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INTRODUCTION

Recently, significant progress has been achieved in the analysis of the
s channel structure of diffractive processes. In particular, it has become

clear that elastic and inelastic diffractive processes are closely inter—

dcpendent and should not be treated separately. This contradicts the past

practice and belief that elastic scattering may be analyzed either by comple-
tely ignoring the inelastic diffractive channels or by treating their effects
as a small correction, and vice versa. The new developments suggest that many
of the problems concerning both elastic and inelaétic diffraction should be re-

analyzed and that, in many caces, new results may be obtained.

1),2)

on the relationship between the elastic and the inelastic diffractive pro-

In this talk we shall summarize the results of two recent papers

cesses and, in particular, on the constraints which s channel unitarity

imposes on the b space profiles of the diffractive amplitudes.

The plan of the talk is the following. We first recall the assumptions
and sketch a simple derivation of the unitarity bound of Pumplin 3>. We then
summarize the results of Ref. 1) concerning the phenomenological relevance of
this bound (Section 3). In particular, the necessity of the peripheral charac—
ter of inelastic diffraction in proton—-proton collisions will be shown. In
Sections 4 to 6, the results of Ref. 2) are summarized. We first analyze the
physical picture that underlies the Pumplin bound (Section 4). We derive a
simple formula that illustrates very well the physics underlying the bbund,
namely, the regeneration nature of diffraction dissociation. We also discuss
the experimental estimates for the diffractive cross-sections and study their
implications. Section 5 is devoted to a discussion of the multi-channel
eikonal approach. We point out, among other things, that the proton mafter
distribution may well be drastically different from that suggested by the Qhou—
Yang analysis. In Section 6, we speculate about the asymptotic picture of

hadron collisions. Finally, a few conclusions are drawn.

In the following, the phenomenological discussion will be restricted

to proton-=proton scattering for which the best data exist.

PUMPLIN'S BOUND

Let us begin by briefly sketching the derivation of the Pumplin bound.



Assume that there is an unspecified — but finite - number of diffractive
states produced. We label them by T>5000,| N>, [1 > being the elastic
state. Non-diffractive states will be labelled by |N+12>,.... Introducing

the notation
S=4+:T=14-1% (1)

we can write the t matrix in the basis of states defined above. This repre—
sentation defines a NxN sub-matrix whose elements are the transition amplitudes
among the physical diffractive states. In the following, we shall restrict our
discussion to this sub-matrix. Since no confusion can arise, we shall denote it

by t, too.

The next step is to diagonalize this diffractive t matrix. We assume
it to be real, for simplicity (this corresponds to neglecting the real parts of
the diffractive amplitudes)o Time-=reversal invariance implies that it is
symmetric. As is well known, a real symmetric matrix is diagonalized by a
unitary transformation. Such a transformation corresponds to a rotation in the
space considered which, in the present case, is the sub-gspace of the diffractive
states. The physical diffractive states and the diffractive "eigenstates"
(which, by definition, do not undergo inelasfic diffractive transitions) arc

related by

N
1L =), Uw’l\yb> v=4,..- N (2)
=4

Here, {|i>,i=1,0..,N} and {[YE>,k=1,...,N} are the physical basis and the
diffractive eigenbasis, respectively. The coefficients Uik are the elements
of the unitary matrix that diagonalizes t.

In the following, we shall work in the impact parameter representation.
It follows from angular momentum conservation that all the following formulae

are valid for each impact parameter separately.

Since the eigenvalues of the t matrix (the "eigenamplitudes") are
normalized linear combinations of real and bounded amplitudes (those describing
the scattering of the physical states), they are obviously real and bounded,

too @

0&7\“&4 /W:A‘,_‘_,N (3)



Our normalization is such that Xn= 1 corresponds to total absorption

+ .
n n cigenctate.

