﬁj|%j w?.

O

What we have seen is that given a pair of holomorphic sections to K 1/2 @ L; on the Kihler

manifold (w, X') we are guaranteed a solution to the rank 2 SW equations on (e’w, X).
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Now we come to perturbations. There are two types of perturbation adopted in the literature.
The first, introduced by Witten, is to take A € HZ0(X) @ H(®?) (X)) which is geared to Kihler
manifolds with bJ (X) > 1. The second option is that of Taubes [16] which is to set h =
rw. Such a perturbation is available in the more general setting of almost Kahler manifolds,
i.e. on symplectic manifolds with a compatible almost complex structure. We adopt Witten’s

perturbation.

We have the following

Proposition 8.11 Let X be a minimal surface of general type. Then for any Kahler metric the
basic classes of the rank 2 SW equations are a subset of the Cartesian product of the allowed
rank 1 SW classes, i.e. subsets of the 4 classes (K x,+Kx). If 3 L; such that L; = £ Kx then

there are non-zero basic classes.

Proof: We follow Witten’s argument, footnote 11 on page of [17]. The perturbed equations
require that the canonical bundle can be expressed as Kx = O(21)® O(X2) and Kx = O(X3)®
O(%4) however, Lemma 4 of Kodaira [13] tells us that if the ¥; are non zero effective divisors
then ;.35 > 0 and X3.34 > 0. Denote the divisors of L; by [D;] and ¥ = (X1 — 3g, X3 — 24))T.
Then we have . = 2E.[D] and

Y75 = 4C;;[D;).[Dy).

The dimension formula gives us
4d=%"5 - 2K%,
however, 2K% = (1 + 52)? + (X3 + £4)? so that we have

d=—-3%1.39 — ¥3.34.

If the 33; are all non zero then the lemma quoted above implies that the dimension is negative
and so we have an empty moduli space. The same lemma tells us that the dimension cannot be
greater than zero. The zero dimensional (and non-empty) moduli space requires that 31.X9 =0

and Y3.%4 = 0. This gives the four possibilities stated in the proposition.

Since there is precisely one section associated with each choice we have, by Proposition 8.8, that

there is indeed a solution to the rank 2 equations if 3 L; such that L; = +Kx.
O
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