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ABSTRACT

It is shown by analytic continuation - at
finite rapidity - of the S matrix path integral
that the Reggeon field theory with bare intercept
greater than the critical value contains a renorm-
alised Pomeron pole with intercept less than one as
the leading singularity. The multi-Pomeron cuts
satisfy Reggeon unitarity and so the complete theory
is t channel unitary. A Rayleigh-Schrddinger
perturbation expansion, wvalid beyond the critical
point, is obtained by expanding the path integral
around a rapidity ("Euclidean time") dependent ins-
tanton vacuum. The transition to the new vacuum at
the critical point takes place smoothly and without
any symmetry breaking. The theory with a point
triple Pomeron interaction below the critical point
contains all higher-order interactions above this
point. Further, all interactions are non-local in
impact parameter space.

The results imply that +total cross-
sections ©rise asymptotically only at the critical
point and so imply a deeper significance for the
experimental discovery of rising cross-sections.
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INTRODUCTION

Recently several different solutions have been proposed1'7) to the problem
of the Reggeon Field Theorye"ll)(RFT)withthebarePomeronintercept 0, greater
than the critical value ST However, all of these solutions lack the usual vir-

9510)  In this paper we shall

tue of RFT; that is manifest t-channel unitarity
propose a further solution which is manifestly unitary. We shall also argue that
our solution is the unique answer to the problem since it is derived by analytic
continuation in o,, at finite rapidity, of the theory defined with a, < o ..
Before discussing the technical details of our solution and how it relates to

the other proposed solutions we would like to briefly discuss the general theore-

tical and experimental significance of the problem.

It is well known that RFT is a field-theoretic technique for calculating
Regge cut corrections to Regge pole exchange at high energy and that it is es-
sential for studying the Pomeron. The most general basis for the RFT is the Regge
cut discontinuity formulae!®»12,13) (Reggeon unitarity) which follow from the
combination of basic analyticity properties of production amplitudes with multi-
particle t-channel unitarity. The Reggeon unitarity equations apply directly to
physical, or "renmormalized", poles and cuts. From this point of view the bare
Pomeron intercept is simply a parameter in an effective Lagrangiang’lo) used to

solve the unitarity equations.

Let us suppose first that the renormalized Pomeron pole has trajectory o(t)

with 0(0) = 1 + €, € > 0. The trajectory of the N-Pomeron cut is
O(N(b> = N a ('t4v17> - N +|

and so uN(O) = 1 + Ne. Consequently, at t = 0 all the cuts, as well as the
initial pole, violate the Froissart bound. If this situation is relevant to
physics then it must be that none of these singularities is on the physical sheet
in the angular momentum plane (at least at t = 0). ‘They must be on unphysical
sheet(s) of some additional singularity or singularities. It also follows from
the trajectory formula that for any positive t there must be an infinite number
of branch points to the right of any finite point in the angular momentum plane.
Assuming that the amplitude is polynomially bounded at fixed t, there must again
be at least one further singularity present besides the original pole and cuts,
to keep this infinite set of cuts off the physical sheet. (The discontinuity
formulae will not allow this role to be played by the Pomeron cuts themselves.)
Hence we cannot demonstrate exact multiparticle t-channel unitarity simply by
checking the discontinuity formulae for the Pomeron cuts —- in contrast to the

situation when 0(0) £ 1. In other words, Reggeon unitarity implies multiparticle

t-channel unitarity only when a(0) = 1.
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It is already known'“) that we obtain the complete range of renormalized

intercepts —» < a(0) < 1 by considering -» < a < ;.. Therefore from the Reggeon
unitarity point of view it appears that we have already obtained the complete

range of relevant solutions of RFT by studying o, < T

An alternative view of the RFT, however, is that it is based on the formal
""bare'" perturbation expansion which can be derived directly from Gribov's original
hybrid Feynman graph analysis, or more satisfactorily, from the topological ex-
pansionls) of the underlying strong interaction theory. From this point of view

o, is related to the parameters of the underlying theory [in particular the coup-

0
ling constant (s)] and so RFT, viewed as the formal sum of the perturbation ex-

pansion, should have a physically meaningful solution for all values of a,.

For a, = 0y.» the two points of view are certainly equivalent. However, the

results of Refs. 1, 2, 4-7 suggest that when o, > o RFT gives total cross-—

0e?
sections which rise asymptotically like [1n sz and so saturate the Froissart
bound. In this case the leading singularity in the angular momentum plane is
(at least for some positive range of t) not a pole. This could perhaps suggest
that the situation with a(0) > 1, described above, has occurred. In any case,

it appears that both Reggeon unitarity and t-—channel unitarity have been lost.

In this paper we shall argue that this unsatisfactory situation does not in
fact occur, but rather the correct solution to the o, > Oy, Problem has again a
renormalized Pomeron pole, with a(0) < 1, as the leading singularity. This pro-
perty of our solution is shared by that proposed by Abarbanel, Bronzan, Schwimmer
and Sugar (ABSS) in Ref. 3. However, in cur solution the Pomeron cuts also
satisfy Reggeon unitarity and so t-channel unitarity is maintained. In the ABSS
solution this is not the case. Our theory with o, > 0y, is not directly equivalent
to a conventional theory with o, < o, for the following reason. If we start
with a theory containing just a point triple Pomeron interaction below the criti-
cal point (o, < o, .), then above this point we obtain all one to many Pomeron inter-
actions. The unconventional feature of these interactions is that they are all
non-local in impact parameter space. Nevertheless, it may be that if we allowed
such interactions below the critical point we could obtain a theory which is com-

pletely symmetric about the critical point.

If our solution is correct then it has important physical significance.
First, let us note that the evidence for Pomeron factorization over a significant
range of momentum transfer is now very goodls). This strongly indicates that the
exchange of one Pomeron pole (and not more), together with its associated cuts,
is the physically relevant problem. Our results then imply that if total cross-
sections do rise asymptotically we must be exactly at the critical point and the

17,18)

very beautiful critical theory can be applied [even if not all phenomeno-

logical analyses of experimental data have supported this possibilitylg)]. This
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presumably implies that the parameters of the underlying strong interaction theory
satisfy an important constraint. Why this should be so cannot be explained within
RFT [note that since RFT can be regarded as an extension of eikonal-type models
to incorporate t—channel unitarity our results imply that field-theoretic cal-

2 . - . .
9) also do not "explain'" rising cross—sectlons].

culations leading to such models
The only arguments (within RFT) that the intercept should be at the critical
point are aesthetic. It is the strongest allowed interaction at high energy and

the result is universal scaling diffraction peaks whose shape can be calculated?!23),

The arguments in this paper are based on the path-integral giving the elastic
S-matrix in RFT. We study this integral in detail in Section 2. We argue that,
at large but finite rapidity, the integral is analytic in o, and so the theory for
a, > @, is well-defined by analytic continuation. This analyticity property
seems to be an innate property of the RFT S-matrix. However, it is almost cer-
tainly required for consistency of RFT with the analyticity properties of the
full S-matrix. The boundary conditions in the path-integral play an important
role in our analysis and these are also discussed at length in Section 2. 1In

particular, we note that it is essential to use boundary conditions at finite

rapidity points in order to exploit the analyticity in o .

In Section 3 we begin our analysis of the theory above the critical point by
discussing the zero structure of the classical potential. We note that in addi-
tion to the stationary points, which are the origin, that is the original "vacuum"
and the two fixed-points chosen by ABSS as new vacua (both of which are unsymmetric
under the § <> { symmetry of the theory), there exist lines of zeros joining these
points which correspond to rapidity-dependent zero energy classical solutions of
the equations of motion. Since rapidity is the analogue of Euclidean time in our
24,25),

problem these are bona fide instantons at least in zero space dimensions.

Because of the non-Hermiticity of the interacting RFT fields, initial and
final boundary conditions, or alternatively initial and final states, need not in
general be Hermitian conjugate. Consequently, if a new 'vacuum'" does appear at
the critical, or '"phase transition" point, which is some mixture of positive
energy states below this point, it is likely to have a different specification at
initial and final rapidities. 1In the path-integral such a 'vacuum" would naturally
manifest itself as a rapidity-dependent classical solution. To study this pos-
sibility we consider the analytic continuation of source-dependent classical
solutions which define the original vacuum in the infinite rapidity or zero source
limit below the critical point. This suggests that the "analytic continuation"
of the original vacuum is the symmetric instanton joining the two asymmetric ABSS

fixed-points.
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In Section 4 we carry out a change of variables in the path-integral. We
make a shift of the fields by a source-dependent classical solution of the type
discussed in Section 3. In this way we are able to show that the analytic con-
tinuation of the integral beyond the critical point can be expressed as an integral

around the symmetric instanton.