The total, elastic and inelastic diffractive cross-—sections
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we easily obtain the bound
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If the total and elastic cross—sections are known, Eq. (6) provides an upper

bound for the diffractive inelastic cross—section

A | o~ , (7)
6de; (5.b) \Q T 6 a(sb) - 6, (s,b)

3., APPLICATION OF THE PUMPLIN BOUND

In Ref. 1), the bound Eq. (7) was applied to high energy proton-proton

scattering. The main results of this work may be summarized as follows :



a) Integrating the bound Eg. (7), one obtains an upper bound for the
total inelastic diffractive cross—section
4 - 5
Caige < 7 Ot el
The numecrical value for the right-hand cide of this equation at top ISR
encrgy (1500 GeV/c) is about 1% mh. At lower cnergics, it is clightly
less (e.g., 12 mb at 100 GeV/c). The experimental cstimates for O 4irr
(which will be discussed in more detail in Section 4) vary between 6

and 9 mb, Thus the integrated bound is not saturated.

b) A more detailed study of the relevance ol the differential bound Eq. (7)

was carried out. Ingerting in thic equation the valucs of Otot(b) arnd

oel(b taken from an impact paramcter analysis of ISR elastic scattering
data 4), the bound shown in Fig. 1 was obtained. Although the result a)

implies that the differential bound is not saturatced at all impact para-
meters, this bound is so restrictive at small b that an integrated

value of ~ 7 mb can be obtained only if odiff(b) 15 much more

Taifr
peripheral than Uel<b)o
Many phenomenological analyscs of proton—-proton diffraction dissociation
data had previously suggested that the impact parameter distribution Odiff(b)
would be peripheral 5 . The results of Ref. 1) provided a direct proof that
this is so and, also, clarified to some extent thc physical mcchanism that is

causing this peripherality.

Before continuing the discussion, a word of warning is nceded. Although
the experimental estimates using very different definitions of "diffractive

scattering" agree on the size of within the large errors quoted above,

o ..
diff
it is not obvious that all this cross—section ic of absorptive nature. Even
less is known about the absorptive character of the cigenamplitudes. Iowever,
it seems unlikely that any corrections duc to non-absorptive contributions

(such as non-vanishing real parts of the amplitudes) would change the quali-

tative features of our resultse.

PROBABILISTIC INTERPRETATION

The formulae of Section 2 may be given a simple interpretation. First,
let us note that the total cross—section is given by the average value of the

eigenamplitudes weighted by their respective couplings to the two~proton state
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The correcponding formula for the inelastic diffractive cross—section

11l

G = (L) - L (0)7) = £57(0) 2
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Thus, we see that the total dinelastic diffractive cross—section is given

by the dispersion couared of the spectrum of the eigenamplitudes that couple to

the two=proton ctatc. Equations (8) and (9) are illustrated in Fig. 2.

Our result, Eq. (9), iz obviously a generalization of the classical
Good=Walker picture of diffraction dissociation 6). In the Good=Walker approach,

the inelastic diffractive processes were treated as regeneration processes and

their strengthé were proportional to the differences of the absorption strengths
of the "bare particle" states. This idea is expressed mathematically in a very
clear way by Eq. (9). In particular, we see from this equation that if all the

diffractive cipenctates (the "bare particle states" in the Good-Walker language )

were absorbed equally strongly, so that the eigenamplitude spectrum were a

delta—prak, there would be no inclastic diffraction. A special example of such

an extreme casc iz that of the elastic amplitude saturating the black disc

limite

We also sce from Eqge (9) that a large cross—section for inelastic diffract—
ion necessarily implies large variations in the opacities of the strongly coup~
ling eigecnamplitudes, and vice versa. It is then natural to ask : what does

the experimental cize of imply for the eigenamplitude spectrum ? In

o ..
diff
particular, should the observed amount of inelastic diffraction be regarded as

small or large ? As we chall demonstrate, the answer to these very interesting

questions is that the observed size of in proton=proton scattering should

o
aiff
be regarded as exztremely large, since it implies that the eigenamplitude spectrum

is not only very broad but even double—pecaked : the two=proton state couples

most strongly cither to very black or to very transparent eigenstates.



Let us first summarize the experimental estimates of the ratio of the
inelastic diffractive to the elastic cross—scection 7). They are compiled in
Fig. 3. Also shown is an estimate resulting from a triple Regge fit to data 8).
Although the various estimates vary considerably and arc even to some extent
mutually inconsistent (this is mainly duc to the different definitions of Cqiff

used by different authors), ornnc may safely conclude that iz of the samc

T
diff
order as ) i.e., between 6 and 9 mb at the FNAL-ISR cnergy range.

In order to see what the above value of implics for the cigen—

O 1spore
amplitude spectrum, we proceceded as follows. Usiggiihc mean value <tk(b)> =
= t11(b) taken from the elastic scattering analycis of Ref. 4) and shown in
Fig. 1, we calculated for each b the diffractive cross-section Odiff(b)

resulting from various assumed spectra ol ecigenamplitudes. The corresponding

total diffractive cross—sgcction was then obtained by integrating

o TR
odiff(b) over b. A collection ogliisults is shown in I'ig. 4. Intuitively,

we expected the eigenamplitude spectrum to peak around its mean value (i.o.,

to be something like a Gaussian). I'rom the results of Fig. 4 we sec, however,
that such a spectrum corrcsponds to a diffractive crocss—section which is by

an order of magnitude too small compared to the ezperimental value ! We havce

studied a large sct of paramctrizations for the eigenamplitude spectrum and

may summarize our findings as follows :  the experimental size of

..
aiff
implies that at least for the impact paramcters that contribute moct of

(b=0.5=1 fm), the cigenamplitude distribution must be doublc-—pcaked,

o ..
diff
ieee, the two—proton state must consist mainly either of almost black (ty::12

or of ve transparent tka$0) eigengtates. This result dramatically contra—

dicts the idea suggested by many authors %) that the physical two-proton state
would be very near a diffractive cigenstate and that, consequently, perturba—
tive methods would be particularly applicable to the study of diffraction dis—

sociatione

Next, let us note that the distribution that saturates the Pumplin bound
is a bi=-delta distribution in which all the contributing cigenamplitudes are
either completely black or completely transparent. As we have seen above, the
proton—-proton eigenamplitude distribution should be qualitatively similar to
such a distribution. This illustrates well our point that inelastic diffraction

is experimentally nearly as large as unitarity allows.

A convenient way to describe the ecigenamplitude spectrum is to express

the eigenamplitudes t in terms of "eigeneikonalg", Qs

t‘c(b) =) - Q:.Q..‘(b)
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and to parametrize the eigeneikonal spectrum dn/dﬂk. A smoothly varying

eigeneikonal gpectrum may well generate a double peaked ty spectrum
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This is easy to see. For small values of Q the amplitude and the eikonal

k’
are approximately equal,

A ~
t o=, -3 QL+ 2y

and, consequently, the two spectra are nearly equal. A double peaked tk
spectrum may be obtained if the Qk spectrum has a "tail" at large Qk’s,
since the eikonalization procedure will map such a tail into a peak near

tk=‘1, as i1llustrated above.

We conclude this discussion of the properties of the eigenamplitude
spectrum by commenting on the physical interpretation of the above results.
After we learnt from experiment that the proton-proton eigenamplitude spectrum
must be very broad, we have given much thought to the following questions :

what is the physical interpretation of the eigenstates ? Why is the eigen—

amplitude spectrum so broad ? And, in particular, what do our results teach

us about the internal structure of the proton ? Good and Walker interpreted

the diffractive eigenstates as eigenstates of the "bare particle" number
operator. We do not fully understand this interpretation. Why should a state
of a fixed number of "bare particles" (partons, gluons, quarks ?) not undergo
diffraction dissociation ? We believe, however, consistently with the Good-

Walker interpretation, that the extreme broadness of the proton—proton eigen-

amplitude spectrum gives us an important clue suggesting that the proton has

o very rich internal structure. We are now actively studying the above and

related problems.