In Section 5 we derive the perturbation expansion of the S-matrix around the
instanton. This is not straightforward since the lack of translation invariance
(in rapidity) of the instanton introduces translation dependence into the ex-
pansion which we have to eliminate. We find that this is most simply done in the
Rayleigh-Schrodinger form of the expansion. In this expansion only certain
rapidity orderings of the vacuum interactions (introduced by the shift) and the
triple Pomeron interaction can contribute to the translation invariant S-matrix.
The final result is an expansion which for a, > ® contains a leading Pomeron pole
with intercept (2 - a,) and manifestly satisfies Reggeon unitarity. It is most
simply described as a unitary mixture of the two asymmetric ABSS expansions. The
Y @ symmetry of the theory is preserved because of the symmetry of the in-
stanton. The loss of this symmetry was regarded by ABSS as the major fault of
their solution. Actually the symmetry is a necessary requirement for Reggeon
unitarity and in our view it is the lack of unitarity which is the more funda-
mental criticism of the solution. The close relation of our solution to that of
ABSS should ensure that ours shares with it the property that the Green's func-
tions scale with the same exponents when the critical point is approached from
above as when it is approached from below (at least in the e-expansion). Since
the transition to the new vacuum takes place smoothly in our theory, the phase
transition can also be regarded as a second-order transition. (Although it is

important to note that the transition only takes place at infinite rapidity.)

Finally in Section 6 we make a few general comments on our theory and then
discuss its relation to other solutions. In particular, it is most interesting
to compare with the results obtained by Amati, Ciafaloni, Le Bellac and
Marchesinis) (ACLM) and confirmed by Cardy7) in what now seems to be the most
attractive lattice spin model?®) for the RFT. This model is directly analogous
to that which has been successfully used to describe the phase transition in
real \o" field theory27). Therefore it would be unfortunate if our theory
appeared to be in contradiction with the spin model. Actually we argue that this
is not the case and that our results simply show that the S-matrix should be de-
fined in terms of a new vacuum rather than the original vacuum as is done by
ACIM and Cardy. This new vacuum is clearly identifiable as our instanton. In
the model it appears as a zero norm state which is degenerate with the original
vacuum beyond the critical point. We argue that the choice of the new vacuum,
and hence our results, is actually suggested by the model if the right interpre-

tation is put on the results obtained.
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GENERAL PATH-INTEGRAL FORMALISM

We consider the Lagrangian

i(&,@zd‘;, AO»*D:”') = :zo M £3+ ik—r (€Y)
where

_(-‘? — —_
LW, ¢, 40 0) = 5 ¥ 2 e TRIY 00y

4, (5,v<) =2 P(FV)Y

(3)

dl'l-(Qj;W, /\ol,{\o'l - }\O‘ (LP’&LPJ,(‘PL//%) +?\Ol lPll/j1 )]

where A, = 1 - 0, and the terms not specified in (1) contain five and more Pomeron
interactions, derivative interactions, etc. For most of our discussion we shall
set Ag;» A, and all higher coupling constants to zero so that ¥ is given by

P, +¥,. However, we intend our analysis to apply to the general situation and
will occasionally take A,; and Ay, non-zero to illustrate this point. There will
also be an upper cut-off in all momentum integrations which we shall not always

make explicit.

We shall, for simplicity, consider eikonal-type (or "independent emission')
couplings of Pomerons to external particles. In this case the elastic S-matrix
(two particles - two particles) can be written in rapidity (y) and impact para-
meter (x) space as

S

’
29 (%1-%177—"1_}‘1 2, Boy 7o 7"')

~Clud®= £,z (5)
The functional integral f dydy = f d(Re ¥)d(1m Y)/m is over the complex Y-plane
at each point (x,y) and

L5 (F.0,20,) = & +ig 5(0-0)8 2 (e-2 )P +5 5 (n-12) S (e-x) Y ©

g and g must be real and have the same sign to ensure the negative sign of the

two Pomeron cut in lowest order perturbation theory.
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We shall evaluate all path-integrals we consider by (complex) Gaussian in-

tegrationzs’zg’ao) and so to evaluate Sgg we define a "potential" Vgé(@,w) by

writing

iq(—,) = 4, + Vg3 7

Next we note that we can formally rewrite (5) as

S

s = ex duyd*x \/
29 P{ S ? S'S(vs,tb) 5‘5( %))‘ _

(8)
Sdwdy exp [- Gdud™ (4, +5F + 3 y)]
This expression can be evaluated if we can evaluate

_ d SO+
Capad o ~Gdud™x (A, + S F + 3 ]

= gd WAY exp [~ Copdy' d®d’ S Wl Bl e’ Ylofnd)

F I )P (0,%) + T (0,2 W(»i?’)%l
9)

So far this is simply a definition of A(y - y’, X - EI)’ but if we now use the
usual matrix complex Gaussian integration formula (generalized to a continuous

matrix) we obtain for (9)

exp [ fdodu/dxd'n” T (4,2) A (5-, x2) T (a)2)] (10)

apart from a normalization factor which we take to be one to give S0 = 1.

A(y,x) is the usual Pomeron propagator, defined in this formalism by
"o “« " ” “ a K
Sdw’db” A (447, % -x") A (o™, 2" =%") = § (-09) " (ex) (11)

which implies that A has the Fourier representation



¥+ OO
- -E L.
— 5 ( de g,,mg, e 27 !
@m)” 2. (E-~%-b.) (2

R

A (v,

1
-
I - Beo =/ el

T — € L >o
L PUAGRTY (13)
= 0O v <0 (14)

Writing J, = J(yl’_}_{.l)’ etc. we also obtain from (10)

¢ s _ s s
= o5 = = = = Gdod™ (£, + 3@ +3 W]
< B exp [-Cdud™ (4 ,+ 3P +Sy
53, 979, <-Z -0 S$SS, $73, <.Z=o (15)
= A (U-’:,—lﬁl ) Z::.'?f'v) (16)
and in the same notation
5 l = & l = 0
and
83, 72 <s=%=0 I (18)
Finally, we can write in general,
L T A
R e = 5 e
$-s, $ S @S % S \1’%:0 nmooCoe=) O (19)

where the sum ZC is over all contractions C in which each Ji’ i=1, ..., m, is

paired with JC(i) and

AL < = A (%L‘ %C(O P) xXL - x Cli.)) (20)
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Clearly we can evaluate (5) in the form (8) by expanding exp [- f dyd?x Vgéj
in a power series and evaluating each term in the series using (19). As antici-
pated, the result will be the familiar Reggeon calculus perturbation expansion
in rapidity and impact parameter space. This procedure has the virtue that it
is a self-contained method for relating directly the perturbation expansion of
RFT and the path-integral (5). No intermediate quantum mechanical concepts,
treating the fields as operators in a Hilbert space of states, need be introduced.
To some extent this is fortunate because, as yet, there does not exist a complete
formalism of this kind for the interacting non-Hermitian RFT fields. However,
we have made no mention of boundary conditions on the fields integrated over in
the above and it will be essential in the following to understand what boundary
conditions are implicit in this procedure. We shall not be able to avoid quantum

mechanics altogether.

First note that because of the special form of Vgé(@,w) (no terms of the
form wz’wa’az,aa, etc., which would represent vacuum production or absorption of
Pomerons) and the '"causal" property of A(y,x) given by (16), all y-integrations

in the perturbation expansion will be restricted to the range
B, € B 2O, (21)

vy, and y, being the points at which the sources g, and g, act. 1In fact, we could
take the initial range of integration in (5) to be over any interval Y, £y £Y,
and obtain the same result provided only that Y, <y, and Y, > y,. Note, however,
that if we take Y, =y, and Y, = y,, then when we carry out the differentiation
(15) at an end-point we will obtain an extra factor of 1/2 in the source dif-
ferentiation if (as is correct) we use a localized source rather than a point

source. We shall refer to this point again.

There is an immediate implication of the finiteness of the y-integrations.
Since the propagator A(y,x) falls off exponentially at large x for fixed y, A
and aé (it is only at y = « that this property fails), Sg§ should be analytic as
a function of A; for fixed values of (y, - y,), (%, - x,) and sufficiently small
values of the other parameters g, g, r,, etc. This would be closely analagous to
the analyticity, as a function of temperature, of the partition function of a
finite volume thermodynamic system. We shall not attempt to prove this analy-
ticity property of Sgé here, but shall simply assume it. For (y, - y,) suffi-
ciently large it is in any case very likely to be a necessary requirement for the
consistency of the RFT with the analyticity properties of the underlying strong

interaction S-matrix, for the following reasons.