EIKONAL PICTURE

It was stressed by Blankenbecler 10) that the effect of rising inelastic
diffraction on the total cross—-section is destructive, i.e., if the non-
diffractive cross-section, in the absence of diffraction, stays constant but
new diffractive channels open up, the total cross—~section decreases instead
of increasing. This result was derived for a large class of Feynman diagrams.
It holds also in the multi-chamnnel eikonal approach and in the Gribov Reggeor

calculus approach.

As we have seen, the energy depcndence of is not very well

Cqiff

known. We can, however, be rather sure that is not decrcasing by many

o,
diff

millibarns over the FNAL-ISR range. Consequently, the rise of the total crogss-—

section must originate from the non-diffractive dynamics (the "bare" Pomeron

intercept is above one ?). A possible increasce of would just emphasize

Caifrr
this pointe.

The negative rescattering effects caused by the inelastic diffractive
channels have quite a spectacular effect on the eikonal analysis of elastic
scattering data. As is well known, the Chou-Yang model 1) (where the eikonal
is determined by the overlap of two matter distributions whose shape is given
by the electromagnetic form factors) has been quite successful in describing
the t dependence of elastic scattering 12). However, it turns out that
when the influence of inelastic diffractive channels is properly taken into
account in the analysis, the resulting picture is quite different from that

of Chou and Yang.

To investigate this question, we have carried out a gseries of numerical
calculations in the multichannel eikonal framework. Since not much is known
about the off-<diagonal eikonal elements Qik(b), (i# k), the results vary
considerably. They have, however, one common feature : in all caseg the
elastic element 011(b) dcviates strongly from the Chou-Yang eikonal at
moderate b and agrees with it only at large b. We illustrate this point
in the two-=channel approximation, where thc diffractive t matrix and the
eikonal are 2x2 matrices with all the inelastic diffraction included as a
single off-diagonal element. Such an approximation is obviously very simplistic
and the following results should be regarded as an illustration only. We make
the simple assumption that the impact parameter dependence of all the eikonal
elements is the same. We can then find the common b dependence of the
eikonal elements from experimental data on elastic scattering, adjusting the
remaining parameters to satisfy the experimental lower limits for integrated
diffractive cross-~section. A typical result is sketched in Fig. 5. We see that
a large excess above the Chou-=Yang curve at small b values appears in tho

eikonal.



The above result suggests that the matter distribution of the proton is
different from the charge distribution. That this should be so, is actually
not very surprising. The clectromagnetic form factor describes the distribu-
tion of charged constituents of the proton and some data (e.g., from deep in-—

13))

elastic electroproduction show the importance of neutral constituents

carrying a large part of proton momentum. Our analysis suggests that this

"neutral core"™ is very important in the strong interaction processes. This
agrees nicely with some parton—gluon schemes of particle production 14).
nfortunately, we are unable to determine accurately the shape of the neutral
contribution since the possible differences in the b depeﬁdences of’the
clastic and inelastic eikonal elements (expected, e.g., from the spin struc-—

ture) may affect significantly the details of our results.

To conclude this Section, we note that a detailed study and further
development of the multi-channel eikonal approach would be very interesting.
We have not yet proceeded very far on this line of study but it is obvious
that many new effects are to be expected. For example, one may have all the
eikonal eclements increasing indefinitely but still get an arbitrarily small
elastic amplitude. Thus the saturation of the black disc limit is by no
means a necessary result following from an increasing "bare"™ amplitude, as is
the case for the standard "scalar" analysis. This result, known already to
several authors, should be kept in mind in the following discussion of the

asymptotic region.

ASYMPTOTIC PICTURE

The impact parameter representation has been widely used to analyze the
high encrgy behaviour of elastic scattering and to speculate about asymptotic
behaviour. In particular, Cheng and Wu 15) have predicted that the amplitude
should saturate the black disc 1limit, whereas phenomenclogical analyses qf
data have led other authors to the "geometrical scaling" picture 16) Whefe
the energy dependence appears only as a change in the impact parame%er scale.
We would now like to speculate what kind of asymptotic behaviour may be ex—

pected from an extrapolation of the existing data as analyzed in our approach.