Suppose the RFT is an asymptotic approximation to the full S-matrix for some

range of the parameters of the theory in which the RFT S-matrix is analytic. If
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a singularity in A, is then generated in RFT for finite but arbitrarily large vy,
the occurrence of this singularity in the full S-matrix can only be avoided if

the validity of the RFT as an asymptotic approximation fails. Since we expect

the dependence of RFT on A, to be related to the dependence of the underlying
theory on the coupling constant(s) of the theory, analyticity in A, should directly
reflect analyticity in the coupling constant(s). More generally we can argue that
if the underlying theory satisfies both s- and t-channel unitarity in the initial
range of the parameters, a singularity in A, would give a further imaginary part

to the S-matrix which would violate unitarity.

The above discussion applies also in the (realistic) case that we consider
in which there is an upper cut-off in the E? integration in (12). This is equiva-
lent to introducing a lattice in impact parameter space which only simplifies
the task of proving analyticity properties. However, we know that in this case
there is a "phase-transition' at infinite rapidity y, - y;, for some finite value
DAye of Ay. In fact what we mean by this statement is that the asymptotic limit
of Sgg as y, -y, > © is singular at A, = AOC while, as we have argued above, Sgé
itself is not. Consequently the theory for Ay < A . is defined by the path-

integral (5) if we are careful to analytically continue in A,, with y, - y, finite

(but sufficiently large).

In order to discuss boundary conditions in (5) we first review some standard
results?®?) for a one-dimensional (non-relativistic) quantum mechanical system,
in which we have two Hermitian conjugate operators y and ) satisfying the canoni-

cal commutation relation

[v, @] =1 (22)

We can work in the holomorphic representation in which @ and ¢ have the represen-

tation

Y =z ¢ d (23)

d=z

I

and act on the space of entire functions of type 1/2 with scalar product

2
¥ - 1=i
= z z dz*
('Fl 7{‘23 §fl ( ){”L( ) e DJ_Z-___Z (24)
2T
The matrix element of an operator O, say, is given by
1%~

z]ﬁ _ «
dzd2* dzd=z" (25)

($,,0%) = (£ Oz5 e ®
2L 2Tie
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where 0(z,z), a function of the two complex variables z and z, is defined to be
the kernel of 0. 0(zZ,z) can always be found by writing
g —_
o(z,2) = =2 O, 2 =z .
" m S;ET 32;1 (26)

and noting that the functions wn(z) = z"//n7 are the eigenfunctions of the
"number operator" U¥. It can then be shown that an operator A(},y) which is a

normal-ordered operator function of @ and Y has the kernel
z z —
[ A (Z’Z) 27)

Consequently, the kernel of an operator is closely analagous to a 'matrix element

between eigenstates of U".

Using this formalism, making the usual decomposition of a time interval
(t" - t') into small intervals of length €, making the appropriate convolutions
of kernels and letting € - 0, it can be shown that the kernel of an evolution
operator
U(er ) = et P
2 (28)

where H (the Hamiltonian) is a normal-ordered function of ¥ and ¥, is given by

the path—integral

U(E.z;t-t7) = (dvdy exp 5 [2 ¢e”) vz (¢ ]

“

- t = (29)
13 QXP Y_— L glo\‘t i\/’__‘ ' —Z—T&qj + H ([#-, ‘/’))2 1
t

The above discussion is brief, but it should be sufficient to show that we
can regard (29) as a quantum—mechanical path-integral over trajectories Y(t) and
@(t) with z the initial value of Y(t') and Z the final value of @(t"). This can

also be seen by noting that the 'boundary term"
| = V4 7, ’
exp 5 [Z @@ » = P& ] (30)
is just what is required to give the classical solution of the equations of motion

for ¢ and ¥ [with the boundary conditions (t') = z, Y(t") = E] as a stationary

point of the functional integrand in (29). Consequently, the path—integral can be
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evaluated perturbatively by expanding the integrand around this point. This will
be an important idea for us, although we shall not go into any details since we
shall not need them. However, for a complete discussion of this point we refer

the reader to Faddeev's lecture notes’®?) .

We now wish to compare (29) with (5) in order to have a quantum mechanical
interpretation of (5) which goes beyond our Gaussian integration procedure and
which makes the question of boundary conditions clearer. Let us first regard Sgé
as the analytic continuation to imaginary times (y = it) and imaginary coupling
constant (ir,) of the same quantity defined within a Hermitian RFT. We can also
temporarily ignore the x-dependence for simplicity. In the Hermitian theory we
can safely apply the holomorphic representation of the fields regarded as opera-
tors. Also we can take at least the four-Pomeron interaction in (1) to be non-
zero to ensure the boundedness of the potential and the Hamiltonian spectrum,

since this is implicit in the derivation of (29).

There are now several different ways of comparing (5) with (29), which we

can list as follows:

i) The most straightforward identification is to write

‘{)|:i't U):L:L‘t ,‘E‘ZL%, Z:ZLQ (31)

Apart from the x-dependence, this immediately identifies (5) and (29) if we

also write
H:AO qu +ig(d;7qj)+ili_(&,w>*"' (32)

The integration region is taken to be y, <y <y, and 2ig and 2ig are res-
pectively regarded as boundary values for y and y. The factor of 2 here is
because of the factor of 1/2 which we noted earlier, occurs if we integrate
only up to the end-points at y = y,,y, and not beyond. This point becomes
more complicated when we take the impact parameter dependence of the sources
into account. It is essentially the reason that we shall not use these

boundary conditions.

ii) A second possibility is to use the freedom of choice of the range of the

y-integration to write

Y‘:H:’, Y2 =it (‘/1>U)2.,‘/|<«5‘) 3%

ZzZ=z=0 (34)
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Now we must write

H Q)a) = Ao l-‘j L’/ + v%% (Q‘j) W‘) (35)

and integrate over Y, <y <Y, with the boundary condition
YY) = ¥ (%h)=0 (36)

ig and ig are interpreted as (rapidity dependent) sources of ¥ and Y giving

a rapidity dependent '"Hamiltonian".

iii) A third more complicated possibility is to write Y, = it’, Y, = it" as in
(ii), but instead of (34) we write
z , z fixed but undetermined (37)
We take Hg§ to be defined as in (35) and then take the limit
Y 5 — oo vV = + oo (38)

| ? s

To show that this limit gives Sgé we must evaluate (29) (with H given by Hgé)
before the limit is taken. As we have noted, the most direct way to do this
is to develop a perturbation expansion around the classical solution satis-—
fying the boundary conditions yt') = z, ¥(t") = z. This solution is shown
qualitatively (for A, > 0; we shall discuss the one-dimensional classical
problem more in the next section) in Fig. 2.1 and, as is shown in the figure,
does go over to the classical solution to the boundary conditions of (ii)
when the limit (38) is taken. Hence it is plausible that the complete per-
turbation expansion around one classical solution goes to the expansion

around the other in this limit.

An alternative derivation of this last result, which involves ideas that are
important for us, is obtained by using (19) to evaluate (29) by Gaussian integra-
tion as we did for S —. 1In this case we expand both exp [-f Vggj and
exp 1/2[2w + zw] as power series and replace the powers of the fields by deriva-
tives with respect to sources as in (8). In addition to the usual Reggeon graphs
propagating between the internal sources g and g, we obtain further graphs from
contractions of powers of the "boundary fields" y(Y,), @(Yl) with the internal
fields and sources. As is implied in (1), placing non-zero boundary conditioms
on the fields is equivalent to adding sources of y and ¥ at the boundary (of
strengths Z/2i and z/2i, respectively) in addition to the internal sources. The
complete graphical expansion for U(z,z,g,8) is illustrated in Fig. 2.2 as a sum

over integrals of the usual Green's functions of RFT defined by the Lagrangian (1.
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Now suppose that all the Green's functions go to zero when any of the rapi-
dities involved goes to infinity (as is the case when the leading singularity in
the E-plane is a pole with renormalized intercept A > 0). 1In this case all terms
in the expansion of U(z,z,g,g) go to zero in the limit (38) except those involving

only the internal sources. That is

U (z,2,92,3) - Ses, (39)
Y2 ,—‘/| = 0

This is in fact the conventional field theory method for defining vacuum to
vacuum amplitudes in the path-integral formalism?®). It appears to be the most
general approach to the problem of boundary conditions since it is independent
of the boundary values z and z specified. It can also be used to justify our
neglect of boundary values in the first part of this section. That is, (39) is
the implicit statement about boundary conditions to which we referred earlier.
However, this approach is only clearly justified as long as the Green's functions
of the field used to evaluate the path-integral go to zero at large rapidity. In
particular this condition breaks down if there is a phase transition at infinite
rapidity, as in our case. In general, a path-integral is non-analytic at a phase
transition just because of this point. In our case we want to avoid using (39)
because it hides the fact that due to the special form of Vgé’ we can use finite
boundary conditions as in (ii) which ensure the analyticity of Sgé' Unfortunately,
as we discuss in the next sections, (ii) is also not suitable for our purpose.

We shall use yet another possiblity for relating (5) and (29) which we now dis-
cuss.

iv) We again write Y, = it’, Y, = it”. We take H to be Hg§ defined as in (35)

and fix z and z at some finite undetermined values. We then note from the
perturbation expansion shown in Fig. 2.2 that the only part of
U(z,E,g,g,Yl,Yz,yl,yz) which is translation invariant with respect to dis-
placements of y, and y, (with Y, and Y, kept fixed) is the sum of disconnected
graphs involving interactions propagating separately between y, and y,, and

Y, and Y,. That is all graphs of the form shown in Fig. 2.3. Hence we can

write

So5 = Ir ch(z,i,a,%W}
u(z,z,0,0) (40)

where Tr implies that we take the translation invariant part. Alternatively,

since the only translation invariant part of U(z,z,g,0) or U(z,z,0,8) is

U(z,z,0,0), we can rewrite (40) in the form
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Gap = Te | U(2,2,9,3) U (2.2,00)
U (z.2,9,0) U(z,%,0,5D (41)
i1 second form is more convenient for the field shift we discuss in

Section 4.

Before leaving this general discussion of the path-integral formalism we
briefly discuss the inclusion of the x-dependence of Sgé in the formalism.

Clearly it is straightforward to write

Hog = Ca'z &, V(2.0 Vys « bopy + Vo, CIRNEE

and
[2Gr20] = [ G Z (0 @) rZ(x) ¢W(xn)] 43)

As we mentioned earlier we have a cut-off in our Eifintegrations which is equiva-
lent to introducing a lattice in x-space. This implies that the x-integrations

in (42) and (43) can be replaced by lattice summations.

We can also introduce a boundary in x-space, but because the equations of
motion contain only second-order derivatives in x, there will be no boundary
terms provided only that we specify the fields to have zero derivative at the
boundary. Alternatively, we can eliminate boundary terms by the "periodic"

boundary condtion

W, ») =¥ (e, , Y- ¢JCe, (44)

where both (@,y) and (-B,y) lie on the boundary. Note that either form of boun-
dary condition is compatible with the field shift that we discuss in Section 4

which is rapidity-dependent but constant as a function of impact parameter.

It is important to note that we only obtain the complete Reggeon graphs
(even for finite external x; - x,) once we let the boundary go to infinity (in
contrast to the rapidity integrations). The presence of a boundary implies a
cut-off in all the internal impact parameter integrations. Of course, it is an
essential prerequisite for letting the boundary go to infinity, that the propa-
gator goes to zero sufficiently fast at large impact paramcter. As we have noted,

this is the case for all values of A,.
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THEE CLASSICAL POTENTTAL AND THE INSTANTON SOLUTTONS

We define the '

of (32)

‘classical' potential VC to be the one-dimensional Hamiltonian

-~

O — 7 ‘ ) [ " - "\\
\/.-, | l*, % \ - Q\(> L}"/ (71/ ” 2 ¢ To \J/ (L}'Y‘*‘LP/ qj (4959

We note that VC has three planes of zeros in the four—-dimensional complex W,

space

(ir @ =o© Y =0 Gi) 4 @ = 2 Do

————

(46)

o

The zeros intersect at stationavy points of Vc’ that is, at

() Y=y =0, ® ‘4”’”3-2;9»‘3,4“'0 , () =0, ‘1“:3___;‘3‘? (47)
] (=]

There is also a further stationary point (d), | = P o= iA /3r where VC # 0.

Because the sources ig and ig, of @ and | respectively, are pure imaginary,
it will be useful to consider the (Im P, Im @) plane. This plane is shown in
Fig. 3.1 for r. > 0. The integration contour of (5), that is ) = U%, appears as
a line, shown dotted in Fig. 3.1, passing through the origin. Note that when
A, = 0, the line of zeros (iii) coincides with the integration contour. It is
this effect which is essentially responsible for the phase transition, although,
of course, renormalization effects'") shift the transition to AO = AOC (< 0)

instead of A, = 0.

We also note that lines on which VC is constant correspond to rapidity-
dependent solutions of the classical equations of motion. Such solutions have
been studied in detail by Amati, Caneschi and Jengo*l), and we shall essentially
just quote their results. In particular, of course, the lines (47) correspond
to zero energy solutions which, since they asymptote to the stationary points of
the potential when we take the infinite "imaginary time' limit (that is, the in-
finite rapidity limit in our language), can be regarded as "instanton' solu-
tions’"»?%). In Fig. 3.2 we have drawn some contours of fixed v, indicating the
direction of the classical solutions. The analvtic form of the éolutions can be

found by integrating

ooy ¢ A i L5

- ’l:f" <) d'w-/% [ (A"/{a*xvl + LE “lm (49)

where Fois the Tones o that s, the valae of A
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A particular way of specifying a solution is to give Y at an initial rapidity
Y, -- this fixes the lower integration point in (49), and & at a final rapidity
Y, -— E then becomes a function of Y(Y,) which can be solved for. We shall there-

fore denote a general (one-dimensional) classical solution by
X_ s = (Waz®)s §os ("’3) (50)

where Y(Y,) = z, @(Yz) = z. The Y,,Y, dependence of X,z will be implicit in the de-
finition of z and z. Because of the translational invariance of the equations
of motion

Aoz Yo = ( Yoz (2790, q-jzi (‘9’“"’)) (51)

is also a solution [which can, of course, be specified by Y(Y, + y,) = z,
V(Y, + y,) = Z].

From Fig. 3.2 it can be seen that for A, > O our specification of X,3 is
unique if we disallow infinite values of the fields, except if Im z and Im Z are
both positive and Y = Y, - Y; is sufficiently small. This is illustrated in
Fig. 3.3 where we have shown two solutions with the same z and z. For Y suffi-
ciently large (Y > YC, say) only the solution nearest the origin is possible.
This can be seen from the general property of all solutions, which follows from
(49), that they must approach one (or more) of the zero energy solutions when
Y +~ »©, That is, they must spend an infinite rapidity interval approaching one of
the stationary points. It is important that YC depends on A,, and that YC >
when Ay > 0. This is related to the convergence of the expansion of Sgg’ in a
power series in g and g. We shall discuss this point further in Section 6. TFor
the moment we note that if we take Im z, Im z < 0, A; > 0, then X, is unique
for all finite Y. Also, when Y - O, X,3 collapses into the origin as shown in

Fig. 3.4.

We begin our consideration of analytic continuation in A, at finite rapidity
by tracing the analytic continuation of X,3 in the case Im z, Im Z < 0. A finite
Y path cannot cross the stationary point (d) nor, since the orbits around (d)
have finite period, can such a path shrink to a point in the (Im ¥,Im y) plane if
Y is sufficiently large. Therefore if z = z, then as we continue through A, = 0
to A, very large and negative, the result must be as shown in Fig. 3.5. The most
important feature of this continuation is that if we take either Y » « (or z, z - 0)

after the continuation, we obtain the result shown in Fig. 3.6. That is X,3

asymptotes to the triangle formed by lines (i), (ii), and (iii) or the three in-

stanton solutions which in A, > O can be denoted by (note that Y = )

(i) x/“’,, D) A, o, (i) 7(,,,/,,\ (/A—.Q:AO/r) (52)
o
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In fact since each instanton requires an infinite rapidity interval to traverse,
it follows that if we take the Y » « limit symmetrically, that is Y, = =Y, > +o,
then XUO must be traversed at y = -%, Xou is traversed at y = +», while X0 0 is
traversed in the interval y € (-~,+®). Note that if we take Y » « at any of the
intermediate stages shown in Fig. 3.5 we also obtain X,,. If z # z the continua-

tion of Fig. 3.5 is again correct provided that Y is sufficiently large.