First, let us repeat once more that the Pumplin bound (6) allows the
elastic amplitude to saturate the black disc limit only if the ihelastic

diffraction is negligible. In fact, this was one of the conclusions of the

Cheng-=Wu model 17). However, as we have seen from the compilation of Fig. 3,

there is no experimental evidence whatsoever for o decreasing relative

diff
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to o Even in the energy range where other "asymptotic phenomena" (as

el®

rising and o are seen, the ratio o,. (o} seems to l1ncrease
’ aif el ’

tot el>
or at least to stay constant. Thus, the simplest extrapolation of data
compatible with rising cross—-sections and with the Pumplin bound gives the
"grey disc limit"™ - the hadrons stay asymptotically semi-transparent. If the

approximate equality is assumed to hold asymptotically, the

“airr = %e1
maximal average opacity allowed by unitarity is about %. This value can be
exceeded for small impact parameters, for which the spin structure discrimi-
nates inelastic diffraction (remember that inelastic diffraction does not
conserve s channel helicity and that an amplitude corresponding to a helicity
flip of n wunits vanishes at small b as bn). Thus the effective unitarity
limit may be of the shape sketched in Fig. 6. The detailed shape of the ampli-
tude obviously cannot be predicted from our oversimplified approach. We want
to stress here, however, that including inelastic diffraction, we find the
effective unitarity limit to be nearly saturated by data for small b. This
explains the apparent energy independence of the elastic profile in this

region and may account for the applicability of the approximate geomctrical

scaling.

CONCTLUSIONS

As we have seen, the unified description of elastic and inelastic
diffractive channels allows one to modify many ideas about the diffractive
scattering. The global inelastic contribution (when evaluated in the proper
scale) appears to be very large, suggesting rather unexpected behaviour of
the spectrum of eigenamplitudes to which the physical particles couple. Our
results suggest important deviations from the standard eikonal analysis and
from the asymptotic predictions derived in the models rneglecting inelastic
diffraction. There are also many other effects which we have not discussed
here. Thus, for example, average multiplicity and the multiplicity distri-
butions are affected, which may remove some discrepancies between the Cheng-

Wu model and data.

To conclude, we beliecve that, although our prcsent approach is very
oversimplified and any of our numerical results should be taken cautiously,
our analysis shows the usefulness of the unified trcatment of clastic and
inelastic diffraction. It should be pursued further and, subsequently, applied
in all the phenomenology. The resulting modifications of models and the new
theoretical insights to be gained will certainly constitutc a step forward

towards better understanding of strong interactions.
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FIGURE CAPTIONS

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

1)

Impact parameter distributions for pp scattering at s=53 GeV 7,
BElastic and total cross—sectionc are shown as dashed and dach-—

dotted lines, respectively. The solid line is a resulting bound

for cdiff(b)'

Schematical illustration of eigenamplitude spectrum. Probability
density for a proton-proton state being coupled to eigenctates of

given opacity tk is plotted versus tk.

A compilation of Odiff/cel stimates for pp scattering.
Crosses, circles, dots, squares, sexagones, down- and up-edged
triangles represent thc data of Refs. 7a)-7g), regpectively.

The curve results from the fit of Ref. 8).

Various possible probability distributions dezscribing the decom—
position of pp state into diffractive eigenstates for three
values of b. Resulting integrated diffractive cross—section
Oaiff is presented in the last column for each distribution.
Dashed line is an example of eikonal calculated asgsumed two-
channel approximation and a, common b dependence of all the

eikonal matrix elements. Corrcsponding is about 6 mb.

o
diff
Chou-Yang it calculated from the dipole form factor (12) is

shown as a solid line.

Suggested asymptotic limit (shaded linc) as compared with the
black disc limit and energy dependence of experimental shape

of elastic profile 4 .
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