We now observe firstly that X,z represents the classical contribution to a
path-integral of the form (5) (ignoring the x-dependence for the moment) in the
presence of sources of the type ig,ig. Secondly, X, reduces to the "vacuum",
i.e. the origin, when either z, Z » 0 or Y > *, provided that A, > 0. The above
continuation strongly suggests that beyond the phase transition (that is A, < O
for the classical potential) it is ¥,, which we should take as the '"vacuum" of
the theory . We shall make this idea specific in the next section by expanding

the path-integral around X,5°

It is also interesting to plot the analytic continuation of the classical
trajectory in the presence of the internal sources which is shown in Fig. 2.1.
This is directly related to our specification of Sgé using (40). The analytic
continuation is shown in Fig. 3.7. It is, of course, closely related to the con-
tinuation of X5 but it emphasizes that in A, < O we can expect the sources g
and g to give rise to excitations around X,,. Note that if we attempt to plot
the continuation of the classical solution with the boundary conditions (ii), we
encounter an ambiguity as shown in Fig. 3.8. Graphically we cannot see which of
the two alternatives shown gives the analytic continuation of the action. This

is one reason why we do not use these boundary conditions.

It is important to remark that while in a conventional field theory it would
be nonsense to consider an instanton or "time dependent" vacuum, in the RFT
this is not the case. Since the Hamiltonian is non-Hermitian the initial and
final states, defined as left and right eigenstates in some appropriate space of
states (which‘has still to be formulated), need not be identical. As will be
clear by the end of Section 5, it is the change of "vacuum' at y = *o which is the

essential ingredient in our analysis.

Finally we note that for the zero energy solutions it is trivial to integrate

(49) to obtain

Xo = Be (|-l boy, 0)

(53)
X@,o :é%(l+wé%%7 \"Mé%ao) (54)

14

KXo a 15_%(0,1+Mé%w3 (55)
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We have, of course, included only ifa(w,@) in our study of Vc’ but it should be
clear that it is the zero structure of VC near the origin that is central in our
analysis. This will only be changed in an inessential way if we add (sufficiently

small) higher couplings. For example, if we take X;, = 2\ , = 2)\ so that

— _ 2
iq = Ay (Prw) y (56)
then x,, still has the form

Xy, = a (14 @nh by, |- Gk by )

oo ?

(57)

but with

Y .
a = (v - |- f}} - 164, A-l — ¢ Bo
8 A (58)

NDo 2
16 N (59)

THE FIELD SHIFT

We take Sgg to be given by (41) with Hgé given by (42) and we take z(x) and
z(x) in (43) to be independent of x. U(z,Z,g,g) will be well defined by the per—
turbation expansion of Fig. 2.2, since we know that the usual RFT Green's func-—
tions go to zero at large impact parameter. This ensures the convergence of the

x-integration in (43).

We now make a change of variables in U by writing

(W), @ (a2)) = (Blan), #(o,2) + X,z (60)

First we remark that since @zz(y) is not the complex conjugate of wzz(y), this
shift is not a simple change of variables in (41). Instead (60) represents a
contour deformation in the integrations over both Re § and Im y for each y. The
integrand will be an analytic function of both Re { and Im | regarded as indepen-
dent complex variables and Cauchy's theorem can be used to move the integration
contours, as specified by (60), provided that the asymptotic behaviour of the
integrand allows this. This is certainly the case if we take a small four-Pomeron

interaction of the form (56) to be present.
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The effect of the shift in U(z,Z,g,g) is firstly to produce an over-all
factor which is the action of the X,3 trajectory and which will cancel in (41).
Since X,z satisfies the equations of motion, the terms in Vc(w,w) linear in the
shifted fields ¢ and ¢ will cancel against the remaining rapidity derivative terms

if we make an integration by parts. The resulting boundary term is
axp 5[ ™% Y _ (1) E (% %) - W (1)# (%)
_a (Yiv O’L) (//zi (\/z + a(\/h%) Wzi (Y') ]

(61)

But since

N (V,) x) = ¥, 2 =z, Jj(‘/z,’ﬂ =¥, 2 (%) =z (62)
it follows that
(1, %) = & (1,x) =0 (63)
and so (61) reduces to
exp b [ GdPe 2 F(h,%) ¥ 2 7 (4, (64)
which exactly cancels the original boundary term (43), apart from a factor
exp § Cd» Zz] (65)
which will cancel in (41). [Note that we could keep the volume in x-space finite

during these manipulations in order to keep factors such as (65) finite.] The

g@zz and ngE terms in U will also cancel in (41) and so finally we can write

5

%% = T«r uS (%.‘53 uS {D/O-) ] (66)

Ug (a,0) Us (o 3)

where US is defined analagously to (29) but with no boundary term. That is

Ug (5,3 = Sdaddexp-[sjﬁﬁ& £ (éf,d)l (67)

599

where S”Sgé is defined as in (6), but with /'~ V”S, where

4, = L, (?5,%, d:,'AJ + ﬁl(a’,p’, AN L, (%, 4,7 (68)
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Clearly % is the new ingredient in lfg, its precise form is

4,37, 00, 0) = in [ G, #7 W, BP0 s - )] o)

Since @ZE and sz are y-dependent, %, is also y-dependent.

We now analytically continue Sg.é as a function of A, in the form (66) with
Y, and Y, kept finite but sufficiently large. When A, << 0 we can take the limit
-Y,, Y, >~ = so that X,3 asymptotes to the three instanton trajectories (52), given
by (53)-(55). As we noted in the last section, only the trajectory X,, is covered
in the finite y-region y € (-~,+©) and so the sources g and g which act at the

finite points y, and y,, respectively, will act during this interval.

Although the trajectories XUO and Xou have retreated to -« and +®, respec—
tively, we must check that they do not give a finite contribution to § 5" We
can make a perturbation expansion on each of these trajectories using %he Gaussian
integration method of Section 2 if we treat both ¥, and ¥, as part of the inter-
action and hence take them to be part of Vgg($,¢). On XOU’ @zE is zero whilst
sz is given by (53). Since only the 92 and ¢¢ terms in (69) are non-zero there
will be no vacuum processes. Also there is neither an initial boundary term nor
any internal source. Consequently we can only obtain a non-zero contribution
from XOU if interactions produced by the $? vacuum production term can communicate
with the interactions that take place along the ¥,, trajectory. For this to be
possible such interactions must be able to survive for the infinite rapidity

interval needed to pass through the stationary point (c).

At (c) we have

Wzi =0 ? (,Uz_z . Q"“.Eé"? (70)
When substituted into (69) this, of course, gives just the unsymmetric theory
obtained by a constant shift, studied in detail by ABSS. However, we know from
the ABSS results that the Green's functions of this theory go to zero at infinite
rapidity when A, << 0. Consequently, the interactions produced along the Xoy
trajectory cannot communicate with those along the X,, trajectory. Therefore the

XOU trajectory and similarly the xuo trajectory give zero contribution to Sgé'

Finally we are left with evaluating the X,, contribution to sg§° First we
note that if we replace Y, and Y, by Y; - y, and Y, - y,, respectively, throughout
all of our previous discussion then we will arrive at (69) with mzi replaced by
WZEYO and sz replaced by wZEYO' Hence Sg§ must be given by (66) if US is
evaluated from (67)-(69) using any szyO. That 1is, Sg§ must be independent of y,.
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This is important because if we have introduced any new translational invariant
part into U by taking the limit -Y,, Y, > +», it will depend on y,. Therefore

we can eliminate this possibility by calculating (66) with an arbitrary Xooy, -

Vo090 = ’i‘%:?‘ (‘— corh B2 ('0"%7) (71)

()Uo(olu)o = —L__%:g_ ( |+ ot &{- (%—%.}) (72)

That is, we use the perturbation expansion obtained from the general method of
Section 2 and pick out that part of the expansion which is both translation

invariant in y, and y,, and independent of y,.

Finally we note that since there is no finite rapidity classical solution
to the boundary conditions (ii) of Sectiom 2, a shift of the kind discussed above
would necessarily introduce new boundary terms. This is a second reason why we

have not used these conditions.

5. THE PERTURBATION EXPANSION

It is straightforward to derive a perturbation expansion for Us(g,g) using
the method of Section 2. Apart from the shift of A; > -A; in ¥, which ensures
that our bare propagator is well defined in Aj < O, rather than A, > 0, the only

difference from the usual RFT expansion is the presence of %,. Since

Upo, . * Woon, = — Xibo (73)
o
we have
- - + 2 - =2
iz<¢,¢/,Ao) 92/’[5%55 +5u,°?’/ :( (74)
where

x = + GMQ\» - Ao -
oy, (@) | Lo (-9.) 75

To discuss both y,—independence and translation invariance we go to Fourier

. +
transform space. The Fourier transforms of 6§ are
0

+

6t (e, = am S (W
° Do simI (EFE)

(76)
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the only singularities of which are the poles at E = 0, %A, iZAO, oo . The 7€
simply indicates to which side of the imaginary axis the pole at E = 0 should be
taken when the Fourier intepral is along this axis. Note that only this pole has
a residue independent of y,, and so we can write

2. + + +
g’foo(g)gj =25 (w R, (gx) = § + Ry D

EF¢

In the following the y -independent part of a graph will be obtained by neglecting
1
R y,. This corresponds to taking O-functions in y space, i.e. keeping only the
+
leading asymptotic behaviour of 8"y, as y > *=. It is perhaps obvious from the
+

plot of 8§y, in Fig. 5.1 that this is the only y,~independent feature of these

functions.

We could be more sophisticated at this point. For example, we could argue

that since Sgé is independent of y, we will calculate

400
L (s

—( oo

=

e (78)

Do
¥ /5 ()
If we close all E contours in the left half-plane, the pole at E = 0 will give Sgg
for (78) while for the other poles the y,-contour can be closed in the right
half-plane to give zero because of the Yo factor in (76). Hence we would re-
+
obtain the result that we should keep only 8 in (77). Another alternative would

be to exploit the analogy between y, and a collective coordinateaz), although we

shall not pursue this interesting possibility here.

The Feynman rules we need are identical to the usual RFT rules in (E,k)
spaceg’la) except for the graphs involving the ¢? and ¢ vertices. These ver-
tices have "coupling constant'" A, and a form factor ﬁi, as appropriate, for the
energy and (zero) momentum entering the vertices. We shall now formulate a
simple general prescription for the translation invariant part of the pertur-
bation expansion by studying some of the simplest diagrams in detail. We repre-
sent the ¢ and ¢° vertices as shown in Fig. 5.2. Remembering that we are to
divide out Us(g,O) and US(O,Q) from Us(g,é), the simplest graph involving the new
vertices is shown in Fig. 5.3. Labelling the energies and momenta as shown, we

obtain for the complete diagram (apart from in factors)

+ (o0 _ +Ce0
2 Eqo o -Epu ch(xo-u12D)
A, gaE,LclE,g e e gde ga’@e
-l -l

(79)

-1
et e DEa- i BYE e ga -l 3 AXE 2,0 (E-6007)]
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If there is a translation invariant part to this diagram, then the E integration

should produce a S-function in (Ea - EB).

The singularities and integration contour in the E-plane are shown in
Fig. 5.4. It is clear that in the form (78) there is no singularity at E, = ER’
since there is no pinching of the E-contour by the poles shown. However, we can
rewrite (78) in another form, which, although it will not generate a &-function

in this diagram, will in more complicated diagrams.

For -y,, ¥y, > 0 we can close the Ea and EB contours in the right half-planes
so that they enclose the real axis as shown in Fig. 5.5. If we also close the
E-contour in the right half-plane we arrive at the situation shown in Fig. 5.6.
We have plotted the movement of the various poles in the E-plane during the Eu
and EB integrations. There is still no pinching of the E-contour when Ea = EB
since the pole at Ea + EB + u'k? - A, is always to the right of the poles at
%xandEB(remembering A, < 0). We conclude that this diagram has no translation
invariant part. The same analysis generalizes immediately to all diagrams of the

form shown in Fig. 5.7.

The above discussion would have been quite different if there had been at
least one singularity in the right half E-plane which was independent of both
Eu and E,. We shall see this as we discuss further diagrams. Consider next the

g

diagrams of Figs. 5.8 and 5.9. The complete expression for Fig. 5.8 is

»ri oo
Ex,- Ea9 LR (e -%)
A, " go\L:a(olEﬁ_ gdz‘g e U e (
—Lop (En- 2, ‘31"' AoYEaf‘":B +l)‘,>(Eﬂ“E,(+£)

(80)

‘27 ’ 2 -1
X go\E 4"k [(g’.a: )_é_q-pr A,.D(Eda— E'- . (k+ EKSL-\'AQ(E/&'EA"E“’“S*'&J]

The singularity structure in the EB—plane, after the loop integration, is shown

in Fig. 5.10. The two Reggeon cuts in the EB and EB - Eﬂ channels appear at

ul(kZ/z) - 20, and Ea - 2A,, respectively. If we again close both the Ea and EB

contours in the right half-plane, we obtain Fig. 5.11.

There is now a pinch of the E, contour by the pole, at E_ = Eq, on the two

R B

parts of the Eq contour. This gives a contribution to I, which can be written in

the form

gcll:_’lc“f’ﬁ S(E,,L‘ /;)6_ kﬂ (U)Q'_UJJ F (Eﬂ) (81)
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where the integration is along the real axis and F(EB) is obtained by taking the
discontinuity of the integrand due to singularities in the EB—channel, i.e.
singularities whose location depends only on EB and the momentum k in this channel

(apart from aé, A,, etc.).

Expression (81) is in general the same result as is obtained by simply re-

. _ -1 _ . . . . _
placing [EB Ea + e] by G(EB Ea) provided that the singularities in the EB
channel are the only ones in the EB-plane which are reflected into the Ea—plane
by the replacement. For the integral (80) this is the case, since it is clear
from Fig. 5.10 that all the singularities in the Eg-plane are either in the EB—

channel or the (EB - Eu) channel.

The analysis of the diagram of Fig. 5.9 is almost identical to that of
Fig. 5.8. The only difference is that in the EB—plane the branch-point at
a’(k?/2) - 2A, does not appear but instead there is an extra pole at EB = Ed'F D, -
In this case only the pole at E8 = agk® - A, contributes to (81).

We consider next the diagram of Fig. 5.12. We shall not give the complete
expression for this diagram but on the basis of the previous examples simply look
at the singularity structure in the E-plane after the internal loop integration.
From Fig. 5.13 it is clear that closing the E, and EB contours in the right half-
plane will again produce a §-function which picks out only the discontinuity in
the E-channel. That is, only the branch-point at aj(k’/2) - 2A, is involved in
the pinch generating the §-function. The coefficient of the é-function is again
the same as obtained by replacing the poles at E - Ea + € =0 and at E - EB +e=0

by S-functions since the only singularities in the E-plane besides that in the E

channel are in the E - Ea and E - E8 channels.

As final simple examples we consider the diagrams of Fig. 5.14 whose E-plane
is shown in Fig. 5.15, and the diagram of Fig. 5.16 whose E-plane is shown in
Fig. 5.17. There is no branch-point in Fig. 5.14 which is independent of Ea and
EB’ while in Fig. 5.17 there is one. The diagram of Fig. 5.14 has no discontinuity
in the E-channel. Hence no G(Ea - EB) is generated and there is no translation
invariant part to the diagram. That of Fig. 5.16 does have such a translation
invariant part, but it is no longer given by replacing the poles at E - Ea +e=0
and E - E, + € = 0 by 8-functions. It is first necessary to eliminate the singu-

B
larity at

E-Eu-Ep =k, —24. (82)

which would be reflected in the Ea and EB planes by this replacement.

From our simple examples we can formulate the following rule -- a diagram

containing a 2 (¢2) vertex has a translation invariant part if, and only if, there
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is a discontinuity in the channel which represents the total energy present be-
fore (after) the insertion. Further in a diagram which has such a discontinuity
the translation invariant part is given by keeping only this discontinuity in the
associated energy plane. To make these statements precise in a way which will
apply to an arbitrary diagram, we must go to a rapidity-ordered or Rayleigh-

Schrddinger form of the perturbation expansion.

The Rayleigh-Schrodinger expansion’") is obtained by performing all energy
integrations in the diagrams of the present expansion by picking up propagator
poles. In general one diagram in the original expansion gives several in this
new expansion each of which corresponds to a possible rapidity ordering of the
vertices. The rules for writing down the new diagrams are that we write the
same factors for the vertices as in the old expansion (except that r, ~ /2 o)
but we write propagators for each multi-Pomeron intermediate state. For an

n-Pomeron state we write
. _ , h:
L [ L’ ‘Y\('Ao) _dc “ _L] (83)

where E is the energy associated with the state. We impose momentum conservation
at all vertices and integrate over all loop momenta. We also integrate over the

. . - . . *
energies entering the ¢? and ¢* vertices with the &~ form factors as before.

There is a further manipulation of the Rayleigh-Schrodinger expansion which
we also need. We sum over all graphs that differ only by the rapidity-ordering
of interactions that are in parts of the graphs that are disconnected either from
the earliest interaction to y = +© or from y = —» to the latest interaction. The
sum of such graphs is then given by a single graph in which the product of pro-
pagators for each of the disconnected states is replaced by a product of propa-
gators of the form (81) for each intermediate state in the connected sub-graphs.
This process is illustrated in Fig. 5.18. The product of propagators represented
by dotted lines in the four graphs summed over is replaced by the product of
propagators for the dotted lines in the final graph. The energy that appears in
the new propagators is the energy flowing through the connected sub-graphs. We
call this form of the Rayleigh-Schrodinger expansion ''the rapidity-ordered ex-

pansion'", and refer to the graphs as rapidity-ordered graphs.

It is now straightforward to generalize the above analysis of the simplest
graphs. Every rapidity-ordered graph has a discontinuity in a certain channel
if, and only if, it contains a propagator in that channel. 1In a graph containing
many ¢° and $% vertices an over-all 6(Eu - EB) will be generated if there is a

multiple pinch of the integration over all energies entering and leaving through
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the vertices. This requires singularities in all corresponding total energies.
This is equivalent to saying there must be a discontinuity, and hence a propa-
wator, in every channel representing the energy present after (before) the pro-
duction (absorption) at a ¢° (¢7) vertex. Alternatively, there must be at least
one triple Pomeron interaction which is connected to the main body of the graph,

between each ¢ and 52 vertex and the next.

Consequently all rapidity-ordered graphs which do not have this property
have no translation invariant parts. Those graphs which do will necessarily have
propagators and hence singularities in only the total energy channel and the
energies incoming at the ¢? and ¢? vertices. In these graphs the replacement of
all poles in the vertex form factors by &-functions is allowable since this simply
eliminates all singularities in vertex energy channels and leaves only the total
energy channels. Hence we arrive at the final prescription for calculating the

translation invariant, y,-independent perturbation expansion.

Sgé is given by the sum of all rapidity-ordered graphs satisfying the re-
quirement that there be a propagator in the total energy after (before) a 32 (0%
vertex. The graphs are evaluated with zero energy and momentum entering at the
$? and ¢? vertices (no form factors) and with a coupling constant A, for these

vertices.

The sum of graphs giving the propagator (i.e. the gg term in S _) is shown
in Fig. 5.19. The sum is over all number and orderings of the ¢2 and 52 vertices.
Each circle represents a Green's function calculated without the ¢2 and ¢2 ver-
tices and each set of hatched lines represents a sum over propagators of the form

(83) (including no propagator).

An equivalent description of the set of graphs giving Sg§ is to say draw
all the usual RFT Rayleigh-Schrodinger graphs for a theory with bare intercept

-A, and with all bare Pomeron interactions A N =1, 2, ... producing N Pomerons

N’
from one. A,; will, of course, simply modif; the bare intercept to

Ag = =Ay + Xy,(0). The Ay are momentum dependent vertices given by the sum over
graphs shown in Fig. 5.20. Each xlN therefore contains a complete Green's func-
tion evaluated with only triple Pomeron interactions. Again the $? vertex has
zero energy and momentum entering. This implies that the energy is set to zero

in all the propagators appearing in AIN'

It is interesting to note now that the graph of Fig. 5.16 discussed above
gives the two rapidity-ordered graphs shown in Fig. 5.21. Only the graph (i) has
a total energy propagator and so contributes to Sgé' The second graph (ii) 1is
not translation invariant. It was because it was necessary to subtract this graph
from the complete graph of Fig. 5.16 that we were unable to simply set the vertex

form factor poles equal to 6-functions in our earlier discussion.
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Finally we discuss the convergence of the expansion for Sgg' This parallels
closely the ABSS discussion of their expansion. Consider first graphs not in-

volving the $? or ¢° vertices. Each successive term in the perturbation series

2
0’
loop integration. When -A, is very large, the propagators are of order Ay, while

will have an extra factor of r two extra propagators and one extra momentum
the loop integration is of order A —- the cut-off in the momentum integrals.
Thus each term will be down from the preceding one by the dimensionless factor

§, where
—_ (84)

Now consider the graphs involving the $2 and ¢? vertices. The addition of such a
vertex to a diagram always adds one extra loop integration, two r, vertices,
three propagators and a factor A, for the vertex. Hence these graphs are also an
expansion in the parameter §,. The expansion should therefore be convergent (or
rather Borel summable as we discuss in the next section) when 6, v 0 and in par-
ticular when -A, -~ ©. This region is, of course, far from the phase transition
region where §, v 0(1). However, it is sufficient for us to conclude that beyond
the critical point the leading singularity in the Ea—plane is a simple pole since

we can write for the new propagator f(E,Ez)
— 3 /7 - —‘
E W) = ( [g-a. g +b,vo(wAN 1
(g, [e-a; (22) o)

Also the graphs of Fig. 5.19 satisfy perturbative Reggeon unitarity (as is clear
from the fact that we can write them in the form of the usual RFT expansion with
the vertices XlN). Therefore the expansion for Sg§ that we have obtained from
(41) satisfies Reggeon unitarity and also t-channel unitarity.

Note that the non-translation invariant graphs that we have dropped cannot
be classified into powers of §, since such graphs contain arbitrary numbers of
$% and ¢° vertices without any accompanying triple Pomeron vertices. Hence we
cannot begin to prove the convergence of this part of the complete expansion.

We must simply assume that we have extracted the complete invariant part of S -
so that the non-invariant terms in the expansion do not sum up (in some sense%g

to something which has an invariant part.

COMMENTS AND DISCUSSION

In this section we shall make some brief general comments on the theory we
have developed in the previous sections and then discuss the relation of our re-

sults to the other proposed solutions to the problem.
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First we note that our new Green's functions have no fixed Ez singularities
on the physical sheet. They have only the usual multi-Pomeron cuts. As a result,
the new Green's functions go to zero at large impact parameter as did the old
Green's functions. This might seem strange since we have made a field shift
which is constant in the impact parameter. The reason is that the only part of
the shift that was important in extracting the translation invariant part of the
perturbation expansion was the asymptotic part at y = *», Hence if we keep y

finite, but go to large impact parameter, we see no effect from the shift.

It is interesting that by relating the S-matrix in rapidity space above and
below the critical point we have in effect related the integrals over the imaginary
part in the angular momentum or energy planes. This is fortunate since we expect
that in E-space the Green's functions will develop asymptotically divergent parts

which lead to the divergence of the normal Fourier or Sommerfeld-Watson integral.

In Section 3 we noted that the one-dimensional classical solution for fixed
g/tys 8/rys by > 0, is singular at some Y =Y , since for Y < Y, the solution is
not unique. Also as A, - 0 this singularity approaches g, g = 0, Y = », Since
our understanding of the phase-transition in higher dimensions is so closely re-
lated to the one-dimensional problem near A, = 0, it seems likely that a similar
singularity (or singularities -- with or without impact parameter dependence)
will be present when AO ~ Aoc in the complete S-matrix in higher dimensions. If
this is the case then there are many important implications. Firstly the expan-
sion of Sg§ in powers of g and g, with the coefficients given by the Green's
functions, will not be convergent in the neighbourhood of Ao = Aoc’ Y = o,
Hopefully it will still be an asymptotic expansion, valid for g/r,, g/r, S O.
Nevertheless if we are to apply the large Y asymptotic expansion for Sgg obtained
from that for the Green's functions, the sign of g/r;, and g/r, must be correct.
Similarly if the finite Y analyticity in A,, on which we have relied, is to hold,
we must also fix g/r;, g/r, < 0. Fortunately this constraint is physically
sensible since this sign is also fixed in the same way if s-channel unitarity in

the form of the AGK cutting rules is imposed on the theory15’33) (when A, > 0).

Since the shifted perturbation expansion (including the expansion in Green's
functions) converges around Y = ® for AO << Aoc and the original expansion con-
verges around Y = @ for A >> Aoc’ the two expansions converge on different sides
of the supposed singularity. Hence Green's functions of the two theories will
not be related, although the S-matrices are. Therefore all the multi-Pomeron
couplings to the external particles (that is all powers of g and g) are essential
for relating the theories above and below the critical point. We chose the
eikonal couplings since they are the simplest couplings known to be consistent
with s-channel unitarity. It seems to us therefore that the inclusion of all
multi-Pomeron couplings and the constraint on the signs of g and g can be re-

garded as constraints of s—channel unitarity which, although not required by the
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t—channel unitarity formulation of the RFT, are essential to ensure that the
Oy > O problem has a sensible solution. It would hardly be surprising if
s—channel unitarity was essential in a situation where the Froissart bound might,

in principle, be violated.

It will be important to eventually check whether the theory we have derived
is completely consistent with s-channel unitarity. In particular we can ask
whether the AGK rules can be applied for discontinuities. Since we believe that
these rules are a general consequence of multi-Regge theory and the singularity
structure of multiparticle amplitudes!'®), this should be the case. In any case
it will obviously be necessary to extend our theory to multiparticle amplitudes
and to inclusive cross—-sections, as has been done for the theory below the

critical point.

It is perhaps worth noting that we have derived a Rayleigh-Schrodinger ex-—
pansion for the shifted theory rather than a Lagrangian perturbation expansion.
Of course, we can expand all vertices as power series in the momenta, introduce
energy integrations, and write a corresponding Lagrangian involving all derivative
interactions. Nevertheless it seems to be consistently the case that the Rayleigh-
Schrodinger expansion is best suited to new problems in the RFT. Since it is this
expansion which was originally derived from the hybrid Feynman graph expansion and
which is also most directly related to Reggeon unitarity, we might consider

whether the Lagrangian formalism has any advantages in the RFT.

We begin our comparison with other work on the subject by discussing the
dimensional dependence of the convergence of our perturbation expansion. It is
now generally understood that the convergence of perturbation expansions in con-
ventional quantum field theories is controlled by instanton solutions of the

corresponding classical equations of motion?*»25534535)

An expansion around a
vacuum which is a minimum of some classical potential will be Borel summable and
so define a theory only if there does not exist a real instanton having finite
action relative to the minimum. The non-existence of spontaneous symmetry
breaking of a discrete symmetry in one dimension (due to the tunnelling effect)

and of a continuous symmetry in two dimensions can both be understood as due to

the existence of instantons?®).

In the RFT it seems that due to the non-Hermiticity of the interacting fields,
we must consider both instantons and stationary points of the classical potential
on the same basis as potential '"vacua" around which the path-integral may be
expanded. [Perhaps we should remark that it is because we consider an instanton
vacuum that we avoid the '"mo-go theorem'" of Ellis and Savit®®) that says a field
shift to a mew vacuum is not possible in the RFT.] Presumably the convergence
of the perturbation expansion around any vacuum is likely to not be Borel summable
whenever there exist other potential vacua with a finite action relative to the

one considered.
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As we discussed in Section 3, in one dimension (zero impact parameter di-
mension) there exist several instantons and stationary points, all of which in
fact have finite action relative to each other. Consequently the expansion around
any one vacuum and in particular our instanton is likely to not be Borel summable.
We conclude then that it is unlikely that we can draw any conclusions from our
perturbation expansion in one dimension and so there is not any potential conflict
of our results with the known results for this case®’s7%)  This is directly
analogous to the failure of the shifted perturbation expansion in one-dimensional

A" due to an instanton, or equivalently the tunnelling effect” 7> %),

In higher dimensions we can regard all the one-dimensional solutions as
impact parameter independent solutions. In this case, however, all the other
solutions have infinite action relative to our instanton and so our perturbation
expansion should be Borel summable. Again this would be analagous to the be-
haviour of the shifted perturbation expansion in higher dimensions in xb*.  The
difference, of course, is that the path-integral in A¢* is not analytic at the
phase-transition point because of the "infinite volume" of the theory. That is,
finite distance Green's functions always involve infinite volume interactions be-

cause of the presence of vacuum processes.

The analyticity of the path-integral defining Sg§ is the wvital point that
has enabled us to avoid the procedure, suggested by ;he analogy with X", which
ABSS used to continue to A < Aoc‘ This is to make the continuation in the pre-
sence of an external source. Such a continuation is, in principle, not unique
since an arbitrary extra variable has been introduced into the theory. If the
source has no physical interpretation it is impossible to be sure the correct
continuation has been made. In fact it should be clear from Sections 2 and 3

that the ABSS solution is not the correct analytic continuation of the theory.

The comparison of our results with those of ACLM and Cardy in the spin model
is more complicated in that these authors study the space of states suggested by
the model and this is difficult to compare with the path-integral formalism.
Nevertheless the following remarks suggest a comparison. We use Cardy's notation
but the results are the same as obtained by ACLM. For AP there exists a
second state |1> which is degenerate with the vacuum '0> and both are zero
eigenstates of the Hamiltonian. The phase transition is characterized by the

occurrence of matrix elements

Lo lW > =1\ Floy = 2[8] & (86)
AL

vy =< 1g 1= 2lbd & (87)

Yo

where 0 = 1 at o, = @ and is zero for Gy < Woar All other matrix elements are

zero for all o,. Because of (86) and (87), if we define
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| > = o> +i 1> (88)

then within the two-dimensional space of |0> and |1>, we have

Y )g> = 2101 o | g P 1¢> =0 (89)
- )

o

\

and equivalently

1]

CElp = 21Ble Kl , <B|y =0 (90)
Yo

<@| is the left-hand eigenstate of the Hamiltonian corresponding to |@> and is

not the Hermitian conjugate. In fact

<#| = Lol +i i (o1)
where <0} and <1| are defined so that
Colo> = Cil» =1, <eli»=<ile> =0 )
Consequently for a spectral decomposition of the Hamiltonian, |@¢> has norm
Kgl\p> = <elo> -y =0 (93)

A consequence of (89) and (90) is that if we consider

<E|O|B> (94)

where 0 is some normal-ordered operator function of Y and &, then no zero energy

eigenstate appears as an intermediate state in this matrix element.

The S-matrix is defined by ACLM to be

e’ —
<ol exp [ - Gdud™= Hogz (¥, @)] 0> (95)
and from (86) and (87) we see that |1> will appear as an intermediate state in

this formula. This effect is responsible for the (ln s)? rise of the total

cross-section obtained by ACLM. However, if instead we define the S—matrix as

LB exp [-Sdod'z Hog (v )] 14> (96)
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then there is no zero energy intermediate state. Consequently the total cross-—
section will go to zero asymptotically as in our theory. Note also from (89) and
(90) that |@> is a right-hand eigenstate of | and U whose eigenvalues (at A, = -»)
are identical with the initial values of ¥ and U in our instanton X0+ Similarly,
the left-hand eigenvalues of <@| correspond to the final values of ¥ and ¥ in Xoo*
As we discussed in Section 2, in the holomorphic representation, our path-integral
can be regarded as the matrix element of the evolution operator between eigen-—
states of Yy and U with the eigenvalues given by the boundary-values specified for
these fields. For A, » -©, we have shown that the boundary-values in the path-

integral are those of ¥gg.

From these observations it seems clear that the analogue of our theory in
the spin model would be to define the S-matrix with the boundary conditions of
(96) rather than (95). 1In fact if we demand, within the spin model, that we have
a space of states consistent with Reggeon unitarity, that is a unique vacuum with
only finite energy Reggeon excitations, then the only possibility is to define
|¢> as a new vacuum. In this sense the spin model derivation of the matrix
elements (86) and (87) can be regarded as supporting our results. We note that
this is basically the point of view one adopts when deducing from the spin model
for A¢" that there is a degenerate ground state and consequent spontaneous

symmetry breaking.

It seems natural also to relate the existence of the matrix elements of (86)
and (87) to the existence of the instanton structure of Section 3 with the off-
diagonal elements <O0|y|1> = <0|y|@> and <1]@|0> = <¢|$[O> identified with the
instantons connecting the origin to our instanton. Both the matrix elements and
the instantons can be viewed as providing the smooth transition to the new vacuum.
(Although it is only through our analytic continuation arguments that the tran-
sition is seen to actually take place.) It would be consistent with the argument
that the infinite action of these instantons relative to ours makes our pertur-
bation expansion convergent, if the correct space of states in the spin model was
the zero norm states. The old vacuum, having infinite relative norm, would not
be in this space of states and so clearly would not contribute to the completeness

relation for the eigenstates of the Hamiltonian.

Finally, we note that in the remainder of Refs. 1-7 exact solutions to the
problem are not claimed. Cardy's approach?) of summing the RFT diagrams by making
an eikonal sum between every pair of interaction points in rapidity space is de-
veloped in Ref. 6 to obtain an exact integral equation for the "Froissaron'
propagator in E and k space. However, the equation has not been solved exactly
and there is no discussion of whether the approximate solution obtained is related

to the theory in o, < % by analytic continuation.
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